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Resumen. Dado un horizonte temporal de planificación y una flota limitada y 

heterogénea, el problema de ruteo periódico de vehículos busca determinar un 

conjunto de rutas que minimice el costo total de traslado, garantizando al mismo 

tiempo la satisfacción de la demanda y la frecuencia de visitas requerida por los 

clientes. La complejidad de este problema radica en la gran cantidad combinato-

ria de alternativas, ya que se deben tomar decisiones simultáneas sobre qué días 

visitar a cada cliente, qué vehículos utilizar cada día y cuáles serán las rutas para 

cada vehículo seleccionado. Este trabajo presenta una metodología eficiente ba-

sada en la descomposición del problema en dos subproblemas: uno de asignación 

y otro de ruteo diario de una flota de vehículos. Se desarrolla una estrategia ite-

rativa que utiliza dos modelos de programación mixta entera lineal: el primero 

asigna los clientes a días de visita, minimizando los costos fijos de utilización de 

los vehículos, mientras que el segundo optimiza la asignación de vehículos a 

clientes y las rutas diarias de cada uno de ellos, de acuerdo con la asignación 

obtenida en el primer modelo, con el objetivo de reducir el costo total de trans-

porte. Se comparan los resultados obtenidos con un enfoque previamente desa-

rrollado, observándose que, en tiempos de cómputo reducidos, se obtienen solu-

ciones de alta calidad. La estrategia propuesta representa una herramienta útil 

para la optimización de tareas logísticas, y es aplicable a problemas tanto de re-

colección como de distribución. 

 

Palabras clave: Descomposición, MILP, PVRP, Optimización. 

 

Iterative Solution Strategy for the Periodic Vehicle 

Routing Problem 

Abstract. Given a planning horizon and a limited and heterogeneous fleet, the 

Periodic Vehicle Routing Problem (PVRP) seeks to determine a set of routes that 

minimizes the total transportation cost while satisfying both the demand and the 

visit frequency required by each customer. The complexity of this problem lies 

in the vast combinatorial number of alternatives, since decisions must be made 

simultaneously regarding which days to visit each customer, which vehicles to 
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use each day, and what routes those vehicles should follow. This work proposes 

an efficient methodology based on the decomposition of the problem into two 

subproblems: an assignment model and a daily routing model of a vehicle fleet. 

An iterative strategy is developed using two mixed-integer linear programming 

models. The first model assigns customers to visit days in order to minimize the 

fixed costs of vehicles usage, while the second optimizes both the assignment of 

vehicles to customers and their daily routes, based on the allocation obtained in 

the first model, with the goal of minimizing total transportation cost. The pro-

posed strategy is compared with a previously developed approach, showing that 

high-quality solutions can be obtained in significantly reduced computation 

times. The proposed solution strategy represents a useful decision-support tool 

for optimizing logistics tasks and is applicable to both distribution and collection 

problems. 

Keywords: Decomposition, MILP, PVRP, Optimization. 

1 Introducción 

El conocido Problema de Ruteo de Vehículos (VRP, por sus siglas en inglés) consiste 

en diseñar rutas eficientes para una flota de vehículos con el objetivo de cumplir tareas 

de distribución y/o recolección de bienes, atendiendo a un conjunto de restricciones 

operativas como la capacidad de los vehículos, ventanas de tiempo, distancias máximas 

permitidas, entre otras (Abidin y col., 2025). A lo largo de las últimas décadas, este 

problema ha dado lugar a un amplio conjunto de variantes, cada una de ellas modelando 

diferentes condiciones y características del mundo real. Una clasificación detallada de 

estas variantes puede encontrarse en Elatar y col. (2023), donde se destacan extensiones 

claves como el VRP con múltiples depósitos, el VRP con restricciones de tiempo y el 

VRP estocástico, entre otros. Según Vidal y col. (2020), la tendencia actual en la lite-

ratura está orientada hacia el abordaje de problemas más complejos e integrados, que 

consideran simultáneamente múltiples dimensiones logísticas, buscando representar de 

manera más realista los desafíos a los que se enfrentan las empresas a diario. 

Entre estas variantes, una de las más relevantes es el Problema de Ruteo de Vehícu-

los Periódico (PVRP, por sus siglas en inglés), que extiende el VRP clásico incorpo-

rando un horizonte temporal de planificación compuesto por varios días y frecuencias 

de visitas para cada cliente. Específicamente, en el PVRP cada cliente puede requerir 

múltiples visitas en el período de planificación considerado, de acuerdo con una fre-

cuencia de atención predefinida. Así, se deben tomar decisiones simultáneas sobre qué 

días se visitará a cada cliente, qué vehículos se utilizarán cada día, y cuál será la se-

cuencia óptima de visitas en cada jornada. La consideración conjunta de todas estas 

decisiones incrementa significativamente la complejidad del problema, lo que lo con-

vierte en un gran desafío tanto para enfoques exactos como heurísticos. 

