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A NOTE ON THE STATISTICAL SIGNIFICANCE
OF CHANGES IN INEQUALITY"

WALTER SOSA ESCUDERO y LEONARDO GASPARINT

1. Introduction

Between 1993 and 1994 the Gini coefficient for Greater Buenos Aires rose
from 0.443 to 0.457 based on information from the Permanent Household
Survey (EPH).” If the interviewed households had been the same in both years
and if their income were measured without error, this observed difference in
the Gini coefficients should be unambiguously interpreted as an increase in
inequality in the distribution of income. But if, as it is the case of the EPH,
interviewed households differ between surveys, this increase in the Gini
coefficient could have simply been caused by sampling variation rather than an
increase in inequality.

In spite of this observation, most of the applied work on the subject is
based on point estimates of inequality measures, ignoring the sampling
variability problem. This issue is far to be minor since, as this note clearly
shows, many of the observed changes in inequality for several regions in
Argentina turn out to be statistically insignificant. This note utilizes the
bootstrap to provide a simple and efficient way to compute interval estimates
and standard errors for inequality measures for the case of Argentina, where
income inequality presented sudden changes in both directions in the last two
decades, making crucial the issue of distinguishing sampling variability from
true changes in the distribution of income. The same procedure is also used to
formally test the null hypothesis of no change in inequality between any pair
of periods.

The rest of the note is organized as follows. In section 2 we discuss the
use of bootstrap methods to deal with the problem of sample variability in

' JEL Classification: D3, D6, C4
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3 These figures correspond to the Gini coefficient of the distribution of household per-capita
income based on the October wave of the Permanent Household Survey conducted by the
National Institute of Statistics and Census (INDEC).
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inequality measures, particularly in the Gini coefficient. An application of
these techniques to derive standard errors and confidence intervals for the case
of Argentina is presented in section 3. Section 4 concludes with some final
remarks.

2. Bootstrap methods for inequality measures

Let Y be a positive and continuous random variable which represents income.
We will denote its cumulative distribution function (CDF) with F(y). In
general terms, an inequality measure will be understood as a characteristic of
the distribution of income which represents how total income is dispersed
between individuals.® [For simplicity, the following discussion will be
illustrated using only the popular Gini coefficient G, defined as (Maasoumi,
1997):

G =(2/py) [ yIF(y)-1/21dF(y)

where puy is the expected value of the distribution of incomes. Based on a
random sample of N individuals with incomes Y, i=1,...,N, estimation of G
usually proceeds by using a standard estimator like:

e Iy,

1l_|l

where y is the mean of the distribution of incomes.” Even though the

estimated Gini coefficient is a complicated function of the data, large sample
variances can be derived from the theory of U-statistics (Cowell, 1989).

In practice there are two reasons to consider alternative routes to the use
of asymptotic results. First, there is the usual caveat about the reliability of
large sample based methods when applied to finite samples. Second, large
sample methods can become quickly cumbersome (or maybe nonexistent)
when the interest is in additional features like the statistical significance of
temporal changes in the Gini coefficient, the sampling variability of a welfare
measure (which involves the mean income and the Gini coefficient in a non-
linear fashion), or, simply, other alternative measures of inequality.

* See Massoumi (1997) for a recent survey on inequality measurement.
> See Lambert (1993).
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Under very general conditions, the bootstrap provides a simple and
convenient framework to handle the problem of sampling variation of many
inequality measures, including the Gini coefficient. The bootstrap has recently
became a widely used technique in applied statistics and econometrics. One
reason for this increasing popularity is that even though the formal aspects of
why it works are quite involved, it is intuitively simple to understand and
implement®. Bootstrap methods for inequality measures have recently been
used by Mills and Zandvakili (1997) and Gasparini and Sosa Escudero (1999).

Denote with 0 a characteristic of the distribution which is the subject of
interest, like the Gini measure of inequality. Let 0,(Y) be an estimator of 0
based on a i.i.d sample of size N with Y = (Y}, Y5, ..., Yn). 0.(Y) will be a
random variable whose distribution we will denote with G,(g; F) = Pr[0,(Y)<
q]. This notation stresses the fact that this distribution is actually a
transformation of the original CDF of the variable of interest (income, in our
case).

