
Apoyo en la detección de apnea del sueño

mediante aprendizaje profundo

Micaela Levrino1, Juan Felipe Restrepo1,2[0000−0003−0643−2552] y Gastón
Schlotthauer1,2[0000−0002−2692−3255]

1 Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
2 Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática (IBB),

CONICET - UNER, Oro Verde, Argentina
mlevrino@ingenieria.uner.edu.ar

juan.restrepo@uner.edu.ar

gaston.schlotthauer@uner.edu.ar

Resumen El síndrome de apnea/hipopnea obstructiva del sueño cons-
tituye uno de los trastornos del sueño más prevalentes, con importantes
implicaciones sociosanitarias, en el cual la detección temprana es crucial
para iniciar tratamientos adecuados o tomar medidas preventivas. La
polisomnografía, método de diagnóstico de elección, es muy costosa en
términos de tiempo y dinero, por lo que no está disponible para un grupo
de la población general. Proponemos obtener indirectamente la informa-
ción de la detección de eventos de apnea/hipopnea a través de la señal de
saturación de oxígeno obtenida mediante un oxímetro de pulso. La obten-
ción de la distribución condicional de la señal de detección de eventos de
apnea/hipopnea dado el comportamiento de la saturación de oxígeno se
logra mediante la optimización de un límite inferior de evidencia. Para el
diseño del algoritmo empleado se utilizan modelos generativos profundos,
en particular redes generativas adversarias y autoencoder variacionales.
En nuestro estudio, analizamos datos de 5804 pacientes de la base de
datos Sleep Health Heart Study. En la etapa de prueba, alcanzamos una
exactitud del 80 %, una sensibilidad del 80 % y una precisión del 79 %.

Palabras clave: Apnea del sueño · Saturación de oxígeno · Índice de
apnea/hipopnea · Redes generativas adversarias.

1. Introducción

El sueño desempeña un papel fundamental en la salud y el bienestar de las
personas. Un sueño saludable es importante para el funcionamiento cognitivo,
el estado de ánimo, la salud mental y la salud cardiovascular, cerebrovascular
y metabólica [1]. Además, la cantidad y calidad adecuadas del sueño también
son fundamentales para reducir el riesgo de accidentes y lesiones causadas por
la somnolencia y la fatiga, incluidos los accidentes laborales y automovilísticos.
La privación del sueño a corto plazo, la restricción del sueño a largo plazo, la
desalineación circadiana y los trastornos del sueño no tratados pueden tener un
impacto profundo y perjudicial en la salud física, mental, estado de ánimo y
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seguridad pública. La falta de sueño crónica se asocia con un mayor riesgo de
mortalidad y contribuye tanto al riesgo individual como a la carga social aso-
ciada con varias epidemias médicas, incluidas las enfermedades cardiovasculares,
diabetes, obesidad y cáncer [2]. En el año 2014, la Academia Americana de Me-
dicina del Sueño (American Academy of Sleep Medicine) [3] publicó la tercera
edición de la Clasificación Internacional de Patologías del Sueño (International
Classification of Sleep Disorders), donde se indica que uno de los trastornos del
sueño más comunes es el Síndrome de Apnea Obstructiva del Sueño (SAOS), que
es causado por eventos repetidos de obstrucción parcial (hipopnea) o total (ap-
nea) de las vías respiratorias superiores durante el sueño. En entornos con buenos
recursos se están realizando esfuerzos considerables para diagnosticar y tratar a
las personas con SAOS, pero los datos disponibles sugieren que la mayoría de los
casos de SAOS siguen sin diagnosticarse, incluso en los países desarrollados. En
2019, un estudio realizado por Benjafield y cols. [4] estima que alrededor de mil
millones de adultos de entre 30 y 69 años en todo el mundo podria sufrir SAOS
basándose en los criterios fijados por la AASM, y estiman que el número de per-
sonas con SAOS de moderada a grave, para las que generalmente se recomienda
tratamiento, es de 425 millones.