Irnich y col. (2014) ofrecen una definición formal y destacan la importancia práctica 

de este problema debido a sus múltiples aplicaciones, las cuales abarcan tanto opera-

ciones de distribución como de recolección. Algunos ejemplos típicos incluyen la en-

trega periódica de productos a minoristas (Ronen y col., 2007), la recolección de 
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residuos o reciclables (Palomio-Pérez y col., 2024), y servicios como el de atención 

médica (Maya y col., 2012). 

Como lo señalan Campbell y Wilson (2014), debido a su elevada complejidad, el 

PVRP ha sido abordado mayormente a través de métodos heurísticos y metaheurísticos. 

No obstante, en los últimos años el foco se ha puesto en el desarrollo de técnicas de 

solución exactas que permitan resolver grandes instancias del problema de manera más 

eficiente, abriendo así, nuevas oportunidades para su aplicación en entornos reales. 

Respecto a las metodologías exactas, Baldacci y col. (2011) presentan un algoritmo 

para la resolución del PVRP que asume una flota homogénea y no considera restriccio-

nes sobre la duración de las rutas. El procedimiento utiliza rutas generadas previamente, 

sobre las cuales se aplican distintos procedimientos de acotación construidos a partir de 

diversas relajaciones del problema. Estas acotaciones permiten reducir el número de 

variables en la formulación, lo que hace posible resolver el problema resultante de ma-

nera exacta mediante un solver de programación entera. 

En Alves y col. (2019) se propone un modelo de programación mixto entero orien-

tado a resolver el PVRP aplicado al ámbito de los servicios de atención médica domi-

ciliaria. En este contexto particular, el problema se enfoca en la planificación eficiente 

de visitas a pacientes, sin necesidad de modelar la cantidad de productos transportados 

ni de considerar restricciones asociadas a la capacidad de los vehículos. Asimismo, se 

aplica a una instancia pequeña que contempla un conjunto de 15 clientes y un horizonte 

temporal de 5 días. Además, se limita a un subconjunto específico de patrones de visita, 

lo que simplifica el espacio de búsqueda y permite obtener soluciones viables en tiem-

pos razonables. 

En un trabajo reciente, Basir y col. (2024) presentan una comparación de seis for-

mulaciones para el PVRP y sus extensiones con Ventanas de Tiempo (PVRPTW). Los 

supuestos claves incluyen una flota homogénea de vehículos y un conjunto predefinido 

de posibles patrones de visita. Los autores realizan experimentos computacionales para 

evaluar las diferentes formulaciones y proporcionan información sobre el rendimiento 

de los enfoques propuestos. Finalmente, enfatizan la importancia de revisar las formu-

laciones existentes para que se adapten fácilmente a nuevas variantes del PVRP y pue-

dan proporcionar buenas soluciones en tiempos de cálculo razonables. 

En el presente trabajo se propone una metodología eficiente de solución iterativa del 

PVRP, basada en la descomposición jerárquica del mismo en dos subproblemas: en el 

primero, se resuelve la asignación de los clientes a patrones de visita, minimizando los 

costos fijos de utilización de los vehículos, mientras que en el segundo se optimiza 

simultáneamente la asignación de clientes a vehículos y el ruteo diario de los mismos, 

con el objetivo de reducir el costo total de transporte. Este enfoque permite encontrar 

soluciones de alta calidad en tiempos reducidos de cómputo y representa una herra-

mienta útil para la programación de múltiples rutas en el horizonte de planificación 

considerado. 

En la siguiente sección, se detalla la descripción del problema y la notación em-

pleada. En la sección 3, se describe el procedimiento de solución propuesto, mientras 

que en la sección 4 se evalúa la estrategia comparando los resultados obtenidos con una 

metodología previamente desarrollada. Finalmente, en la sección 5, se detallan las con-

clusiones del presente trabajo. 
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2 Descripción del problema 

El problema abordado se centra en una compañía a cargo de la recolección de un 

único producto de un conjunto de clientes esparcidos geográficamente que requieren 

de varias visitas en un horizonte de tiempo, donde 𝑑 ∈ 𝐷 representa los días del hori-

zonte considerado. La empresa acuerda con cada cliente 𝑖 ∈ 𝐼𝑐  una frecuencia de visita 

en el horizonte de planificación, 𝐹𝑖, un conjunto de patrones posibles de acuerdo con la 

frecuencia, 𝑃𝑖 , y una cantidad estimada de recolección para cada visita al cliente i, 

𝐷𝑒𝑚𝑖 , siendo 𝐼𝑐 el conjunto de todos los clientes. El tiempo requerido para la recolec-

ción del producto en cada cliente es proporcional a su demanda, y se denomina 𝑆𝑇𝑖 . 