The first goal is to obtain a variance for 6,(Y) and a confidence interval
for 6. Consider the case of the variance (denoted by ) first. This will be:

S =E[0.Y)’ - E 6.(Y)* ]

The analytic evaluation of the expectation in this expression requires
knowledge of the distribution G,(g, F). In practice, and except for very
particular cases, there are two difficulties. The first one is that the original
distribution of incomes (F) is not known. The second one is that even when F
is known, the derivation of G,(q; F) and characteristics like S could be
analytically very cumbersome, when not impossible. A common solution is to
rely on asymptotic expansions, which provide an adequate representation of
the statistic of interest (or of a transformation), valid when the sample size is
large.

The bootstrap method consists in simply approximating G,(gq, F) using
the empirical distribution of the sample (F),), that is, using G,(q, F,). Even
when in practice this solves the problem of not knowing F, it remains to solve
the problem of computing G,(q, F,) from F, and any characteristic of interest

® Efron and Tibshirani (1993) and Davidson and Hinkley (1997) provide excellent introductions
to the subject. Horowitz (1997), Jeong and Maddala (1997) and Veall (1998) are useful surveys
oriented to econometric applications.
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like S. Efron (1978), in his seminal paper, proposes computing G,(q, F,,) and S
based on the following Monte Carlo experiment: ‘

1. Obtain a random sample with replacement from the empirical
distribution ol : of size N.

2. Compute the statistic = ‘= eres® from the realizations of the sample

obtained in the previous step.

. Repeat the process B times.

4. From the previous replications we will obtain B (bootstrap) estimates of
0. The method consists in approximating G,(q, F,) with the empirical
distribution of 8, based on the estimates obtained in the previous steps.
For example, for the case of the variance of the Gini coefficient, the
method suggests to simply compute the sampling variance error using
the B bootstrap estimates of 9.

|98

Intuitively, if F( ) were known and we could sample from it, when N
goes to infinity the ~rapirical distribution G, converges uniformly to G by
application of the Fundamental Theorem of Statistics (Davidson and
MacKinnon, 1993). Instead, ‘%ie bootstrap method actually samples from the
original sample as if it were the population, and the Monte Carlo step is
performed as a simple way to evaluate an integral like the one involved in the
computation of the variance.

In order to construct a 95% confidence interval (G,,Gy) for the Gini
coefficient we use the percentile method, that is, we take as G, and G, the
0.025 and 0.975 quantiles of the empirical distribution of the bootstrapped
coefficients. The procedure to evaluate the null hypothesis of no change in the
Gini coefficients of two distributions at different periods is similar to the one
described above. In this case the population of interest consists in all incomes
for a given pair of years to be compared. The bootstrap proceeds by taking a
sample with replacement for each of the years in the comparison, computing
the Gini coefficient for each year and their difference. According to the duality
between interval estimation aud hypothesis testing, the test rejects the null of
equality if a confidence interval for the difference in the Gini coefficients does
not contain zero.

It is important to remark that the procedure described above applies,
under general conditions, to any inequality measure. For example, Mills and
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Zandvakili (1997) apply the bootstrap to the Theil coefficient and other
decomposable measures of inequality, and Gasparini and Sosa Escudero
(1999) use the method to evaluate the sampling variation of the Sen measure
of welfare.

A numerical example

In order to gain some understanding of the reliability of the bootstrap method
for the case of inequality, consider the following numerical example. Assume
that income is known to be log-normally distributed with parameters p and c°,
that is, InY~N(y, 02). For the log-normal case, the Gini coefficient can be
shown to be equal to 2 ®(c/V2)-1, where @ is the cumulative normal standard
distribution (Cowell, 1997).

We set u =0 and ¢ =0.95387, so for this case the Gini coefficient will
be equal to 0.5. We take a sample of 1000 individuals from this distribution
and estimate the Gini coefficient using the formula above, which gives a value
of 0.49291. We then perform the bootstrap to obtain a standard error for the
estimated Gini coefficient’”. We take 1000 samples of size 1000 with
replacement from the original sample and compute the Gini coefficient for
each of them. The standard error of the bootstrapped Gini coefficients gives a
value of 0.01011.