La polisomnografía (PSG) es el método convencional utilizado para la detec-
ción de trastornos del sueño, incluído el SAOS. La PSG típica contiene registros
de electroencefalografía, electrooculografía, electromiografía, electrocardiografía,
flujo de aire oronasal, esfuerzo respiratorio y saturación periférica de oxígeno en
sangre (SpO2). Sin embargo se considera incómodo (debido a la gran cantidad
de cables y sensores conectados al cuerpo del sujeto), costoso y no disponible
para un gran grupo de la población mundial. Además el proceso de análisis re-
quiere mucho tiempo y trabajo. Por lo general los centros médicos cuentan con
un pequeño número de profesionales capaces de diagnosticar apnea del sueño lo
que genera largas listas de espera [5]. Por lo tanto, se desea tener un sustituto
del sistema basado en PSG que sea simple, económico y portátil que pueda uti-
lizarse en hogares y clínicas. La oximetría de pulso es una técnica de medición
ideal para esto, ya que es económica, discreta y fácil de configurar en un entorno
doméstico. La señal de SpO2 es de particular interés para la detección de eventos
de SAOS [6], esto es debido a que el cese de la respiración asociado con eventos de
apnea-hipopnea siempre va acompañado de una caída en el nivel de saturación
de oxígeno. Sin embargo, es apropiado mencionar que este nivel de caída puede
ser muy pequeño e imposible de detectar por un observador humano, razón por
la cual las técnicas avanzadas de procesamiento de señales, como los métodos
de aprendizaje maquinal, podrían proporcionar una alternativa muy valiosa. En
el contexto de la detección de SAOS, las redes generativas adversarias (GANs)
tienen el potencial de transformar la forma en que se recopilan y analizan los
datos de los pacientes. Estas redes pueden aprender patrones sutiles en los datos
de PSG y generar señales sintéticas que se asemejan a los patrones de sueño y las
interrupciones respiratorias observadas en pacientes reales. Esto podría facilitar
la recopilación de datos fuera del laboratorio del sueño y mejorar la eficiencia en
el diagnóstico.
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2. Materiales

El estudio fue realizado en las instalaciones del Laboratorio de Señales y Diná-
micas no Lineales de la Facultad de Ingeniería de la Universidad Nacional de
Entre Ríos. Para el desarrollo se emplearon GPUs instaladas en un cluster de al-
to desempeño equipado con tres GPU NVIDIA GTX 1080Ti. La implementación
del trabajo se desarrolló en lenguaje de programación Python 3.

2.1. Base de datos

Se utilizó la base de datos Sleep Heart Health Study (SHHS) debido a que con-
tiene 5424 registros obtenidos mediante estudios de PSG que fueron adquiridos
por dispositivos domiciliarios y bajo la supervisión de un técnico especializado.
Se escoge debido a la precisión demostrada en su utilización en proyectos ante-
riores, por lo que se confirma que los datos están etiquetados correctamente y
se pueden utilizar para entrenar el modelo de manera más efectiva y reducir la
posibilidad de errores. Además esta base de datos es accesible, lo que la convierte
en una herramienta valiosa para la comunidad de investigadores y desarrollado-
res de aprendizaje profundo, y los estudios adquiridos en la base de datos fueron
analizados bajo los estándares publicados por la AASM.

3. Metodología

3.1. Arquitectura del método propuesto

En el presente estudio el conjunto de datos toma la forma (x1, y1), ..., (xN , yN )
donde (xi, yi) es la i-ésima observación que consiste en un segmento de la señal
de SpO2 xi y su correspondiente señal de apnea/hipopnea yi. Se supone que
existe una representación de menor dimensión o variable latente continua, z, de
un segmento de señal de SpO2 que permite la reconstrucción del correspondiente
segmento de señal de apnea/hipopnea, y. Sea pθ∗(z|x) la verdadera estimación
a posteriori sobre las variables latentes condicionadas a las muestras de SpO2.
Dado que se desconoce la verdadera distribución, se propone aprender una apro-
ximación parametrizada qϕ(z|x) a la intratable verdadera estimación a posteriori
pθ∗(z|x). Sea pθ(z|y) la posterior de la variable latente z condicionada a las mues-
tras de la señal de apnea/hipopnea y, se asume que la señal de apnea/hipopnea
puede ser perfectamente reconstruida por z. Entonces es intuitivo asignar las
muestras de la señal de SpO2 de entrada a un espacio latente que reconstruiría
bien la señal de apnea/hipopnea. Esto puede lograrse minimizando la divergen-
cia KL entre la distribución condicional de la señal de apnea/hipopnea, pθ(z|y)
y la aproximación qϕ(z|x) a la verdadera posterior pθ∗(z|x), para transformar la
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señal de SpO2 en la señal de apnea/hipopnea. Matemáticamente:

KL[qϕ(z|xi) ∥ pθ(z|yi)] =

∫

qϕ(z|xi) log
qϕ(z|xi)

pθ(z|yi)
dz

= log pθ(yi) +

∫

qϕ(z|xi) log
qϕ(z|xi)

pθ(yi, z)
dz

= Eqφ

[

log

(

qϕ(z|xi)

pθ(yi, z)

)]

+ log pθ(yi)

= −Eqφ

[

log

(

pθ(yi, z)

qϕ(z|xi)