Para este propósito, se dispone de una flota limitada y heterogénea de vehículos 𝑘 ∈
𝐾, cada uno con una capacidad máxima de carga 𝐶𝑎𝑝𝑘 y restringido a realizar un solo 

viaje por día, comenzando y finalizando el recorrido en la planta, denotada como 𝑖0. 

Cada día, al menos un vehículo debe partir desde la planta y visitar a un grupo de clien-

tes respetando su tiempo máximo permitido de operación (𝑇𝑀𝑘𝑑).  

Se define 𝐼 = {𝑖0} ∪ 𝐼𝑐 como el conjunto de todos los nodos (planta y clientes, res-

pectivamente). De acuerdo con la cantidad de patrones posibles para cada cliente, los 

clientes se dividen en dos conjuntos disjuntos 𝐼𝑐 = 𝐼𝑚 ∪ 𝐼𝑢, donde 𝐼𝑚 representa el sub-

conjunto de clientes con más de un patrón posible, e 𝐼𝑢 el subconjunto de aquellos con 

un único patrón de visita asociado (por ejemplo, aquellos clientes que deben ser visita-

dos todos los días). 

Conociendo las distancias y tiempos entre todas las locaciones y los parámetros aso-

ciados a los costos, se debe determinar: 

1. La asignación de un único patrón a cada cliente 

y, para cada día del horizonte de planificación: 

2. La asignación de vehículos 

3. Los clientes que serán visitados por cada vehículo seleccionado 

4. La secuencia de visitas de cada vehículo, es decir la ruta del vehículo 

5. La cantidad de residuo a ser transportado entre clientes consecutivos 

2.1 Notación 

A continuación, en las Tablas 1 y 2 se describen los conjuntos y parámetros con los que 

se inicializa la estrategia de solución, respectivamente. 

Tabla 1. Conjuntos 

Conjunto Descripción 

D Horizonte de planificación 

𝐼 = {𝑖𝑜} ∪ 𝐼𝑐 Nodos (planta y clientes, respectivamente) 

𝐼𝑢 Subconjunto de clientes con un único patrón de visita asociado 

𝐼𝑚 Subconjunto de clientes con múltiples patrones de visita asociados 

𝑃𝑖  Patrones posibles para cada cliente i 

K Vehículos 
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Tabla 2. Parámetros 

Parámetro Descripción 

𝐶𝑎𝑝𝑘 Capacidad del vehículo k 

𝐶𝐹𝑘 Costo fijo por el uso del vehículo k 

𝐶𝑉𝑘 Costo variable asociado al vehículo k 

𝐷𝑖𝑗  Distancia desde el nodo i al nodo j 

𝐷𝑒𝑚𝑖  Demanda del cliente i que es recogida en una visita 

𝐹𝑖 Frecuencia de visita del cliente i 

𝑆𝑇𝑖  Tiempo de servicio en el cliente i 

𝑇𝑇𝑖𝑗  Tiempo de traslado desde el cliente i al cliente j 

𝑇𝑀𝑘𝑑  Tiempo máximo de operación permitido del vehículo k en el día d 

3 Metodología de solución 

Para resolver el problema de asignación y ruteo se propone una metodología iterativa 

de dos etapas. En cada una de ellas se resuelve un modelo de programación mixto entero 

lineal (MILP). En la primera etapa, el modelo, denominado M1, selecciona un patrón 

de visitas para cada cliente, determinando la asignación “cliente-día” a lo largo del ho-

rizonte temporal, satisfaciendo la demanda de los clientes y la restricción de capacidad 

de carga de los vehículos, a fin de minimizar el costo fijo por la utilización de la flota. 

En la segunda etapa, se resuelve un modelo de ruteo de vehículos con flota hetero-

génea, llamado M2, donde los clientes y los días de visita se encuentran fijos según los 

patrones seleccionados en la primera etapa. En este subproblema se busca minimizar el 

costo total de los recorridos, asegurando que la capacidad de cada uno de los vehículos 

no sea excedida. 

Las etapas se ejecutan iterativamente, agregando restricciones de corte en el modelo 

M1 a fin de asegurar la modificación de al menos un patrón respecto de las asignaciones 

previas y de esta manera se evalúen nuevas soluciones. Este enfoque permite descom-

poner el problema original en dos subproblemas manejables, facilitando su resolución 

y mejorando la eficiencia computacional. 

Una ventaja de la estrategia propuesta es que garantiza optimalidad en un número 

finito de iteraciones, dado que el número de patrones para cada cliente es finito. Sin 

embargo, debido a la alta escalabilidad del problema, para instancias de tamaño medio 

a grande se establece como criterio de parada adicional un número máximo de iteracio-

nes, a fin de alcanzar soluciones eficientes en tiempos de cómputo razonables. 

