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Resumen. Los problemas de optimización con restricciones son frecuentes en el ámbito 

industrial, donde la complejidad operativa y la necesidad de modelar con precisión la 

realidad conducen a formulaciones de naturaleza compleja o, incluso, intratables desde 

el punto de vista computacional. En este contexto, la investigación operativa (IO) 

enfrenta serias dificultades para resolver estos problemas, incluso en instancias de 

pequeña escala, debido a la dependencia de datos imprecisos, el carácter combinatorio 

de los modelos y la alta dimensionalidad de los datos, entre otros factores. Por su parte, 

el aprendizaje automático (AA) ha demostrado ser una herramienta valiosa para abordar 

problemas de gran escala y elevada complejidad. No obstante, aún presenta limitaciones 

en escenarios donde es necesario cumplir estrictamente con un conjunto de restricciones. 

Este trabajo explora una línea emergente de investigación orientada a lograr una 

integración funcional entre la optimización y las técnicas de aprendizaje automático, con 

el objetivo de abordar problemas cuya resolución resulta ineficaz desde la perspectiva 

exclusiva de una de estas disciplinas. En este sentido, se presenta la primera etapa en el 

desarrollo de una metodología de articulación IO-AA. El alcance de la propuesta se 

evalúa mediante la implementación y resolución de un caso de estudio relacionado con 

la producción agrícola a nivel mundial, el cual permite identificar las principales 

dificultades de resolución y proponer estrategias de mejora. Los resultados preliminares 

no agotan el problema, pero evidencian mejoras de hasta un 96% en el tamaño del 

modelo, y conducen a soluciones robustas y de alta calidad. 

Palabras clave: Optimización, Aprendizaje Automático, Problemas con Restricciones, 

Modelo de Producción Agrario. 

Exploratory Study on the Integration of Optimization 

and Machine Learning for Complex Constrained 

Problems 

Abstract. Constrained optimization problems are common in the industrial field, where 

operational complexity and the need to accurately model reality lead to formulations of 

a complex nature or even computationally intractable. In this context, operations research 
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(OR) faces serious challenges in solving these problems, even for small-scale instances, 

due to factors such as reliance on imprecise data, the combinatorial nature of the models, 

and high data dimensionality. On the other hand, machine learning (ML) has proven to 

be a valuable tool for addressing large-scale and highly complex problems. However, it 

still has limitations in scenarios where strict compliance with a set of constraints is 

required. This work explores an emerging line of research aimed at achieving a functional 

integration between optimization and machine learning techniques, with the goal of 

tackling problems that are inefficient to solve from the perspective of either discipline 

alone. In this regard, we present the first stage in the development of an OR-ML 

integration methodology. The scope of the proposal is evaluated through the 

implementation and solution of a case study related to global agricultural production, 

which allows us to identify the main solution challenges and propose improvement 

strategies. While the preliminary results do not fully resolve the problem, they show 

improvements of up to 96% in model size and lead to robust, high-quality solutions. 

Keywords: Optimization, Machine Learning, Problems with Constraints, Agricultural 

Production Model. 

Nomenclatura 
Conjuntos: 

𝑐 Países. 

𝑛 Grupos de países. 

𝐶𝑛 Países que integran el grupo 𝑛. 

𝑡 Períodos de tiempo. 

Parámetros: 

𝐴𝑟𝑒𝑎𝐷𝑖𝑠𝑝𝑜𝑛𝑖𝑏𝑙𝑒𝑐𝑡  Área disponible para la siembra por país y por año 

𝑅𝑒𝑛𝑑𝑖𝑚𝑖𝑒𝑛𝑡𝑜𝑐𝑡  Rendimiento por unidad de área para cada país en cada año. 

𝑆𝑡𝑜𝑐𝑘𝐼𝑛𝑖𝑐𝑖𝑎𝑙𝑐  Stock inicial de materia prima en cada país. 

𝐷𝑒𝑚𝑎𝑛𝑑𝑎𝑐𝑡  Demanda de maíz en cada país y año. 

𝐷𝑖𝑠𝑡𝑐𝑐′ Distancia entre países. 

𝐷𝑖𝑠𝑡𝐺𝑛𝑛′ Distancia entre grupos. 

𝐷𝑖𝑠𝑡𝐶𝑐 Distancia del país 𝑐 al centroide de su clúster. 