)]

+ log pθ(yi)

= −L(ϕ, θ;xi) + log pθ(yi)

(1)

La divergencia anterior se puede reformular de la siguiente manera:

log pθ(yi) ≥ L(ϕ, θ;xi) = Eqφ

[

log

(

pθ(yi, z)

qϕ(z|xi)

)]

= Eqφ [− log qϕ(z|xi) + log pθ(yi, z)]

(2)

Y el Límite inferior de evidencia (Evidence lower bound) (ELBO) de la ex-
presión anterior L(ϕ, θ;xi) se puede calcular como:

L(ϕ, θ;xi) = −KL[qϕ(z|xi) ∥ pθ(z)] + Eqφ [− log pθ(yi|z)]

= Eqφ [− log qϕ(z|xi) + log pθ(yi|z) + log pθ(z)]
(3)

Adoptando un enfoque basado en la máxima verosimilitud, se optimiza esta
cota inferior de evidencia L(ϕ, θ;xi) ELBO con respecto a los parámetros varia-
cionales ϕ para aprender la distribución aproximada. La parametrización elegida
para el modelo de inferencia qϕ(z|xi) decide naturalmente la estrechez del límite
inferior derivado anteriormente. Si existe ϕ∗ ∈ Φ tal que qϕ(Z|X) = pθ(Z|X)
donde Φ es el espacio de parámetros de inferencia, entonces el ELBO será un
límite ajustado a log pθ(yi). Esto rara vez sucede en la práctica, por lo tanto,
el espacio ϕ está diseñado para ser lo más expresivo posible, para permitir el
aprendizaje de una aproximación cercana. En el modelo del presente proyecto
se parametrizan tanto qϕ(z|xi) como pθ(yi|z) como redes neuronales que son
conocidas como aproximadores universales de funciones. Se construye un mode-
lo diferenciable de extremo a extremo donde la distribución pθ(z) es aprendida
por un autoencoder separado, conocido por reproducir perfectamente la señal de
apnea/hipopnea. Un autoencoder que reconstruye la señal de apnea/hipopnea
impone un espacio latente z y aprende una distribución marginal sobre él dada
por la siguiente ecuación:

p(z) =

∫

y

p(z|y)p(y)dy (4)

Si se supone una reconstrucción perfecta de la señal de apnea/hipopnea por
el autoencoder apnea/hipopnea (validado en el presente proyecto), esta distribu-
ción marginal puede considerarse una buena estimación a priori, ya que se sabe
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que permite la reconstrucción de la señal de apnea/hipopnea a partir del espacio
latente. A partir de esta presentación, se refiere a la distribución marginal como
pθ(z), bajo la suposición de que una baja pérdida de reconstrucción empírica
implica que está cerca del anterior óptimo. Una vez que esta estimación a priori
se aprende a través del autoencoder apnea/hipopnea, se impone el aprendizaje
de la misma distribución en la capa latente de la red que convierte la señal de
SpO2 en señal de apnea/hipopnea. Esto se hace minimizando “adversarialmente”
la divergencia KL[qϕ(z|xi) ∥ pθ(z)] en la ecuación 3. Como se muestra en [7], el
entrenamiento “adversarial” se puede utilizar para entrenar qϕ(z|xi) como una
aproximación universal de la estimación a posteriori, al agregar ruido aleato-
rio ϵ a la entrada xi. Esto permite la construcción de estimaciones a posteriori
arbitrarias qϕ(z|xi), evaluando el modelo de inferencia fϕ(xi, ϵ) para diferentes
valores de ϵ. Por lo tanto, incluso con un mapeo determinista fijo de la entrada
al espacio latente, la distribución a posteriori no colapsará en una distribución
delta de Dirac degenerada (es decir, una distribución discontinua), ya que el
ruido de entrada agrega una fuente de estocasticidad diferente a la distribución
que genera los datos en sí. Por lo tanto, la real estimación a posteriori se da por
la expresión:

qϕ(z|xi) =

∫

ϵ

qϕ(z|xi, ϵ)pϵ(ϵ) dϵ (5)

donde qϕ(z|xi, ϵ) es la distribución degenerada δ(z − fϕ(xi, ϵ)). El método uti-
lizado en el presente proyecto elimina las restricciones de normalidad tanto en
la estimación a posteriori como en la estimación a priori al utilizar el entre-
namiento adversarial para minimizar la divergencia KL. Esto implica un juego
minimax entre la red qϕ(z|x) y una red discriminadora Tψ, que está diseñada
para detectar si la muestra generada por la red qϕ(z|x) proviene de la estimación
a posteriori pθ(z) (aprendida a través del autoencoder apnea/hipopnea) o no.
Matemáticamente, se optimiza la siguiente función objetivo para minimizar el
término KL en ELBO:

mı́n
eφ

máx
Tψ

V (qϕ, Tψ) = Ez≈pθ(z)[log Tψ(z)] + Ez≈qφ(z|x)[log(1− Tψ(ẑ))] (6)