En la Fig. 1 se presenta el diagrama de flujo del algoritmo propuesto. En celeste, se 

remarcan los pasos de cada iteración, detallados en la sección 3.2. 
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Fig 1. Diagrama de flujo de la metodología de solución. 

3.1 Inicialización y Modelo de Asignación (M1) 

Se inicializan los conjuntos y parámetros definidos previamente y se establece el con-

tador de iteraciones en cero. Los patrones de visita se codifican como la suma de po-

tencias de base dos, donde cada exponente está asociado a los días en que se realizan 

las visitas, iniciando con el exponente 0 para el primer día del horizonte, y el coeficiente 

que acompaña a cada término de la forma 2h es 1 si el día dh+1 corresponde a un día de 

visita del patrón y 0 en caso contrario. Esto garantiza que cada patrón posea un valor 

único asociado. 

Dado que pueden existir clientes con un único patrón de visita asociado (Iu ≠ ), 

para cada día d del horizonte de planificación considerado se define el parámetro 
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𝐷𝑒𝑚𝑑
𝑜𝑏𝑙  como la suma de las demandas de los clientes i  Iu que son visitados ese día. 

Como estas demandas se deben satisfacer para su correspondiente día, las mismas de-

ben ser consideradas en el planteo del modelo M1 para asegurar el cumplimiento de las 

restricciones de capacidad de los vehículos que se utilicen dicho día. 

A continuación, se detallan las variables, restricciones y función objetivo del modelo 

M1. 

Variables binarias: 

• 𝑋𝑘𝑑: Toma valor 1 si el vehículo k es asignado el día d, y 0 en caso contrario. 

• 𝑌𝑖𝑝: Toma valor 1 si al cliente i se le asigna el patrón p, y 0 en caso contrario. 

Restricciones: 

A cada cliente i se le asigna un único patrón p, expresado en la Ec. (1): 

∑ 𝑌𝑖𝑝

𝑝∈𝑃𝑖

= 1 ∀𝑖 ∈ 𝐼𝑚                                                        (1) 

Siendo 𝑅𝑝𝑑 un parámetro binario que establece si con el patrón p se realiza una visita 

el día d, la Ec. (2) establece que, si algún cliente i es visitado el día d, entonces algún 

vehículo k debe ser asignado: 

∑ 𝑅𝑝𝑑𝑌𝑖𝑝

𝑝∈𝑃𝑖

≤ ∑ 𝑋𝑘𝑑

𝑘∈𝐾

 ∀𝑖 ∈ 𝐼𝑚, 𝑑 ∈ 𝐷                                       (2) 

La Ec. (3) asegura que la demanda total asignada para un día d no debe sobrepasar la 

capacidad total de los vehículos asignados. 

𝐷𝑒𝑚𝑑
𝑜𝑏𝑙 + ∑ 𝐷𝑒𝑚𝑖𝑅𝑝𝑑𝑌𝑖𝑝

𝑝∈𝑃𝑖
𝑖∈𝐼𝑚

≤ ∑ 𝐶𝑎𝑝𝑘𝑋𝑘𝑑

𝑘∈𝐾

 ∀ 𝑑 ∈ 𝐷                       (3) 

Para evitar simetrías, se implementa un orden en la asignación de vehículos que tienen 

la misma capacidad, como se expresa en la Ec. (4), donde los vehículos de menor índice 

son asignados primero. 

𝑋𝑘𝑑 ≥ 𝑋𝑘′𝑑  ∀𝑘, 𝑘′ ∈ 𝐾: 𝑘 < 𝑘′ ∧  𝐶𝑎𝑝𝑘 = 𝐶𝑎𝑝𝑘′, 𝑑 ∈ 𝐷                   (4) 

La función objetivo del problema asociado a esta etapa es minimizar los costos fijos 

totales, representado en la Ec. (5), donde el parámetro 𝐶𝐹𝑘 representa el costo fijo de 

utilizar cada camión k. 

𝑀𝑖𝑛 ∑ ∑ 𝐶𝐹𝑘𝑋𝑘𝑑

𝑑∈𝐷𝑘∈𝐾

                                                     (5) 

3.2 Iteraciones 

El criterio de parada del algoritmo está sujeto al número máximo de iteraciones permi-

tidas o bien, a la infactibilidad que se presente en el modelo M1. En cada iteración: 

1) Se resuelve el modelo M1, pudiendo presentarse dos escenarios: 

• Escenario factible: El modelo encuentra una solución óptima para la asig-

nación de patrones a clientes. 
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• Escenario infactible: No existe ninguna asignación de patrones que cumpla 

con las restricciones en todo el espacio solución, por lo que se finaliza la 

ejecución del algoritmo. 