𝐵𝑖𝑔𝑀 Constante suficientemente grande 

𝐵𝑖𝑔𝑁 Constante suficientemente grande 

𝐵𝑖𝑔𝐿 Constante suficientemente grande 

Variables continuas: 

𝐴𝑟𝑒𝑎𝑈𝑠𝑎𝑑𝑎𝑐𝑡 Área utilizada para la siembra por país y por año. 

𝑃𝑟𝑜𝑑𝑢𝑐𝑐𝑖𝑜𝑛𝑐𝑡 Cantidad de maíz obtenido en cada país y año. 

𝑃𝑟𝑜𝑑𝑢𝑐𝑐𝑖𝑜𝑛𝐺𝑛𝑡 Cantidad de maíz obtenido en cada grupo y año. 

𝐹𝑙𝑢𝑗𝑜𝑃𝑎𝑖𝑠𝑒𝑠𝑐𝑐′𝑡  Cantidad de maíz enviado del país 𝑐 al país 𝑐’ en cada año. 

𝐹𝑙𝑢𝑗𝑜𝐺𝑟𝑢𝑝𝑜𝑠𝑛𝑛′𝑡 Cantidad de maíz enviado del grupo 𝑐 al grupo 𝑐’ en cada año. 

𝑆𝑡𝑜𝑐𝑘𝑠𝑐,𝑡 Cantidad de maíz en inventario en cada país y año. 

𝑈𝑠𝑜𝐼𝑛𝑡𝑒𝑟𝑛𝑜𝑐𝑡      Cantidad de maíz empleado por 𝑐 para cubrir la demanda anual. 

𝑈𝑠𝑜𝐼𝑛𝑡𝑒𝑟𝑛𝑜𝐺𝑛𝑡         Cantidad de maíz utilizado para cubrir la demanda anual en 𝑛. 

𝑀𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑐𝑡  Cantidad de maíz utilizado por 𝑐 proveniente de otro grupo. 
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Variables enteras: 

𝑥𝑐𝑐′𝑡
                   Indica si hay flujo de maíz entre los países 𝑐 y 𝑐’ en el año 𝑡. 

𝑦𝑛𝑛′𝑡
               Indica si hay flujo de maíz entre los grupos 𝑛 y 𝑛’ en el año 𝑡. 

1 Introducción 

Los problemas de optimización con restricciones son comunes en numerosas áreas, 

particularmente en sectores industriales, donde la necesidad de modelar de manera 

precisa la realidad conduce a la formulación de modelos de optimización de gran escala 

y naturaleza compleja. Estos problemas, en muchos casos, son intratables desde el 

punto de vista computacional debido a factores como la alta dimensionalidad e 

incertidumbre presente en los datos, y el carácter combinatorio de los modelos. En este 

contexto, la investigación operativa (IO) ha sido tradicionalmente la disciplina 

encargada de ofrecer soluciones a problemas de optimización en diversos ámbitos, 

incluyendo la planificación de la producción, la gestión de recursos y la logística, entre 

otros. Sin embargo, los enfoques convencionales de IO enfrentan serias limitaciones 

cuando se trata de resolver problemas con una gran cantidad de restricciones y 

variables, especialmente cuando las soluciones deben considerar datos imprecisos o 

incompletos. En este sentido, la digitalización ha transformado los datos en recursos 

estratégicos que aportan valor a los proyectos de la IO (Duan et al., 2020; Koen et al., 

2024), y ha posicionado a la capacidad de análisis, interpretación y aprovechamiento 

de datos como un componente determinante para mejorar el rendimiento y la robustez 

de los modelos de optimización (Conboy et al., 2020; Hindle et al., 2020).  

Por su parte, el aprendizaje automático (AA) ha emergido como una herramienta 

potente para abordar problemas de gran escala y elevada complejidad, particularmente 

en escenarios donde los métodos tradicionales de optimización resultan ineficaces. A 

través de su capacidad para aprender patrones a partir de grandes volúmenes de datos, 

el AA ha sido exitoso en aplicaciones que requieren flexibilidad y adaptación a entornos 

dinámicos. Sin embargo, a pesar de sus avances, el AA enfrenta limitaciones 

significativas cuando es necesario cumplir con restricciones estrictas que son 

fundamentales en muchos problemas industriales. Teniendo en cuenta las fortalezas y 

limitaciones propias de cada disciplina, se ha promovido en los últimos años la 

integración de ambos enfoques con el propósito de aprovechar su complementariedad 

y mejorar la efectividad de las soluciones propuestas (Fioretto, 2022; Lodi et al., 2017; 