El segundo término del ELBO en 3 se interpreta como el error de reconstruc-
ción esperado de la señal de apnea/hipopnea en la salida dado el vector latente,
y se puede minimizar mediante diversas funciones de pérdida. Se elige minimizar
este error midiendo la distancia coseno entre la señal de apnea/hipopnea esti-
mada y la señal de apnea/hipopnea real. El resumen del método utilizado se
muestra en la figura 1.

3.2. Agrupación de los datos

El conjunto de datos SHHS-1 se dividió en tres subconjuntos independientes
aleatoriamente. Sin embargo, como se desea tener igual división cada vez que
se ejecuta el entrenamiento, se utiliza una semilla aleatoria. Por lo tanto, el
conjunto de datos queda dividido de la siguiente manera:
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Encoder

KL

Apnea/hipopnea
encoder 

Decoder
apnea/hipopnea 

Decoder

Discriminador
Objetivo "adversarial" para

distinguir muestras de 

 y

Figura 1: Representación de la arquitectura del método propuesto.

70 % (3797 pacientes), conjunto de entrenamiento (training), para que el
algoritmo de aprendizaje obtenga los parámetros del modelo.
20 % (1085 pacientes), conjunto de validación (validation), para verificar el
desempeño de cada modelo con un conjunto diferente al de entrenamiento y
así poder compararlos.
10 % (542 pacientes), conjunto de prueba (test), para verificar el desempeño
del modelo ganador. Este conjunto nunca es mostrado a ninguno de los
modelos.

En el proceso de entrenamiento de modelos de aprendizaje profundo, es co-
mún agrupar los datos en lotes, conocidos como minibatches. Estos minibatches
se utilizan para calcular el error y actualizar los coeficientes del modelo a través
del optimizador. De esta forma, los datos de entrada se dividen en minibatches,
lo que permite un proceso de entrenamiento más eficiente y efectivo. Esto es
particularmente útil cuando se trabaja con conjuntos de datos grandes, ya que
el uso de minibatches agiliza el proceso de optimización.

3.3. Proceso de entrenamiento

El autoencoder apnea/hipopnea se entrena primero de manera independiente,
seguido por el entrenamiento de la red adversaria.

Entrenamiento del autoencoder En esta etapa, se entrena el autoencoder
para aprender una representación latente de los datos de apnea/hipopnea. El au-
toencoder consta de un codificador que mapea los datos de apnea/hipopnea a un
espacio latente, y un decodificador que mapea las muestras latentes de vuelta al
espacio de datos de apnea/hipopnea. El autoencoder se entrena para minimizar
la diferencia entre los datos de apnea/hipopnea originales y los reconstruidos por
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el decodificador. En particular, se utiliza una función de pérdida de reconstruc-
ción que mide la diferencia entre los datos originales y los datos reconstruidos.
La función de pérdida de reconstrucción se define como la suma de los errores
cuadráticos medios (MSE) entre los datos de apnea/hipopnea originales y los
reconstruidos por el decodificador.

Entrenamiento de la red adversaria En esta etapa, se lleva a cabo el en-
trenamiento de la red adversaria para aproximar la estimación verdadera a pos-
teriori. La red generadora se entrena para generar muestras de la estimación
verdadera a posteriori mientras que la red discriminadora se entrena para distin-
guir entre muestras generadas por la red generadora y muestras de la estimación
verdadera a posteriori. La optimización de la GAN implica un juego minimax
entre la red generadora y la red discriminadora, donde la red generadora trata de
engañar a la red discriminadora y la red discriminadora trata de distinguir entre
las muestras generadas y las muestras verdaderas. El objetivo final es minimi-
zar la divergencia KL entre la estimación verdadera a posteriori y la estimación
aproximada generada por la red generadora. Se actualizan los pesos de la red
generadora y la red discriminadora utilizando el algoritmo de retropropagación
del error, y se iteran los pasos hasta que se alcance la convergencia.

