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Resumen El sindrome de apnea/hipopnea obstructiva del sueno cons-
tituye uno de los trastornos del suefio mas prevalentes, con importantes
implicaciones sociosanitarias, en el cual la detecciéon temprana es crucial
para iniciar tratamientos adecuados o tomar medidas preventivas. La
polisomnografia, método de diagnéstico de eleccién, es muy costosa en
términos de tiempo y dinero, por lo que no esta disponible para un grupo
de la poblacién general. Proponemos obtener indirectamente la informa-
cion de la deteccion de eventos de apnea/hipopnea a través de la senial de
saturacion de oxigeno obtenida mediante un oximetro de pulso. La obten-
cion de la distribucién condicional de la senal de deteccion de eventos de
apnea/hipopnea dado el comportamiento de la saturaciéon de oxigeno se
logra mediante la optimizacién de un limite inferior de evidencia. Para el
disenio del algoritmo empleado se utilizan modelos generativos profundos,
en particular redes generativas adversarias y autoencoder variacionales.
En nuestro estudio, analizamos datos de 5804 pacientes de la base de
datos Sleep Health Heart Study. En la etapa de prueba, alcanzamos una
exactitud del 80 %, una sensibilidad del 80 % y una precision del 79 %.

Palabras clave: Apnea del suefio - Saturaciéon de oxigeno - Indice de
apnea/hipopnea - Redes generativas adversarias.

1. Introduccion

El sueno desempefia un papel fundamental en la salud y el bienestar de las
personas. Un sueno saludable es importante para el funcionamiento cognitivo,
el estado de &nimo, la salud mental y la salud cardiovascular, cerebrovascular
y metabolica [1]. Ademas, la cantidad y calidad adecuadas del suefio también
son fundamentales para reducir el riesgo de accidentes y lesiones causadas por
la somnolencia y la fatiga, incluidos los accidentes laborales y automovilisticos.
La privaciéon del suenio a corto plazo, la restriccion del sueno a largo plazo, la
desalineacién circadiana y los trastornos del suenio no tratados pueden tener un
impacto profundo y perjudicial en la salud fisica, mental, estado de animo y
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seguridad publica. La falta de sueno cronica se asocia con un mayor riesgo de
mortalidad y contribuye tanto al riesgo individual como a la carga social aso-
ciada con varias epidemias médicas, incluidas las enfermedades cardiovasculares,
diabetes, obesidad y cancer [2]. En el ano 2014, la Academia Americana de Me-
dicina del Suenio (American Academy of Sleep Medicine) [3] publico la tercera
edicion de la Clasificacion Internacional de Patologfas del Suetio (International
Classification of Sleep Disorders), donde se indica que uno de los trastornos del
suefio mas comunes es el Sindrome de Apnea Obstructiva del Suefio (SAOS), que
es causado por eventos repetidos de obstrucciéon parcial (hipopnea) o total (ap-
nea) de las vias respiratorias superiores durante el suefio. En entornos con buenos
recursos se estan realizando esfuerzos considerables para diagnosticar y tratar a
las personas con SAOS, pero los datos disponibles sugieren que la mayoria de los
casos de SAOS siguen sin diagnosticarse, incluso en los paises desarrollados. En
2019, un estudio realizado por Benjafield y cols. [4] estima que alrededor de mil
millones de adultos de entre 30 y 69 afos en todo el mundo podria sufrir SAOS
basandose en los criterios fijados por la AASM, y estiman que el namero de per-
sonas con SAOS de moderada a grave, para las que generalmente se recomienda
tratamiento, es de 425 millones.