Cowell (1997, p. 118) suggests approximating the standard error of the
estimated coefficients using the formula 0.8086 ¢ / N, where c is the sample
coefficient of variation. This formula is valid when the underlying distribution
is normal and the sample size is large. This method gives an estimated
standard error of 0.0277, considerably larger than the value obtained using the
bootstrap.

In order to explore the accuracy of the bootstrap, we performed a small
Montecarlo experiment, extracting 1000 samples of size 1000, in this case
from the original (known) distribution of income, compute in each case the
Gini coefficient, and from the empirical distribution, compute the standard
error, which gives a value of 0.01304, which is very similar to the one
obtained by bootstrapping the original data.

7 All computations were performed using the bootstrap module of Splus 4.0 for Windows.
Specific routines for inequality measures are available by request to the authors.
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This simple example illustrates how the bootstrap can provide reliable
approximations to the characteristics of interest, specially in cases where the
applicability of large sample approximations are questionable.

3. Applications to the case of Argentina’s EPH

Inequality measures for Argentina are usually based on the Permanent
Household Survey (EPH) collected and processed by the local National
Statistical and Census Institute (INDEC) in 23 major urban areas.

First consider the case of Greater Buenos Aires (GBA), an area with
nearly a third of the population of Argentina. The EPH gathers information on
around 3,400 households (more than 11,000 individuals). The first panel of
Table 1 and Figure | present the evolution of the Gini coefficient of the
distribution of per capita household income for that urban area..

The computed Gini increased from 1992 to 1995 and then slightly fell.
According to Table 1, inequality in 1997 was much higher than in 1992.
However, as mentioned before, since surveyed households change period by
period, these variations could be due to alterations in income distribution, or
simply to the fact that the sample had changed, or to both factors. In order to
quantify the sampling variability Table 1 accompanies Gini estimates with
bootstrapped standard errors, the corresponding coefficient of variation and
confidence intervals.® In all cases, the number of bootstrap replicates is B=300.
Given the large size of the sample, we expect the Gini coefficients to be
estimated with high precision. This is reflected in the low values of the
standard errors (0.0072 on average) and the coefficients of variation (1.6% on
average).

Although Gini coefficients are apparently estimated with high precision,
researchers and policy makers are usually more concerned with changes in

® The use of the simple bootstrap requires independence of observations in the sample for a
particular cross-section. This is clearly not the case if computations are based on individuals
(where within-family effects are likely to be strong). But since the relevant income for each
individual is the per-capita income (which is constant within the family), the problem is easily
overcome by sampling households (instead of individuals), for which the independence
assumption is more realistic while preserving the (trivial) within household dependence.
Actually, this would conform to a special case of the block bootstrap, which is a valid method
for dependent observations (see Davison and Hinckley (1997)). A simple formula to compute
the Gini coefticient based on individual level per-capita income using sampling weights is given
in Deaton (1997, pp. 154) and is the one used in this paper.
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inequality. The top panel of Table 2 shows the changes in the Gini coefficients
for all pairs of years between 1992 and 1997, for the case of Greater Buenos
Aires. The third column shows the differences between the Gini coefficients
for each pair of years. Columns 4 to 7 show the percentiles of the bootstrapped
distribution of these differences. For example, the numbers in columns 5 and 6
correspond to a confidence interval of 90%. According to the previously
described procedure, the null hypothesis of equality between the Gini
coefficients is rejected if the confidence interval for this difference does not
include the number zero. In each row it is indicated with a “*” whether the null
hypothesis is rejected for a significance level of 0.95.°

For the case of GBA. out of 15 possible comparisons, 9 of them turn out
to be statistically significant. As it can be observed, the cases in which equality
can not be rejected correspond, in general, to comparisons between successive
years. Except in one case, for the rest of the comparisons between consecutive
years it is not possible to reject the null hypothesis of absence of changes in
the Gini coefficient. This implies that according to the experience of the 90’s
and given the current sample size, it seems precipitated to state propositions
about the evolution of inequality from the observation of the Gini coefficient
for two consecutive years. Trend changes in inequality take some time to be
evident. It is likely that the analysis of two consecutive years capture more
sample variability (noise) than real changes (signal).