4. Resultados

En el estudio se trabajó con la señal de SpO2 como entrada al algoritmo diseñado
con el propósito de detectar eventos de apnea/hipopnea. La relación entre estas
señales puede observarse en el ejemplo del registro de una porción de la señal
de la base de datos SHHS-2 en la figura 2. En la parte superior, se presenta el
gráfico de la señal de detección de eventos de apnea/hipopnea, donde el valor
1 indica la detección de un evento y 0 representa la ausencia o no detección.
En la parte inferior de la figura, se muestra la señal correspondiente a la va-
riación de SpO2 para el mismo instante de tiempo, obtenida de un paciente de
la base de datos SHHS-1. Se puede observar que en presencia de un evento de
apnea/hipopnea, hay asociada una desaturación de oxígeno en sangre, la cual se
registra de manera indirecta en la señal de SpO2. A través de la identificación de
estas desaturaciones, se puede estimar el valor del IAH, lo que posibilita predecir
la gravedad del SAOS en cada paciente.

4.1. Autoencoder apnea/hipopnea

El mejor desempeño para el autoencoder apnea/hipopnea se obtuvo utilizando
un learning rate igual a 0.001 y un batch size de 2048. En la figura 3 se observa
una porción de la señal original de apnea/hipopnea a la izquierda, es decir, la
entrada al modelo, y a la derecha la porción de señal correspondiente reconstruí-
da por el autoencoder apnea/hipopnea aplicado al subconjunto de prueba, es
decir la salida. Se indica como “0” la ausencia de apnea y como “1” la detección
de SAOS.
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Figura 2: Registro de señal de detección de apnea y SpO2.

Figura 3: Señal original de apnea/hipopnea y la reconstruída por el autoenco-
der.

4.2. Red adversaria

El mejor desempeño para el generador se obtiene utilizando un valor de learning
rate igual a 0.0001 y batch size de 512. Por otro lado el mejor desempeño para el
discriminador se obtiene utilizando un valor de learning rate de 0.0001 y batch
size de 512. La evaluación del rendimiento de la red adversaria en el subconjunto
de datos de prueba se realiza utilizando el algoritmo propuesto completo. Como
entrada se toman las señales de SpO2 y como salida se espera predecir una
señal de detección de los eventos de apnea/hipopnea asociados. En la figura
4 se observan los datos de entrada, parte superior, y salida, parte inferior, al
algoritmo propuesto.

Figura 4: Señal original de entrada y salida del algoritmo propuesto.
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En la figura 5 se realiza una comparación de la salida deseada y la salida
predicha por el modelo. Se puede observar que, a pesar de no coincidir exacta-
mente las detecciones en la línea temporal, ambos fragmentos de señal presentan
la misma cantidad de eventos de apnea/hipopnea, que es el objetivo.

Figura 5: Señal deseada de salida y señal predicha.

4.3. Métricas de evaluación

Una vez determinados los modelos con los mejores rendimientos, se aplicó el al-
goritmo diseñado para predecir el IAH de cada paciente perteneciente a la base
de datos SHHS-1 y compararlo con el IAH original de cada uno. Esta evaluación
se llevó a cabo mediante el empleo de la matriz de confusión. Para la evalua-
ción del método propuesto se tiene en cuenta lo expresado por la AASM para
la designación de la gravedad del SAOS mediante el IAH, como se resume en
el cuadro 1. Se hace evidente la importancia de la detección del SAOS grave,

Cuadro 1: Clasificación gravedad SAOS según IAH.
IAH Clasificación SAOS
[0, 5) Normal
[5, 15) Leve
[15, 30) Moderado
≥ 30 Grave

debido que serán estos los pacientes que necesitan detección temprana para po-
der establecer prioridades en la lista de espera para acceder a una PSG o para
ser derivados a utilizar tratamiento con resión positiva continua en la vía aérea
(Continuous Positive Airways Pressure) de manera provisional si así lo conside-
rase un profesional. Para diferentes épocas se obtienen las matrices de confusión
que se observan en la figura 6, con sus respectivas métricas en el cuadro 2.
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(a) Época 10 (b) Época 20

Figura 6: Matrices de confusión obtenidas para un batch size de 256.

Cuadro 2: Métricas de evaluación utilizando un batch size de 256.
Época Exactitud Precisión Sensibilidad F1-score

10 0,80 0,79 0,80 0,80
20 0,66 0,80 0,66 0,69

5. Discusión

La detección temprana y precisa del SAOS es crucial para la salud y el bienestar
de los individuos. Diversos estudios han explorado el uso de señales de oximetría
de pulso como una herramienta efectiva en este ámbito. En esta sección, se
realiza una comparación exhaustiva con el estado del arte, examinando diferentes
enfoques y metodologías utilizadas en la detección del SAOS a través de la
monitorización de la señal de saturación de oxígeno.