La polisomnografia (PSG) es el método convencional utilizado para la detec-
cion de trastornos del suefio, incluido el SAOS. La PSG tipica contiene registros
de electroencefalografia, electrooculografia, electromiografia, electrocardiografia,
flujo de aire oronasal, esfuerzo respiratorio y saturacion periférica de oxigeno en
sangre (SpOs). Sin embargo se considera incomodo (debido a la gran cantidad
de cables y sensores conectados al cuerpo del sujeto), costoso y no disponible
para un gran grupo de la poblacion mundial. Ademaés el proceso de analisis re-
quiere mucho tiempo y trabajo. Por lo general los centros médicos cuentan con
un pequeno numero de profesionales capaces de diagnosticar apnea del sueno lo
que genera largas listas de espera [5]. Por lo tanto, se desea tener un sustituto
del sistema basado en PSG que sea simple, econémico y portatil que pueda uti-
lizarse en hogares y clinicas. La oximetria de pulso es una técnica de medicién
ideal para esto, ya que es econémica, discreta y facil de configurar en un entorno
domeéstico. La senal de SpOs es de particular interés para la detecciéon de eventos
de SAOS [6], esto es debido a que el cese de la respiracion asociado con eventos de
apnea-hipopnea siempre va acompanado de una caida en el nivel de saturacién
de oxigeno. Sin embargo, es apropiado mencionar que este nivel de caida puede
ser muy pequeno e imposible de detectar por un observador humano, razén por
la cual las técnicas avanzadas de procesamiento de senales, como los métodos
de aprendizaje maquinal, podrian proporcionar una alternativa muy valiosa. En
el contexto de la deteccion de SAOS, las redes generativas adversarias (GANs)
tienen el potencial de transformar la forma en que se recopilan y analizan los
datos de los pacientes. Estas redes pueden aprender patrones sutiles en los datos
de PSG y generar senales sintéticas que se asemejan a los patrones de suefo y las
interrupciones respiratorias observadas en pacientes reales. Esto podria facilitar
la recopilacion de datos fuera del laboratorio del sueno y mejorar la eficiencia en
el diagnostico.
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2. Materiales

El estudio fue realizado en las instalaciones del Laboratorio de Senales y Dind-
micas no Lineales de la Facultad de Ingenieria de la Universidad Nacional de
Entre Rios. Para el desarrollo se emplearon GPUs instaladas en un cluster de al-
to desempeno equipado con tres GPU NVIDIA GTX 1080Ti. La implementacion
del trabajo se desarroll6 en lenguaje de programacion Python 3.

2.1. Base de datos

Se utilizo la base de datos Sleep Heart Health Study (SHHS) debido a que con-
tiene 5424 registros obtenidos mediante estudios de PSG que fueron adquiridos
por dispositivos domiciliarios y bajo la supervisiéon de un técnico especializado.
Se escoge debido a la precision demostrada en su utilizaciéon en proyectos ante-
riores, por lo que se confirma que los datos estan etiquetados correctamente y
se pueden utilizar para entrenar el modelo de manera més efectiva y reducir la
posibilidad de errores. Ademas esta base de datos es accesible, lo que la convierte
en una herramienta valiosa para la comunidad de investigadores y desarrollado-
res de aprendizaje profundo, y los estudios adquiridos en la base de datos fueron
analizados bajo los estandares publicados por la AASM.

3. Metodologia

3.1. Arquitectura del método propuesto

En el presente estudio el conjunto de datos toma la forma (z1,41), ..., (N, yn)
donde (x;,y;) es la i-ésima observaciéon que consiste en un segmento de la senal
de SpOs z; y su correspondiente senal de apnea/hipopnea y;. Se supone que
existe una representacion de menor dimensién o variable latente continua, z, de
un segmento de senial de SpOy que permite la reconstruccion del correspondiente
segmento de senal de apnea/hipopnea, y. Sea py-(z|z) la verdadera estimacion
a posteriori sobre las variables latentes condicionadas a las muestras de SpOs.
Dado que se desconoce la verdadera distribucion, se propone aprender una apro-
ximacion parametrizada ¢4 (z|z) a la intratable verdadera estimacion a posteriori
po+(z]x). Sea pp(z|y) la posterior de la variable latente z condicionada a las mues-
tras de la sefial de apnea/hipopnea y, se asume que la senal de apnea/hipopnea
puede ser perfectamente reconstruida por z. Entonces es intuitivo asignar las
muestras de la senal de SpO5 de entrada a un espacio latente que reconstruiria
bien la sefial de apnea/hipopnea. Esto puede lograrse minimizando la divergen-
cia KL entre la distribucion condicional de la senal de apnea/hipopnea, py(z|y)
y la aproximacion g4(z|z) a la verdadera posterior pg- (z|x), para transformar la
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sefial de SpOy en la sefial de apnea/hipopnea. Matematicamente:
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La divergencia anterior se puede reformular de la siguiente manera:

z

log po(yi) > L(¢,0;2:) = Ey, [log (m)}

=Ky, [~ log gy (2]xi) + log pe(yi, 2)]

(2)

Y el Limite inferior de evidencia (Evidence lower bound) (ELBO) de la ex-
presion anterior £(¢, ;x;) se puede calcular como:

L(¢,6; i) = —KLlgg(2[:) || po(2)] + Eq, [~ log ps(yi|2)]

— By, [ log g (z]:) + log po(3i]2) + log po (2)] )

Adoptando un enfoque basado en la maxima verosimilitud, se optimiza esta
cota inferior de evidencia L£(¢, 8;z;) ELBO con respecto a los parametros varia-
cionales ¢ para aprender la distribucién aproximada. La parametrizacion elegida
para el modelo de inferencia g4(z|x;) decide naturalmente la estrechez del limite
inferior derivado anteriormente. Si existe ¢* € @ tal que ¢4(Z|X) = po(Z|X)
donde @ es el espacio de pardametros de inferencia, entonces el ELBO sera un
limite ajustado a logpg(y;). Esto rara vez sucede en la practica, por lo tanto,
el espacio ¢ esta disenado para ser lo mas expresivo posible, para permitir el
aprendizaje de una aproximacién cercana. En el modelo del presente proyecto
se parametrizan tanto ¢,(z|z;) como pg(yi|z) como redes neuronales que son
conocidas como aproximadores universales de funciones. Se construye un mode-
lo diferenciable de extremo a extremo donde la distribuciéon py(z) es aprendida
por un autoencoder separado, conocido por reproducir perfectamente la senal de
apnea/hipopnea. Un autoencoder que reconstruye la sefial de apnea/hipopnea
impone un espacio latente z y aprende una distribucién marginal sobre él dada
por la siguiente ecuacion:

mazjfummw@ (4)

Si se supone una reconstruccion perfecta de la sefial de apnea/hipopnea por
el autoencoder apnea/hipopnea (validado en el presente proyecto), esta distribu-
cion marginal puede considerarse una buena estimacion a priori, ya que se sabe
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que permite la reconstruccion de la senal de apnea/hipopnea a partir del espacio
latente. A partir de esta presentacion, se refiere a la distribucién marginal como
pe(z), bajo la suposicion de que una baja pérdida de reconstrucciéon empirica
implica que esta cerca del anterior 6ptimo. Una vez que esta estimaciéon a prior:
se aprende a través del autoencoder apnea/hipopnea, se impone el aprendizaje
de la misma distribucién en la capa latente de la red que convierte la senal de
SpOs en senial de apnea/hipopnea. Esto se hace minimizando “adversarialmente”
la divergencia KL[gy(2|z;) || po(2)] en la ecuaciéon 3. Como se muestra en [7], el
entrenamiento “adversarial” se puede utilizar para entrenar g4(z|z;) como una
aproximacion universal de la estimacién a posteriori, al agregar ruido aleato-
rio € a la entrada z;. Esto permite la construccién de estimaciones a posteriori
arbitrarias gy (z|z;), evaluando el modelo de inferencia f4(x;,€) para diferentes
valores de €. Por lo tanto, incluso con un mapeo determinista fijo de la entrada
al espacio latente, la distribuciéon a posteriori no colapsara en una distribucién
delta de Dirac degenerada (es decir, una distribuciéon discontinua), ya que el
ruido de entrada agrega una fuente de estocasticidad diferente a la distribuciéon
que genera los datos en si. Por lo tanto, la real estimacion a posteriori se da por
la expresion:

go(zl) = / 4o (21, pe(e) de (5)

donde gy (z|x;, €) es la distribucion degenerada 6(z — fs(xi,€)). El método uti-
lizado en el presente proyecto elimina las restricciones de normalidad tanto en
la estimacion a posteriori como en la estimaciéon a priori al utilizar el entre-
namiento adversarial para minimizar la divergencia KL. Esto implica un juego
minimax entre la red ¢4(z|z) y una red discriminadora T, que estd disenada
para detectar si la muestra generada por la red ¢4(z|x) proviene de la estimacion
a posteriori pyg(z) (aprendida a través del autoencoder apnea/hipopnea) o no.
Matematicamente, se optimiza la siguiente funcién objetivo para minimizar el
término KL en ELBO:

H;in H,%%X V(q¢7 Tl/)) = Ez%pg (2) [1Og TIZJ(Z)] + Ezzq¢(z|w) [IOg(l - Tw(é))] (6)

El segundo término del ELBO en 3 se interpreta como el error de reconstruc-
cion esperado de la senal de apnea/hipopnea en la salida dado el vector latente,
y se puede minimizar mediante diversas funciones de pérdida. Se elige minimizar
este error midiendo la distancia coseno entre la sefial de apnea/hipopnea esti-
mada y la sefial de apnea/hipopnea real. El resumen del método utilizado se
muestra en la figura 1.

3.2. Agrupacion de los datos

El conjunto de datos SHHS-1 se dividié en tres subconjuntos independientes
aleatoriamente. Sin embargo, como se desea tener igual division cada vez que
se ejecuta el entrenamiento, se utiliza una semilla aleatoria. Por lo tanto, el
conjunto de datos queda dividido de la siguiente manera:
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Qslzl) v P(2)
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Po(yl2)

Decoder
apnea/hipopnea

Figura 1: Representacion de la arquitectura del método propuesto.

= 70% (3797 pacientes), conjunto de entrenamiento (training), para que el
algoritmo de aprendizaje obtenga los parametros del modelo.

= 20% (1085 pacientes), conjunto de validacion (validation), para verificar el
desempertio de cada modelo con un conjunto diferente al de entrenamiento y
asi poder compararlos.

= 10 % (542 pacientes), conjunto de prueba (test), para verificar el desempefio
del modelo ganador. Este conjunto nunca es mostrado a ninguno de los
modelos.

En el proceso de entrenamiento de modelos de aprendizaje profundo, es co-
min agrupar los datos en lotes, conocidos como minibatches. Estos minibatches
se utilizan para calcular el error y actualizar los coeficientes del modelo a través
del optimizador. De esta forma, los datos de entrada se dividen en minibatches,
lo que permite un proceso de entrenamiento mas eficiente y efectivo. Esto es
particularmente wtil cuando se trabaja con conjuntos de datos grandes, ya que
el uso de minibatches agiliza el proceso de optimizacion.

3.3. Proceso de entrenamiento

El autoencoder apnea/hipopnea se entrena primero de manera independiente,
seguido por el entrenamiento de la red adversaria.

Entrenamiento del autoencoder En esta etapa, se entrena el autoencoder
para aprender una representacion latente de los datos de apnea/hipopnea. El au-
toencoder consta de un codificador que mapea los datos de apnea/hipopnea a un
espacio latente, y un decodificador que mapea las muestras latentes de vuelta al
espacio de datos de apnea/hipopnea. El autoencoder se entrena para minimizar
la diferencia entre los datos de apnea/hipopnea originales y los reconstruidos por
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el decodificador. En particular, se utiliza una funcién de pérdida de reconstruc-
cion que mide la diferencia entre los datos originales y los datos reconstruidos.
La funcién de pérdida de reconstrucciéon se define como la suma de los errores
cuadraticos medios (MSE) entre los datos de apnea/hipopnea originales y los
reconstruidos por el decodificador.