It is interesting to contrast the case of Buenos Aires with a smaller urban
area like Neuquén, where the sample size is on average 748 households. The
level and the evolution the Gini measure is similar to that of Buenos Aires, as
can be seen in Table | and Figure 1. As expected, the smaller sample size
traduces in larger standard errors and wider confidence intervals. Whereas in
Buenos Aires the average coefficient of variation was 1.6%, for Neuquén this
figure is 2.9%. In absolute terms this number may seem low, so in spite of the
reduction in the sample size it is still possible to obtain precise estimates of the
Gini coefficient. The problem arises when the focus is the change in
inequality. The bottom panel of Table 2 shows that even though the evolution
of the Gini measure is similar to that of Buenos Aires, only two of the 15
observed changes are statistically significant. Detailed results for several

’ The EPH has a rotating panel structure, which creates temporal dependence between
observations As Mills and Zandvakili (1997) stress, the dependence between time periods is
automatically taken into account by the bootstrap since each subsample is conditional on the
data observed in the previous period.
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regions of Argentina emphasize the conclusions of this note and are not
presented in the paper in order to save space.'

4. Final remarks

The usual practice in income distribution analysis is to draw conclusions on
inequality changes from the comparison of indices computed from household
surveys. This procedure ignores that changes in inequality measures can be
partly driven by sample variability. As this note clearly illustrates, the
bootstrap provides a simple and efficient way to compute standard errors and
confidence intervals for inequality measures and their changes, allowing us to
assess the effect of sample variability on the results.

The application to Greater Buenos Aires data in the nineties reveals that
although there was a clear increasing trend in inequality, changes between two
successive years have not been statistically significant, given the current
sample size. The case of Neuquén, where almost all changes in the Gini
coefficients are not statistically significant, clearly shows that researchers and
policy makers should be very careful when evaluating distributional aspects in
regions where the sample size is not large enough to distinguish true changes
in inequality from sampling variability.

' They can be obtained by request from the authors.
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Table 1
Gini coefficients and bootstrapped confidence intervals and standard errors
Greater Buenos Aires and Neuquén, 1992-1997

Region Year Gini Confidence Interval Standard Coef. Of
. 0.025 0.05 0.95 0.975 Error  Variation
GBA 92 0.4415 0.4264 04285 0.4529 0.4548 0.0072 1.6%

93 0.4430 0.4298 0.4308 0.4520 0.4529  0.0062 1.4%
94  0.4570 0.4418 0.4440 04691 0.4708 0.0077 1.7%
95 0.4843 0.4687 0.4704 0.4955 0.4971  0.0074 1.5%
96  0.4840 04705 0.4721 0.4956 0.4982  0.0073 1.5%
97 04797 0.4670 04686 0.4938 0.4958  0.0074 1.6%

Neuquén 92 0.4632 0.4393 0.4423  0.4798 0.4830 0.0113 2.4%
93  0.4422 0.4251 0.4266 0.4608 0.4619 0.0109 2.5%
94 0.4574 0.4374 0.4406 0.4759 0.4801 0.0110 2.4%
95  0.4813 0.4534 0.4582 0.5047 0.5087 0.0148 3.1%
96  0.4973 0.4608 0.4651  0.5297 0.5357  0.0195 3.9%
97 04718 0.4458 (0.4482 0.4910 0.4929 0.0137 2.9%

Source: Authors; calculations based on the EPH, October 1992-1997.

Figure 1
Gini coefficients and confidence intervals
Greater Buenos Aires and Neuquén, 1992-1997

Greater Buenos Aires Neuquen
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Source: Authors” calculations based on the EPH, October 1992-1997.



A NOTE ON THE STATISTICAL SIGNIFICANCE ...

Table 2
Differences in Gini coefficients and bootstrapped
confidence intervals and standard errors
Greater Buenos Aires and Neuquén, 1992-1997