En el estudio de Almazaydeh y cols. [8], publicado en 2012, utilizan la base
de datos Apnea-ECG Database que incluye 32 sujetos hombres y mujeres entre
27 y 63 años, y aplican una red neuronal (Neural Network) (NN) como clasifi-
cador para identificar apnea obstructiva del sueño utilizando características de
la señal de SpO2 que actúan como entradas para la red. Lograron una exactitud
de 93,3 %, sensibilidad 87,5% y precisión de 100 %. Al año siguiente, Morillo y
cols. [9] publicaron su estudio donde propusieron un sistema multivariado pa-
ra la detección del SAOS a partir del análisis de la SpO2 durante la noche.
Utilizaron una base de datos compuesta de 115 sujetos adultos y calcularon 17
características en el dominio temporal, estocástico, de frecuencia y no lineales a
partir de los registros de SpO2. Obtuvieron una exactitud de 93,91 %, sensibili-
dad 92,42 % y precisión de 95,92%, considerando la presencia de SAOS cuando
el IAH es mayor a 10 eventos por hora. Ese mismo año, Álvarez y cols. [10]
utilizaron una base de datos de 249 sujetos adultos para evaluar la utilidad de
diferentes metodologías de selección de características y clasificación para ana-
lizar los registros de SpO2 en el contexto de la detección de SAOS. Calcularon
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medidas estadísticas, espectrales y no lineales para formar el conjunto inicial de
características y aplicaron el análisis de componentes principales (Principal com-
ponent analysis) (PCA), forward stepwise feature selection (FSFS) y algoritmos
genéticos (genetic algorithms) (GAs) para seleccionar subconjuntos de caracte-
rísticas. En 2014 Schlotthauer y cols. [11] propusieron un método basado en la
descomposición empírica de modos (Empirical mode decomposition) (EMD) de
la señal de oximetría de pulso, considerando que las desaturaciones producen un
patrón de ondas muy específico que se extrae en los modos de la descomposi-
ción. Utilizando esta información construyeron un detector basado en umbrales
adecuadamente seleccionados y un conjunto de reglas. Aplicaron EMD a la se-
ñal de SpO2 preprocesada, con un número máximo de modos establecido en seis
y un número máximo de iteraciones de cribado establecido en 50. Finalmente,
calcularon un índice de desaturación de oxígeno, definido como la relación entre
el número de eventos de desaturación y la duración de la señal válida (en horas).
El índice de desaturación de oxígeno construido a partir de estas detecciones
generó un detector de SAOS con una alta sensibilidad 83,8 % y especificidad
85,5 %. Al siguiente año, Hangh y cols. [12] utilizaron una base de datos con
616 sujetos de entre 20 y 85 años y realizaron un análisis estadístico descriptivo
de datos demográficos, antropométricos, cuestionarios y PSG de los pacientes
para calcular medias y desviaciones estándar de las variables individuales. Apli-
caron análisis estadísticos inferenciales, incluyendo la prueba de chí-cuadrado de
Pearson y análisis de varianza (Analysis of variance) (ANOVA), para destacar
variables significativas que discriminen entre sujetos normales, y pacientes con
SAOS leve, moderada y grave. Los modelos diseñados proporcionaron una exac-
titud de 90,42%, sensibilidad 89,36% y precisión de 91,08 % para el diagnóstico
de pacientes con SAOS grave; además, lograron una exactitud de 87,33 %, sensi-
bilidad 87,71 % y una precisión de 86,56% para el diagnóstico de pacientes con
SAOS moderada, considerando el mismo criterio de clasificación de SAOS, según
el IAH, que en el presente proyecto. En 2017, Rolón y cols. [13] presentaron su
investigación que introduce dos enfoques novedosos llamados most dicriminative
activation selection (MDAS) y most discriminative column selection (MDCS)
para la detección de eventos de apnea-hipopnea utilizando señales de oximetría
de pulso. Para la implementación utilizaron una base de datos constituída por
995 sujetos, y demostraron que el método MDCS-OD supera a los demás, con
una exactitud de 85,78 %, sensibilidad 85,65% y precisión de 85,92 %. En 2021,
Sharma y cols. [14] propusieron utilizar la transformada de onda concentrada de
duración-banda óptima (Optimal duration-bandwidth concentrated wavelet trans-
form) para descomponer las señales de SpO2 en diversas sub-bandas (Sub-bands)
(SBs). Extrajeron características de entropía de Shannon de los coeficientes de
varias SBs, y esas características alimentaron a varios algoritmos supervisados
de aprendizaje automático, incluidos árboles de decisión y algoritmos de con-
junto para la detección de SAOS. Utilizaron dos bases de datos, la primera St.
Vincents University Hospital/University College Dublin Sleep Apnea Database
(UCD) con 25 sujetos adultos, y la segunda Sleep Apnea ECG database (SAE)
con 8 sujetos adultos. El modelo que propusieron alcanzó la mayor exactitud
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de 95,97 %, sensibilidad 95,78% y precisión 96,09 % para características ópti-
mas de entropía de Shannon basadas en la onda cuando se emplea la técnica de
random under-sampling boosting (RUSBoost). Ese mismo año, Jung y cols. [15]
publicaron su investigación donde utilizaron una base de datos de 230 sujetos
considerando la misma clasificación de gravedad de SAOS que en el presente
proyecto a partir del IAH para implementar una estrategia para la detección
automática casi en tiempo real de eventos apneicos y una estimación confiable
del IAH utilizando oximetría de pulso. Extrajeron características cuantitativas
causadas por el evento apneico para la cantidad y duración del cambio en el va-
lor de la SpO2 y establecieron criterios para determinar la ocurrencia del evento
apneico. Utilizaron un modelo de regresión para estimar el IAH a partir de los
resultados de la detección de eventos apneicos. Lograron una exactitud prome-
dio para el diagnóstico de SAOS de 96,7% para los valores de corte del IAH
de 5, 10, 15 y 30 eventos/h. En el cuadro 3 se resumen las metodologías utili-
zadas en los trabajos presentados en el área, junto con las métricas obtenidas.
La columna N en la tabla indica el número de sujetos incluidos en cada base de
datos. Los resultados obtenidos por diferentes investigadores indican altas tasas
de exactitud, sensibilidad y precisión en la detección de SAOS, lo que sugiere
que la monitorización de la señal de SpO2 es una herramienta prometedora en
este contexto. Aunque los resultados obtenidos por el modelo propuesto en el
presente proyecto no superan a los obtenidos por otros en el estado del arte, es
importante destacar el tamaño de la base de datos utilizada en relación con los
demás trabajos. Este aspecto reduce significativamente el riesgo de sobreajuste,
lo que refuerza la validez y generalización del modelo propuesto. A pesar de las
diferencias en las tasas de rendimiento, la consideración del tamaño de la base
de datos es crucial al interpretar y comparar los resultados entre diferentes estu-
dios. La comparación entre diferentes algoritmos es un proceso complejo, dada
la diversidad en las bases de datos utilizadas y en los enfoques metodológicos
empleados. A pesar de estas dificultades, el modelo propuesto se posiciona como
una contribución significativa, no solo por sus métricas, sino también por la rigu-
rosidad en la selección y manipulación de datos, lo que fortalece su aplicabilidad
en un contexto más amplio.