Bengio et al., 2021). Uno de los enfoques más comunes en la literatura es usar técnicas 

de optimización para mejorar los algoritmos de AA. Un ejemplo de este enfoque 

(Bengio, 2009) aborda la dificultad de entrenar modelos de redes profundas, con 

problemas como el desvanecimiento del gradiente, y cómo estos modelos pueden ser 

mejorados mediante métodos de optimización. En (Elmachtoub et al., 2022), se 

desarrolla un marco teórico que permite abordar la integración entre el aprendizaje 

predictivo y la IO. Se propone entrenar modelos predictivos, contemplando el impacto 

que tendrán en decisiones posteriores. La propuesta permite mejorar significativamente 

la calidad de las decisiones prescriptivas. En (Bertsimas et al., 2020), se integran 

modelos predictivos como entradas en la formulación y resolución de problemas de 

optimización. El objetivo principal es determinar cómo utilizar datos históricos no solo 
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para hacer predicciones, sino también para tomar decisiones que sean óptimas en 

presencia de incertidumbre. Otros estudios han explorado la optimización híbrida, que 

busca combinar métodos clásicos de IO con técnicas de Machine Learning (ML) para 

abordar problemas donde la interacción entre variables es compleja y no lineal. En este 

sentido, el trabajo de (Falkner et al., 2023) desarrolla un modelo híbrido que supera 

tanto a controladores conocidos de búsqueda local del campo de la IO como a algunos 

enfoques basados en AA. El trabajo de (Li et al., 2020) articula estas disciplinas para 

encontrar un equilibrio entre la frecuencia de reprogramación de la producción y la 

creciente acumulación de retrasos en un proceso de manufactura. Por su parte, en 

(Alvarez et al., 2024) se propone un enfoque híbrido de IO y AA para operar y 

administrar un mercado de prosumidores en una red eléctrica inteligente. También es 

posible encontrar autores que buscan resolver problemas de optimización, 

generalmente combinatorios, empleando enfoques de ML puro. Por ejemplo, en en 

(Khalilc et al., 2017) se utilizan redes neuronales para aprender heurísticas en 

problemas combinatorios definidos sobre grafos. Si bien esta revisión bibliográfica no 

es exhaustiva, los enfoques colaborativos inversos, aquellos donde el AA se incorpora 

dentro de modelos convencionales de optimización no son fácilmente identificables en 

la literatura, lo cual sugiere que se trata de una línea de investigación poco explorada, 

con un amplio margen para su desarrollo futuro. 

El presente estudio se inscribe en esta línea emergente de investigación orientada a 

integrar las fortalezas de la IO y el AA, con el objetivo de resolver problemas complejos 

con restricciones de forma más eficaz. La propuesta principal es una metodología que 

articula ambas disciplinas de manera funcional. A través de la implementación y 

resolución de un caso de estudio relacionado con la producción agrícola global, se 

evalúa el alcance de esta metodología y los desafíos asociados con su aplicación. Los 

resultados obtenidos permiten identificar los principales retos y proponer estrategias de 

mejora, abriendo nuevas líneas de investigación que pueden contribuir al avance de la 

integración de estas dos disciplinas en el ámbito de la optimización aplicada. El trabajo 

se estructura de la siguiente manera: en la sección 2 se declara el problema que será 

abordado, y se presenta el modelo matemático que será utilizado a lo largo del escrito, 

junto a los resultados preliminares alcanzados. En la sección 3, se introduce la 

metodología de articulación entre la IO y el AA, y se describe cómo serán utilizadas 

cada una de estas disciplinas. En la sección 4 se reúnen los resultados obtenidos a partir 

de la aplicación de la metodología propuesta, mientras que en la Sección 5 se exponen 

las conclusiones generales del estudio, así como las posibles líneas de investigación 

futura derivadas del trabajo realizado.  

2 Declaración del problema 

2.1 Descripción del problema y modelo de optimización 

Como herramienta de visualización y análisis de la metodología de integración entre la 

IO y el AA, se desarrolla un modelo de optimización mixto entero lineal que busca 

reducir el impacto económico de la logística de distribución de maíz a nivel mundial, 

minimizando las distancias recorridas en los intercambios comerciales. El modelo 
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propuesto considera dentro de sus restricciones el área destinada a la siembra, la 

producción, distribución y almacenamiento de granos entre diferentes países a lo largo 

de un horizonte temporal multianual, con el objetivo de satisfacer la demanda nacional 

e internacional de manera eficiente. La nomenclatura empleada en el modelado se 

define al inicio del manuscrito.  