Entrenamiento de la red adversaria En esta etapa, se lleva a cabo el en-
trenamiento de la red adversaria para aproximar la estimaciéon verdadera a pos-
teriori. La red generadora se entrena para generar muestras de la estimacion
verdadera a posteriori mientras que la red discriminadora se entrena para distin-
guir entre muestras generadas por la red generadora y muestras de la estimacion
verdadera a posteriori. La optimizaciéon de la GAN implica un juego minimax
entre la red generadora y la red discriminadora, donde la red generadora trata de
enganar a la red discriminadora y la red discriminadora trata de distinguir entre
las muestras generadas y las muestras verdaderas. El objetivo final es minimi-
zar la divergencia KL entre la estimacion verdadera a posteriori y la estimacion
aproximada generada por la red generadora. Se actualizan los pesos de la red
generadora y la red discriminadora utilizando el algoritmo de retropropagacion
del error, y se iteran los pasos hasta que se alcance la convergencia.

4. Resultados

En el estudio se trabajo con la senal de SpOs como entrada al algoritmo disenado
con el propésito de detectar eventos de apnea/hipopnea. La relaciéon entre estas
seniales puede observarse en el ejemplo del registro de una porcién de la senal
de la base de datos SHHS-2 en la figura 2. En la parte superior, se presenta el
grafico de la senal de deteccion de eventos de apnea/hipopnea, donde el valor
1 indica la detecciéon de un evento y O representa la ausencia o no deteccion.
En la parte inferior de la figura, se muestra la senal correspondiente a la va-
riacion de SpOs para el mismo instante de tiempo, obtenida de un paciente de
la base de datos SHHS-1. Se puede observar que en presencia de un evento de
apnea/hipopnea, hay asociada una desaturacion de oxigeno en sangre, la cual se
registra de manera indirecta en la senal de SpOs. A través de la identificacion de
estas desaturaciones, se puede estimar el valor del TAH, lo que posibilita predecir
la gravedad del SAOS en cada paciente.

4.1. Autoencoder apnea/hipopnea

El mejor desempeno para el autoencoder apnea/hipopnea se obtuvo utilizando
un learning rate igual a 0.001 y un batch size de 2048. En la figura 3 se observa
una porcién de la sefial original de apnea/hipopnea a la izquierda, es decir, la
entrada al modelo, y a la derecha la porcién de senal correspondiente reconstrui-
da por el autoencoder apnea/hipopnea aplicado al subconjunto de prueba, es
decir la salida. Se indica como “0” la ausencia de apnea y como “1” la deteccién

de SAOS.
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Figura 2: Registro de senal de deteccion de apnea y SpOs.
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Figura 3: Seflal original de apnea/hipopnea y la reconstruida por el autoenco-
der.

4.2. Red adversaria

El mejor desempeno para el generador se obtiene utilizando un valor de learning
rate igual a 0.0001 y batch size de 512. Por otro lado el mejor desempeno para el
discriminador se obtiene utilizando un valor de learning rate de 0.0001 y batch
size de 512. La evaluacion del rendimiento de la red adversaria en el subconjunto
de datos de prueba se realiza utilizando el algoritmo propuesto completo. Como
entrada se toman las senales de SpOy y como salida se espera predecir una
sefial de deteccion de los eventos de apnea/hipopnea asociados. En la figura
4 se observan los datos de entrada, parte superior, y salida, parte inferior, al
algoritmo propuesto.

100 200 300
o 1007
2
2 0.754
5
3
£ 050
2 025
3
100 200 E

Tiempo

Figura 4: Senal original de entrada y salida del algoritmo propuesto.
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En la figura 5 se realiza una comparacion de la salida deseada y la salida
predicha por el modelo. Se puede observar que, a pesar de no coincidir exacta-
mente las detecciones en la linea temporal, ambos fragmentos de sefial presentan
la misma cantidad de eventos de apnea/hipopnea, que es el objetivo.