6. Conclusión

El éxito del proyecto actual como primera aproximación a la detección de SAOS
grave mediante señales obtenidas por oximetría de pulso, sugiere diversas direc-
ciones para futuras investigaciones y mejoras en el ámbito. Se podría explorar
la posibilidad de mejorar la arquitectura del modelo actual, incorporando capas
adicionales o variando la complejidad de las redes neuronales. La implementa-
ción de técnicas de transferencia de aprendizaje también podría considerarse
para optimizar el rendimiento. Por otro lado, la robustez del modelo podría eva-
luarse en conjuntos de datos externos, lo que permitiria verificar su capacidad
de generalizacion a diferentes poblaciones y contextos clinicos.
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Cuadro 3: Comparación con trabajos que detectan SAOS a partir de señales
de oximetría de pulso.

Autor N Metodología Exactitud Sensibilidad Precisión
Almazaydeh y cols. [8] 32 NN 93,30 87,50 100,00

Morillo y cols. [9] 115 PNN 93,91 92.42 95,92
Álvarez y cols. [10] 249 FLD + GAs 81,20 80,00 83,30

FSFS + LR 88,70 95,20 86,00
SVM + GAs 84,50 95,20 80,00

Schlotthauer y cols. [11] 996 EMD 85,02 84,11 85,94
Hang y cols. [12] 616 SVM 87,33 87,71 86,56
Rolón y cols. [13] 995 MDCS-OD 85,78 85,65 85,92

Sharma y cols. [14] 25 RUSBoosted trees 89,21 92,34 89,13
8 RUSBoosted trees 95,97 95,78 96,09

Jung y cols. [15] 230 Regresión 96,70 97,10 96,50
Presente trabajo 5804 GAN 80,00 80,00 79,00

Referencias

1. C. C. Panel:, N. F. Watson, M. S. Badr, G. Belenky, D. L. Bliwise, O. M. Buxton,
D. Buysse, D. F. Dinges, J. Gangwisch, M. A. Grandner, et al., “Joint consensus
statement of the american academy of sleep medicine and sleep research society on
the recommended amount of sleep for a healthy adult: methodology and discus-
sion,” Journal of Clinical Sleep Medicine, vol. 11, no. 8, pp. 931–952, 2015.