2) A partir de la solución obtenida en el modelo M1, se determinan: 

• 𝐼𝑑: Conjunto de clientes que deben ser visitados el día d. 

• 𝐷𝑒𝑚𝑑
𝑎𝑠𝑖𝑔

: Demanda asignada a cada día d. 

3) Se identifican los días cuya asignación se mantiene respecto a algún día de la 

mejor solución encontrada hasta el momento, con el objetivo de evitar el re-

cálculo de rutas previamente optimizadas. Además, se generan las asignaciones 

equivalentes, que surgen de visitar los mismos conjuntos de clientes en distintos 

días del horizonte, las cuales representarán soluciones alternativas para el mo-

delo M2. 

4) El modelo de ruteo M2, que se detalla en la sección 3.3, se resuelve únicamente 

para aquellos días cuya asignación cliente-día no forma parte de la mejor solu-

ción encontrada hasta el momento. A medida que se resuelven los modelos dia-

rios, se actualiza el valor de la función objetivo global, calculado como la suma 

acumulada de los costos de ruteo por día. Si en algún momento este valor supera 

la mejor solución registrada (que actúa como cota superior), se interrumpe la 

optimización y se continúa con la siguiente iteración del algoritmo, ya que no 

se podrá mejorar la solución global. Por otro lado, si el modelo resulta infactible, 

significa que no es posible satisfacer la demanda de los clientes con los vehícu-

los disponibles o que se violan restricciones de duración de las rutas. En ese 

caso, se descarta la asignación y se avanza a la próxima iteración.  

5) Finalizada la ejecución del modelo M2 sobre todo el horizonte, en caso de arrojar 

una solución óptima, se compara el valor global de la función objetivo con la 

mejor solución obtenida hasta ese momento. Si la nueva solución representa una 

mejora, se actualizan los valores almacenados al de la solución óptima actual, 

incluyendo la asignación de clientes por día, las rutas de los vehículos y el nuevo 

valor de la función objetivo. Esta última se utiliza como nueva cota superior 

para las siguientes iteraciones del algoritmo. 

6) A partir de las asignaciones equivalentes obtenidas en el paso 3, se implementan 

restricciones de corte en el modelo M1 para que en las próximas iteraciones se 

evalúen distintas soluciones. El procedimiento de obtención de las asignaciones 

equivalentes y la implementación de las restricciones de corte se desarrollan en 

la sección 3.4. 

3.3  Modelo de Asignación y Ruteo de vehículos (M2) 

Variables: 

• 𝑍𝑖𝑗𝑘: Toma valor 1 si desde el nodo i se visita al nodo j con el vehículo k, y 0 en 

caso contrario. 

• 𝑄𝑖𝑗𝑘: Cantidad de productos transportados desde el nodo i al nodo j en el 

vehículo k. 

• 𝐴𝑖𝑘: Toma valor 1 si el cliente i se asigna al vehículo k, y 0 en caso contrario. 
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Restricciones: 

Cada cliente i puede ser visitado por un único vehículo k, presentado en la Ec. (6), 

donde Id representa el conjunto de clientes visitados el día d (solución del problema de 

asignación de patrones): 

∑ 𝐴𝑖𝑘

𝑘∈𝐾

= 1 ∀𝑖 ∈ 𝐼𝑑                                                          (6) 

La Ec. (7) implica que cada vehículo k puede salir como máximo una vez desde la 

planta i0. 

∑ 𝑍𝑖0,𝑗𝑘

𝑗∈𝐼𝑑

≤ 1 ∀𝑘 ∈ 𝐾                                                        (7) 

Si el cliente j se asigna al vehículo k, en el ruteo debe tener un predecesor y un sucesor, 

expresado en las Ecs. (8) y (9), respectivamente: 

∑ 𝑍𝑖𝑗𝑘

𝑖∈𝐼𝑑∪{𝑖0}

𝑖≠𝑗

=  𝐴𝑗𝑘∀𝑗 ∈ 𝐼𝑑 , 𝑘 ∈ 𝐾                                              (8) 

∑ 𝑍𝑗𝑖𝑘

𝑖∈𝐼𝑑∪{𝑖0}

𝑖≠𝑗

=  𝐴𝑗𝑘∀𝑗 ∈ 𝐼𝑑 , 𝑘 ∈ 𝐾                                              (9) 

La Ec. (10) representa la conservación de flujo ya que, si el vehículo k realiza un viaje 

desde el nodo i hacia el nodo u, también debe realizar un viaje desde ese nodo hacia 

alguna otra ubicación j. 