—— Sefal predicha
Senal original

Deteccién apnea/hipopnea

| |

o 100 200 300 200 s00
Tiempo

Figura 5: Senal deseada de salida y senal predicha.

4.3. Meétricas de evaluacion

Una vez determinados los modelos con los mejores rendimientos, se aplico el al-
goritmo disenado para predecir el IAH de cada paciente perteneciente a la base
de datos SHHS-1 y compararlo con el IAH original de cada uno. Esta evaluaciéon
se llevd a cabo mediante el empleo de la matriz de confusién. Para la evalua-
cion del método propuesto se tiene en cuenta lo expresado por la AASM para
la designaciéon de la gravedad del SAOS mediante el IAH, como se resume en
el cuadro 1. Se hace evidente la importancia de la deteccion del SAOS grave,

Cuadro 1: Clasificaciéon gravedad SAOS segiun TAH.
IAH Clasificacion SAOS

[0,5) Normal
[5,15) Leve
(15, 30) Moderado
> 30 Grave

debido que seran estos los pacientes que necesitan deteccién temprana para po-
der establecer prioridades en la lista de espera para acceder a una PSG o para
ser derivados a utilizar tratamiento con resiéon positiva continua en la via aérea
(Continuous Positive Airways Pressure) de manera provisional si asf lo conside-
rase un profesional. Para diferentes épocas se obtienen las matrices de confusiéon
que se observan en la figura 6, con sus respectivas métricas en el cuadro 2.
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Figura 6: Matrices de confusiéon obtenidas para un batch size de 256.

Cuadro 2: Métricas de evaluacion utilizando un batch size de 256.
Epoca Exactitud Precisiéon Sensibilidad F1-score
10 0,80 0,79 0,80 0,80
20 0,66 0,80 0,66 0,69

5. Discusion

La deteccion temprana y precisa del SAOS es crucial para la salud y el bienestar
de los individuos. Diversos estudios han explorado el uso de sefiales de oximetria
de pulso como una herramienta efectiva en este ambito. En esta seccion, se
realiza una comparacion exhaustiva con el estado del arte, examinando diferentes
enfoques y metodologias utilizadas en la deteccion del SAOS a través de la
monitorizaciéon de la senal de saturacion de oxigeno.