Region Years Difference Confidence Interval Standard
0.025 0.05 0.95 0.975 Error

GBA 92 93 -0.0015  -0.0201 -0.0188 0.0172 0.0184 0.0103
92 94 -0.0155  -0.0341 -0.0327 0.0021 0.0063 0.0108
92 95 -0.0428  -0.0629 -0.0602 -0.0264  -0.0237 0.0103
92 96 -0.0425  -0.0653 -0.0615 -0.0252  -0.0212 0.0112
92 97 -0.0382  -0.0569 -0.0549 -0.0223 -0.0193 0.0099
93 94 -0.0140  -0.0338 -0.0317 0.0028 0.0064 0.0107
93 95 -0.0413  -0.0583 -0.0559 -0.0236 -0.0213 0.0104
93 96 -0.0410  -0.0588 -0.0557 -0.0242  -0.0220 0.0100
93 97 -0.0367 -0.0570 -0.0546 -0.0204 -0.0177 0.0108
94 95 -0.0274  -0.0480 -0.0451 -0.0108  -0.0090 0.0106
94 96 -0.0270  -0.0493 -0.0446 -0.0069 -0.0051 0.0111
94 97 -0.0228  -0.0412 -0.0379 -0.0048  -0.0008 0.0100
95 96 0.0004  -0.0204 -0.0187 0.0168 0.0211 0.0113
95. 97 0.0046  -0.0162 -0.0141 0.0232 0.0258 0.0112
9% 97 0.0042  -0.0146 -0.0125 0.0199 0.0267 0.0103
Neuquén 92 93 0.0209  -0.0109 -0.0058 0.0408 0.0448 0.0150
92 %4 0.0058 -0.0271 -0.0230 0.0338 0.0358 0.0158
92 95 -0.0182  -0.0507 -0.0454 0.0067 0.0129 0.0164
92 96 -0.0342  -0.0735 -0.0673 -0.0018  0.0073 0.0213
92 97 -0.0086  -0.0382 -0.0350 0.0207 0.0264 0.0171
93 94 -0.0152 -0.0457 -0.0402 0.0125 0.0158 0.0169
93 95 -0.0391  -0.0703 -0.0664 -0.0124 -0.0100 0.0165
93 96 -0.0551  -0.1011 -0.0936. -0.0266  -0.0198 0.0217
93 97 -0.0295  -0.0637 -0.0595 -0.0028  0.0066 0.0168
94 95 -0.0239  -0.0576 -0.0499  0.0062 0.0122 0.0165
94 96 -0.0399  -0.0943 -0.0824 -0.0006  0.0040 0.0256
94 97 -0.0144  -0.0419 -0.0395 0.0166 0.0222 0.0170
95 96 -0.0160  -0.0655 -0.0575 0.0186 0.0228 0.0235
95 97 0.0096  -0.0294 -0.0213 0.0383 0.0413 0.0190
96 97 0.0256  -0.0139 -0.0091 0.0605 0.0644 0.0218

Note: differences significant at 5% are indicated with *.
Source: Authors’ calculations based on the EPH. October 1992-1997.
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UNA NOTA SOBRE LA SIGNIFICATIVIDAD
ESTADISTICA DE LOS CAMBIOS EN LA DESIGUALDAD

WALTER SOSA ESCUDERO y LEONARDO GASPARINI

RESUMEN

Clasificacion JEL: D3, D6, C4

Esta nota utiliza técnicas computacionales como ¢l bootstrap para obtener
estimaciones por intervalos y errores estandar para las medidas de
desigualdad. Adicionalmente, esta metodologia es utilizada para
implementar un test formal de la hipdtesis nula de ausencia de cambios en la
desigualdad entre dos periodos. Los resultados se aplican al caso de
Argentina, en donde la desigualdad varié sustancialmente en la altima
década, por lo que resulta crucial distinguir la variabilidad muestral de los
verdaderos cambios en la distribucion del ingreso. Los resultados muestran
que este problema no es menor, dado que para varias regiones de Argentina
los cambios observados en el coeficiente de Gini no son estadisticamente
significativos.

A NOTE ON THE STATISTICAL SIGNIFICANCE
OF CHANGES IN INEQUALITY

WALTER SOSA ESCUDERO and LEONARDO GASPARINI

SUMMARY

JEL Classification: D3, D6, C4

This note illustrates how modern computer intensive tools like the bootstrap
provide a simple and efficient way to compute interval estimates and standard
errors for inequality measures. Additionally, the same methodology is used to
implement a formal test of the null hypothesis of no changes in income
inequality between two periods. Results are applied to the case or Argentina,
where inequality varied substantially in the last decade, making crucial the
issue of distinguishing sampling variability from true changes in the
distribution of income. Our results show that the problem is not minor, since
the observed changes in the Gini coefficients for several regions in Argentina
are not statistically significant.