∑ 𝑍𝑖𝑢𝑘

𝑖∈𝐼𝑑∪{𝑖0}

𝑖≠𝑢

=  ∑ 𝑍𝑢𝑗𝑘

𝑗∈𝐼𝑑∪{𝑖0}

𝑢≠𝑗

∀𝑢 ∈ 𝐼𝑑 , 𝑘 ∈ 𝐾                                  (10) 

La Ec. (11) establece la relación entre la cantidad de productos transportados y la de-

manda a recolectar en cada nodo. La misma permite la eliminación de subtours. 

∑ 𝑄𝑖𝑗𝑘

𝑖∈𝐼𝑑∪{𝑖0}

𝑖≠𝑗

+ 𝐷𝑒𝑚𝑗𝐴𝑗𝑘 = ∑ 𝑄𝑗𝑖𝑘

𝑖∈𝐼𝑑∪{𝑖0}

𝑖≠𝑗

∀𝑗 ∈ 𝐼𝑑 , 𝑘 ∈ 𝐾                       (11) 

La ecuación (12) presenta los límites inferiores y superiores para la variable 𝑄𝑖𝑗𝑘 . La 

cota inferior garantiza que la cantidad de productos transportados después de visitar el 

nodo i sea, al menos, igual a la cantidad recolectada en dicho nodo. Por otro lado, la 

cota superior impone que, al dirigirse al siguiente nodo, la demanda no debe exceder la 

capacidad disponible restante en el vehículo. 

𝐷𝑒𝑚𝑖𝑍𝑖𝑗𝑘 ≤ 𝑄𝑖𝑗𝑘 ≤ (𝐶𝑎𝑝𝑘 − 𝐷𝑒𝑚𝑗)𝑍𝑖𝑗𝑘∀𝑖, 𝑗 ∈ 𝐼𝑑 ∪ {𝑖0}, 𝑘 ∈ 𝐾            (12) 

Para cada día del horizonte, el vehículo k cuenta con un límite de tiempo para realizar 

las tareas de traslado y recolección asignadas, representado en la Ec. (13). 

∑ 𝑇𝑇𝑖𝑗𝑍𝑖𝑗𝑘

𝑖,𝑗∈𝐼𝑑∪{𝑖0}

𝑖≠𝑗

+ ∑ 𝑆𝑇𝑖𝐴𝑖𝑘

𝑖∈𝐼𝑑

≤ ∑ 𝑇𝑀𝑘𝑑𝑍𝑖0,𝑗𝑘

𝑗∈𝐼𝑑

∀𝑘 ∈ 𝐾                    (13) 

La capacidad total debe ser suficiente para satisfacer la demanda asignada por el mo-

delo M1. 
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𝐷𝑒𝑚𝑑
𝑎𝑠𝑖𝑔

≤ ∑ ∑ 𝐶𝑎𝑝𝑘𝑍𝑖0,𝑗𝑘

𝑗∈𝐼𝑑𝑘∈𝐾

                                    (14) 

Las ecuaciones (15) y (16) presentan restricciones que eliminan simetrías para evitar 

soluciones alternativas. La Ec. (15) establece un orden en la asignación de vehículos de 

igual capacidad, donde primero se deben utilizar los vehículos de menor índice. La Ec. 

(16) impone que, para vehículos de igual capacidad, aquellos de menor índice recorran 

mayor distancia. 

∑ 𝑍𝑖0,𝑗𝑘

𝑗∈𝐼𝑑

≥ ∑ 𝑍𝑖0,𝑗𝑘′

𝑗∈𝐼𝑑

∀𝑘, 𝑘′ ∈ 𝐾: 𝑘 < 𝑘′ ∧  𝐶𝑎𝑝𝑘 = 𝐶𝑎𝑝𝑘′            (15) 

 

∑ 𝐷𝑖𝑗𝑍𝑖𝑗𝑘

𝑖,𝑗∈𝐼𝑑∪{𝑖0}

𝑖≠𝑗

≥ ∑ 𝐷𝑖𝑗𝑍𝑖𝑗𝑘′

𝑖,𝑗∈𝐼𝑑∪{𝑖0}

𝑖≠𝑗

∀𝑘, 𝑘′ ∈ 𝐾: 𝑘 < 𝑘′ ∧  𝐶𝑎𝑝𝑘 = 𝐶𝑎𝑝𝑘′     (16) 

La función objetivo de este modelo, consiste en la minimización del costo total de 

transporte que involucra los costos variables de distribución y los costos fijos de utili-

zación de los vehículos, como se presenta en la ecuación 17. 