En el estudio de Almazaydeh y cols. [8], publicado en 2012, utilizan la base
de datos Apnea-ECG Database que incluye 32 sujetos hombres y mujeres entre
27 y 63 anos, y aplican una red neuronal (Neural Network) (NN) como clasifi-
cador para identificar apnea obstructiva del sueno utilizando caracteristicas de
la senal de SpOs que acttian como entradas para la red. Lograron una exactitud
de 93,3 %, sensibilidad 87,5 % y precisién de 100 %. Al afio siguiente, Morillo y
cols. [9] publicaron su estudio donde propusieron un sistema multivariado pa-
ra la deteccion del SAOS a partir del analisis de la SpOy durante la noche.
Utilizaron una base de datos compuesta de 115 sujetos adultos y calcularon 17
caracteristicas en el dominio temporal, estocastico, de frecuencia y no lineales a
partir de los registros de SpO,. Obtuvieron una exactitud de 93,91 %, sensibili-
dad 92,42 % y precision de 95,92 %, considerando la presencia de SAOS cuando
el IAH es mayor a 10 eventos por hora. Ese mismo afio, Alvarez y cols. [10]
utilizaron una base de datos de 249 sujetos adultos para evaluar la utilidad de
diferentes metodologias de selecciéon de caracteristicas y clasificacion para ana-
lizar los registros de SpOs en el contexto de la deteccion de SAOS. Calcularon
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medidas estadisticas, espectrales y no lineales para formar el conjunto inicial de
caracteristicas y aplicaron el analisis de componentes principales (Principal com-
ponent analysis) (PCA), forward stepwise feature selection (FSFS) y algoritmos
genéticos (genetic algorithms) (GAs) para seleccionar subconjuntos de caracte-
risticas. En 2014 Schlotthauer y cols. [11] propusieron un método basado en la
descomposicion empirica de modos (Empirical mode decomposition) (EMD) de
la senal de oximetria de pulso, considerando que las desaturaciones producen un
patréon de ondas muy especifico que se extrae en los modos de la descomposi-
cion. Utilizando esta informacion construyeron un detector basado en umbrales
adecuadamente seleccionados y un conjunto de reglas. Aplicaron EMD a la se-
nal de SpOs preprocesada, con un nimero maximo de modos establecido en seis
y un numero méaximo de iteraciones de cribado establecido en 50. Finalmente,
calcularon un indice de desaturacion de oxigeno, definido como la relacién entre
el namero de eventos de desaturacion y la duracion de la sefial valida (en horas).
El indice de desaturacion de oxigeno construido a partir de estas detecciones
gener6 un detector de SAOS con una alta sensibilidad 83,8 % y especificidad
85,5 %. Al siguiente afio, Hangh y cols. [12] utilizaron una base de datos con
616 sujetos de entre 20 y 85 anos y realizaron un analisis estadistico descriptivo
de datos demograficos, antropométricos, cuestionarios y PSG de los pacientes
para calcular medias y desviaciones estandar de las variables individuales. Apli-
caron analisis estadisticos inferenciales, incluyendo la prueba de chi-cuadrado de
Pearson y anélisis de varianza (Analysis of variance) (ANOVA), para destacar
variables significativas que discriminen entre sujetos normales, y pacientes con
SAOS leve, moderada y grave. Los modelos disefiados proporcionaron una exac-
titud de 90,42 %, sensibilidad 89,36 % y precision de 91,08 % para el diagnostico
de pacientes con SAOS grave; ademas, lograron una exactitud de 87,33 %, sensi-
bilidad 87,71 % y una precision de 86,56 % para el diagnostico de pacientes con
SAOS moderada, considerando el mismo criterio de clasificacion de SAOS, segin
el IAH, que en el presente proyecto. En 2017, Rolon y cols. [13] presentaron su
investigacion que introduce dos enfoques novedosos llamados most dicriminative
activation selection (MDAS) y most discriminative column selection (MDCS)
para la deteccion de eventos de apnea-hipopnea utilizando sefiales de oximetria
de pulso. Para la implementacion utilizaron una base de datos constituida por
995 sujetos, y demostraron que el método MDCS-OD supera a los demas, con
una exactitud de 85,78 %, sensibilidad 85,65 % y precision de 85,92 %. En 2021,
Sharma y cols. [14] propusieron utilizar la transformada de onda concentrada de
duracion-banda 6ptima (Optimal duration-bandwidth concentrated wavelet trans-
form) para descomponer las sefiales de SpO5 en diversas sub-bandas (Sub-bands)
(SBs). Extrajeron caracteristicas de entropia de Shannon de los coeficientes de
varias SBs, y esas caracteristicas alimentaron a varios algoritmos supervisados
de aprendizaje automatico, incluidos &rboles de decisiéon y algoritmos de con-
junto para la deteccion de SAOS. Utilizaron dos bases de datos, la primera St.
Vincents University Hospital/University College Dublin Sleep Apnea Database
(UCD) con 25 sujetos adultos, y la segunda Sleep Apnea ECG database (SAE)
con 8 sujetos adultos. El modelo que propusieron alcanzé la mayor exactitud
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de 95,97 %, sensibilidad 95,78 % y precision 96,09 % para caracteristicas opti-
mas de entropia de Shannon basadas en la onda cuando se emplea la técnica de
random under-sampling boosting (RUSBoost). Ese mismo ano, Jung y cols. [15]
publicaron su investigaciéon donde utilizaron una base de datos de 230 sujetos
considerando la misma clasificaciéon de gravedad de SAOS que en el presente
proyecto a partir del TAH para implementar una estrategia para la detecciéon
automaética casi en tiempo real de eventos apneicos y una estimacion confiable
del TAH utilizando oximetria de pulso. Extrajeron caracteristicas cuantitativas
causadas por el evento apneico para la cantidad y duracién del cambio en el va-
lor de la SpOs y establecieron criterios para determinar la ocurrencia del evento
apneico. Utilizaron un modelo de regresion para estimar el IAH a partir de los
resultados de la deteccion de eventos apneicos. Lograron una exactitud prome-
dio para el diagnéstico de SAOS de 96,7 % para los valores de corte del TAH
de 5, 10, 15 y 30 eventos/h. En el cuadro 3 se resumen las metodologias utili-
zadas en los trabajos presentados en el &rea, junto con las métricas obtenidas.
La columna N en la tabla indica el naumero de sujetos incluidos en cada base de
datos. Los resultados obtenidos por diferentes investigadores indican altas tasas
de exactitud, sensibilidad y precision en la deteccion de SAOS, lo que sugiere
que la monitorizaciéon de la sefial de SpO5 es una herramienta prometedora en
este contexto. Aunque los resultados obtenidos por el modelo propuesto en el
presente proyecto no superan a los obtenidos por otros en el estado del arte, es
importante destacar el tamano de la base de datos utilizada en relaciéon con los
demas trabajos. Este aspecto reduce significativamente el riesgo de sobreajuste,
lo que refuerza la validez y generalizaciéon del modelo propuesto. A pesar de las
diferencias en las tasas de rendimiento, la consideraciéon del tamano de la base
de datos es crucial al interpretar y comparar los resultados entre diferentes estu-
dios. La comparacion entre diferentes algoritmos es un proceso complejo, dada
la diversidad en las bases de datos utilizadas y en los enfoques metodolégicos
empleados. A pesar de estas dificultades, el modelo propuesto se posiciona como
una contribucién significativa, no solo por sus métricas, sino también por la rigu-
rosidad en la seleccién y manipulacion de datos, lo que fortalece su aplicabilidad
en un contexto méas amplio.