2. F. S. Luyster, P. J. Strollo Jr, P. C. Zee, and J. K. Walsh, “Sleep: a health impe-
rative,” Sleep, vol. 35, no. 6, pp. 727–734, 2012.

3. R. B. Berry, R. Brooks, C. E. Gamaldo, S. M. Harding, C. Marcus, B. V. Vaughn,
et al., “The aasm manual for the scoring of sleep and associated events,” Rules,

Terminology and Technical Specifications, Darien, Illinois, American Academy of

Sleep Medicine, vol. 176, p. 2012, 2012.
4. A. V. Benjafield, N. T. Ayas, P. R. Eastwood, R. Heinzer, M. S. Ip, M. J. Morrell,

C. M. Nunez, S. R. Patel, T. Penzel, J.-L. Pépin, et al., “Estimation of the global
prevalence and burden of obstructive sleep apnoea: a literature-based analysis,”
The Lancet Respiratory Medicine, vol. 7, no. 8, pp. 687–698, 2019.

5. S. S. Mostafa, F. Mendonça, A. G. Ravelo-García, and F. Morgado-Dias, “A syste-
matic review of detecting sleep apnea using deep learning,” Sensors, vol. 19, no. 22,
p. 4934, 2019.

6. M. Deviaene, D. Testelmans, B. Buyse, P. Borzée, S. Van Huffel, and C. Varon,
“Automatic screening of sleep apnea patients based on the spo 2 signal,” IEEE

journal of biomedical and health informatics, vol. 23, no. 2, pp. 607–617, 2018.
7. A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial auto-

encoders,” arXiv preprint arXiv:1511.05644, 2015.
8. L. Almazaydeh, M. Faezipour, and K. Elleithy, “A neural network system for detec-

tion of obstructive sleep apnea through spo2 signal features,” International Journal

of Advanced Computer Science and Applications, vol. 3, no. 5, 2012.
9. D. S. Morillo and N. Gross, “Probabilistic neural network approach for the detec-

tion of sahs from overnight pulse oximetry,” Medical & biological engineering &

computing, vol. 51, pp. 305–315, 2013.

CAIS, Congreso Argentino de Informática y Salud

Memorias de las 53 JAIIO - CAIS - ISSN: 2451-7496 Página 132



14 M. Levrino y cols.

10. D. Alvarez, R. Hornero, J. V. Marcos, N. Wessel, T. Penzel, M. Glos, and
F. Del Campo, “Assessment of feature selection and classification approaches to
enhance information from overnight oximetry in the context of apnea diagnosis,”
International journal of neural systems, vol. 23, no. 05, p. 1350020, 2013.

11. G. Schlotthauer, L. E. Di Persia, L. D. Larrateguy, and D. H. Milone, “Screening
of obstructive sleep apnea with empirical mode decomposition of pulse oximetry,”
Medical engineering & physics, vol. 36, no. 8, pp. 1074–1080, 2014.

12. L.-W. Hang, H.-L. Wang, J.-H. Chen, J.-C. Hsu, H.-H. Lin, W.-S. Chung, and Y.-
F. Chen, “Validation of overnight oximetry to diagnose patients with moderate to
severe obstructive sleep apnea,” BMC pulmonary medicine, vol. 15, no. 1, pp. 1–13,
2015.

13. R. E. Rolón, L. D. Larrateguy, L. E. Di Persia, R. D. Spies, and H. L. Rufiner,
“Discriminative methods based on sparse representations of pulse oximetry signals
for sleep apnea–hypopnea detection,” Biomedical Signal Processing and Control,
vol. 33, pp. 358–367, 2017.

14. M. Sharma, D. Kumbhani, A. Yadav, and U. R. Acharya, “Automated sleep apnea
detection using optimal duration-frequency concentrated wavelet-based features of
pulse oximetry signals,” Applied Intelligence, pp. 1–13, 2022.

15. S. H. Hwang, J. G. Cho, B. H. Choi, H. J. Baek, Y. J. Lee, D.-U. Jeong, K. S. Park,
et al., “Real-time automatic apneic event detection using nocturnal pulse oximetry,”
IEEE Transactions on Biomedical Engineering, vol. 65, no. 3, pp. 706–712, 2017.

CAIS, Congreso Argentino de Informática y Salud

Memorias de las 53 JAIIO - CAIS - ISSN: 2451-7496 Página 133


	Apoyo en la detección de apnea del sueño mediante aprendizaje profundo