𝑚𝑖𝑛 ∑ ∑ 𝐶𝑉𝑘𝐷𝑖𝑗𝑍𝑖𝑗𝑘

𝑖,𝑗∈𝐼𝑑∪{𝑖0}

𝑖≠𝑗
𝑘∈𝐾

+ ∑ 𝐶𝐹𝑘𝑍𝑖0,𝑗𝑘

𝑗∈𝐼𝑑∪{𝑖0}

                      (17) 

3.4 Asignaciones equivalentes y restricciones de corte 

Cada solución obtenida del modelo de asignación puede representarse por medio de 

una matriz donde las columnas corresponden a los días del horizonte temporal y las 

filas a los clientes del conjunto 𝐼𝑚. Cada elemento (i, d) de la matriz toma el valor 1 si 

el cliente i es visitado el día d, y 0 en caso contrario. De esta manera, cada fila de la 

matriz representa los coeficientes que acompañan a cada potencia de base 2 y cuya 

suma permite identificar a cada patrón con un valor único asociado. Por ejemplo, en un 

horizonte de 4 días (Lunes, Martes, Miércoles, Jueves), para el patrón de visita Martes-

Jueves, que se representa con el vector (0, 1, 0, 1), el valor asociado a éste es 0 ∗ 20 +
1 ∗ 21 + 0 ∗ 22 + 1 ∗ 23 = 10. 

A partir de cada matriz de asignación s obtenida al resolver el modelo M1, se define 

el conjunto 𝑇𝑠 cuyos elementos son tuplas de la forma (i, p), donde p es el valor asociado 

al patrón de visita asignado al cliente i en la solución del modelo. Además, se pueden 

obtener las matrices que representan asignaciones equivalentes, es decir aquellas en las 

que se visitan exactamente los mismos conjuntos de clientes, pero en días diferentes. 

Para estas matrices, las rutas óptimas para cada conjunto de clientes ya han sido calcu-

ladas, por lo que dichas asignaciones deben evitarse ya que, al no modificarse la com-

posición de los conjuntos de clientes visitados a diario, la solución del ruteo permanece 

inalterada.  

Para generar las matrices que representan asignaciones equivalentes, basta con per-

mutar alguna columna de la matriz s, lo cual produce un cambio en los días en los que 

se realizan las visitas, manteniendo el conjunto de clientes involucrados a diario. Luego 

de cada permutación, se debe verificar que los nuevos patrones de visita asociados a 
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cada cliente pertenezcan al conjunto de patrones posibles. En caso de no cumplirse, la 

asignación es descartada. La cantidad de matrices que generan asignaciones equivalen-

tes depende de la longitud del horizonte temporal, del número de columnas linealmente 

independientes en la matriz s y del conjunto de patrones válidos para cada cliente. 

En cada iteración iter del algoritmo, una vez obtenida la solución del modelo M1, se 

construye la matriz de asignación s y se genera el conjunto 𝑆𝑖𝑡𝑒𝑟, que contiene a todas 

las matrices que representan asignaciones equivalentes válidas. Luego, se incorporan al 

modelo M1 las restricciones de corte correspondientes (Ec. (18)), que garantizan que al 

menos una asignación cliente-patrón difiera tanto de la solución obtenida como de sus 

equivalentes, evitando así soluciones alternativas que arrojan igual valor de la función 

objetivo en el modelo M2. 

∑ 𝑌𝑖𝑝

(𝑖,𝑝)∈𝑇𝑠

≤ |𝐼𝑚| − 1∀𝑠 ∈ 𝑆𝑖𝑡𝑒𝑟                                          (18) 

4 Resultados 

Se considera una instancia basada en una empresa local dedicada a la recolección y 

transporte de residuos patológicos generados en 45 centros de salud y atención médica 

{i1, i2, ..., i45}. Se define un horizonte temporal de 5 días, donde los clientes se clasifican 

según sus frecuencias de visitas posibles: una vez a la semana, dos veces, tres veces y 

cinco veces (I1, I2, I3, I5). Además, a cada cliente se le asignan todos los posibles patro-

nes de visitas de acuerdo con su frecuencia de visita, por lo tanto, quedan definidos los 

conjuntos 𝐼𝑢 = 𝐼5 y 𝐼𝑚 = 𝐼1 ∪  𝐼2 ∪  𝐼3. Para realizar las tareas de recolección, se cuenta 

con dos vehículos, k1 y k2, con 900 y 1200 kg de capacidad, respectivamente, y ambos 

camiones pueden operar 8 horas por día. Las ubicaciones y demandas de los clientes 

son parámetros del modelo, que por motivos de confidencialidad no son provistos. Sus 

costos fijos y variables se estimaron considerando que es preferible utilizar el vehículo 

de menor tamaño. Es importante mencionar que las distancias y los tiempos de traslado 

entre los nodos son extraídos de una API (Aplication Programming Interface), por lo 

tanto, simulan una situación real y no están relacionados directamente. 

El modelo es implementado y resuelto en Python 3.12.7 utilizando el solver Gurobi 

v. 11.0.3, en un procesador Intel(R) Core (TM) i7-11700, 2.50GHz y 16 GB de RAM. 