6. Conclusion

El éxito del proyecto actual como primera aproximacion a la deteccion de SAOS
grave mediante senales obtenidas por oximetria de pulso, sugiere diversas direc-
ciones para futuras investigaciones y mejoras en el &mbito. Se podria explorar
la posibilidad de mejorar la arquitectura del modelo actual, incorporando capas
adicionales o variando la complejidad de las redes neuronales. La implementa-
cion de técnicas de transferencia de aprendizaje también podria considerarse
para optimizar el rendimiento. Por otro lado, la robustez del modelo podria eva-
luarse en conjuntos de datos externos, lo que permitiria verificar su capacidad
de generalizacion a diferentes poblaciones y contextos clinicos.
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Cuadro 3: Comparacion con trabajos que detectan SAOS a partir de senales
de oximetria de pulso.

Autor N Metodologia  Exactitud Sensibilidad Precision
Almazaydeh y cols. [8] 32 NN 93,30 87,50 100,00
Morillo y cols. [9] 115 PNN 93,91 92.42 95,92
Alvarez y cols. [10] 249 FLD + GAs 81,20 80,00 83,30
FSFS + LR 88,70 95,20 86,00
SVM + GAs 84,50 95,20 80,00
Schlotthauer y cols. [11] 996 EMD 85,02 84,11 85,94
Hang y cols. [12] 616 SVM 87,33 87,71 86,56
Rolon y cols. [13] 995 MDCS-OD 85,78 85,65 85,92
Sharma y cols. [14] 25 RUSBoosted trees 89,21 92,34 89,13
8 RUSBoosted trees 95,97 95,78 96,09
Jung y cols. [15] 230 Regresion 96,70 97,10 96,50
Presente trabajo 5804 GAN 80,00 80,00 79,00
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