Se fijó un número máximo de iteraciones igual a 50 y el algoritmo concluyó a los 

3512.92 segundos con un valor de la función objetivo de $170353.69. Además, se im-

plementaron 5880 restricciones de corte en el modelo de asignación, lo que demuestra 

la importancia de eliminar asignaciones equivalentes, para evitar el recálculo de solu-

ciones ya obtenidas. 

En la figura 2, se muestra la evolución del valor de la función objetivo a lo largo de 

las diferentes iteraciones del algoritmo. Los puntos de color verde representan aquellas 

iteraciones en las que se obtuvo una mejora en el valor de la función objetivo, mientras 

que, las cruces grises indican iteraciones en las que se empeoró la mejor solución o bien 

en las que se interrumpió el cálculo de todas las rutas debido a que el valor de la función 

objetivo del ruteo parcial superó el mejor valor hallado hasta el momento. 
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Fig 2. Evolución del valor de la función objetivo respecto a las iteraciones. 

En la figura 3, se presentan, para cada día, las rutas recorridas por cada vehículo asig-

nado, donde los esquemas (a) a (e) representan los días d1 a d5, respectivamente. En 

color verde se representa el vehículo de menor capacidad y en azul el de mayor capa-

cidad. El esquema (f) presenta un zoom de las rutas realizadas por ambos vehículos en 

el día d1. 

 
   

Fig 3. Rutas diarias de cada vehículo. 
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Se compara el enfoque propuesto con la estrategia de optimización simultánea presen-

tada previamente por Pereira y col. (2024). Dicha estrategia se basa en un modelo ma-

temático que utiliza una representación basada en patrones de visitas, en la cual todas 

las decisiones se toman de forma conjunta. Para la evaluación, se resolvió la misma 

instancia y se estableció un tiempo límite de 10800 segundos (tres horas). Al finalizar, 

se obtuvo una solución de $168609.32 con un gap de optimalidad del 0.81 %. En com-

paración, la solución obtenida mediante la metodología propuesta en este trabajo pre-

senta solo un 1.03 % de diferencia respecto a la de Pereira y col. (2024), lo que demues-

tra su competitividad en términos de calidad de resultados. 

Una observación interesante es que el modelo holístico demoró 18 segundos en en-

contrar su primera solución, con un valor de la función objetivo de $237620.68. En 

cambio, la metodología presentada alcanzó una primera solución en solo 9 segundos, 

con un valor de $171724.36. Esta diferencia resalta la capacidad del enfoque propuesto 

para obtener soluciones de alta calidad en tiempos significativamente menores, en com-

paración con el trabajo previo. 

Aunque no se puede asegurar la optimalidad global de la solución obtenida, los re-

sultados muestran que su calidad es notable. En particular, la figura 2 evidencia que la 

metodología propuesta logra soluciones de alto nivel en tiempos de cómputo conside-

rablemente inferiores a los de los métodos exactos tradicionales. Esto posiciona a la 

estrategia desarrollada como una herramienta eficiente y eficaz para enfrentar proble-

mas de ruteo periódico, destacando su utilidad en escenarios que demandan una plani-

ficación ágil sin comprometer la precisión de los resultados. 

5 Conclusiones 

En este trabajo se presenta una estrategia de descomposición iterativa para la resolución 

del problema de ruteo periódico de vehículos. La metodología propuesta involucra dos 

etapas que se ejecutan iterativamente: una resuelve un modelo de asignación y la otra 

uno de ruteo de vehículos, con el objetivo de minimizar los costos de traslado. 

El algoritmo se implementó en un caso real, obteniendo así una planificación óptima 

para el horizonte temporal considerado. Específicamente, para cada día de la semana 

se determinan los clientes a visitar, los vehículos a utilizar, la asignación de cada 

vehículo a los clientes, la ruta óptima, la cantidad de residuos a recolectar, así como las 

distancias y tiempos de recorrido, todo con el fin de minimizar los costos de las rutas 

seleccionadas. 

Una de las principales ventajas del enfoque propuesto es su versatilidad para apli-

carse en distintos horizontes temporales. Además, según las necesidades del planifica-

dor logístico, la estrategia permite dos enfoques: si se busca obtener la solución óptima 

global, se puede permitir un mayor número de iteraciones, mientras que, si el objetivo 

es obtener una buena solución en menor tiempo, se puede limitar la cantidad de itera-

ciones para reducir el tiempo de cómputo. 

Como trabajo futuro, se propone mejorar la metodología de asignación de clientes a 

los días de visita para generar soluciones más eficientes. Se explorarán estrategias de 
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clusterización de los nodos antes de resolver el problema de ruteo, lo que permitirá una 

planificación más estructurada reduciendo la complejidad del problema. 
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