Específicamente, la función objetivo minimiza las distancias empleadas en la 

distribución de maíz entre países, siempre que exista flujo de granos entre ellos en algún 

período de tiempo, como muestra la Eq. 1. 

 𝑚𝑖𝑛 ∑𝑐 ∑𝑐′ ∑𝑡 𝐷𝑖𝑠𝑡𝑐𝑐′ 𝑥𝑐𝑐′𝑡 (1) 

Por su parte, la producción se define como el producto entre el área sembrada y el 

rendimiento por unidad de superficie (Eq. 2), considerando que el área sembrada no 

puede superar la disponibilidad de tierra destinada a la actividad (Eq. 3). 

 𝐴𝑟𝑒𝑎𝑈𝑠𝑎𝑑𝑎𝑐𝑡 ≤ 𝐴𝑟𝑒𝑎𝐷𝑖𝑠𝑝𝑜𝑛𝑖𝑏𝑙𝑒𝑐𝑡        ∀ 𝑐, 𝑡 (2) 

 𝐴𝑟𝑒𝑎𝑈𝑠𝑎𝑑𝑎𝑐𝑡   𝑅𝑒𝑛𝑑𝑖𝑚𝑖𝑒𝑛𝑡𝑜𝑐𝑡 = 𝑃𝑟𝑜𝑑𝑢𝑐𝑐𝑖𝑜𝑛𝑐𝑡       ∀ 𝑐, 𝑡 (3) 

Además, las ecuaciones Eq. 4 y Eq. 5 definen los balances de masa donde se 

determina el stock final de maíz en cada país y período. Este stock surge de restar todos 

los flujos de salida (volúmenes enviados a otros países y cantidades consumidas 

internamente) a los flujos de entrada (stock en el período inmediatamente anterior, 

volúmenes producidos y recibidos en el período). 

𝑆𝑡𝑜𝑐𝑘𝐼𝑛𝑖𝑐𝑖𝑎𝑙𝑐 + 𝑃𝑟𝑜𝑑𝑢𝑐𝑐𝑖𝑜𝑛𝑐𝑡 + ∑𝑐′ 𝐹𝑙𝑢𝑗𝑜𝑃𝑎𝑖𝑠𝑒𝑠𝑐′𝑐𝑡 =

𝑈𝑠𝑜𝐼𝑛𝑡𝑒𝑟𝑛𝑜𝑐𝑡 + ∑𝑐′ 𝐹𝑙𝑢𝑗𝑜𝑃𝑎𝑖𝑠𝑒𝑠𝑐𝑐′𝑡 + 𝑆𝑡𝑜𝑐𝑘𝑠𝑐,𝑡                 ∀ 𝑐, 𝑡 = 1  
    (4) 

𝑆𝑡𝑜𝑐𝑘𝑠𝑐,𝑡−1 + 𝑃𝑟𝑜𝑑𝑢𝑐𝑐𝑖𝑜𝑛𝑐𝑡 + ∑𝑐′ 𝐹𝑙𝑢𝑗𝑜𝑃𝑎𝑖𝑠𝑒𝑠𝑐′𝑐𝑡 =

𝑈𝑠𝑜𝐼𝑛𝑡𝑒𝑟𝑛𝑜𝑐𝑡 + ∑𝑐′ 𝐹𝑙𝑢𝑗𝑜𝑃𝑎𝑖𝑠𝑒𝑠𝑐𝑐′𝑡 + 𝑆𝑡𝑜𝑐𝑘𝑠𝑐,𝑡                 ∀ 𝑐, 𝑡 > 1  
    (5) 

La Eq. 6 identifica al consumo interno como la demanda de cada país, mientras que 

la Eq. 7 determina los flujos de maíz entre países, utilizando la metodología Big-M. 

 𝑈𝑠𝑜𝐼𝑛𝑡𝑒𝑟𝑛𝑜𝑐𝑡 = 𝐷𝑒𝑚𝑎𝑛𝑑𝑎𝑐𝑡    , ∀ 𝑐, 𝑡 (6) 

 𝐹𝑙𝑢𝑗𝑜𝑃𝑎𝑖𝑠𝑒𝑠𝑐′𝑐𝑡  ≤ 𝐵𝑖𝑔𝑀    𝑥𝑐𝑐′𝑡          ∀ 𝑐, 𝑐′, 𝑡 (7) 

2.2 Resultados preliminares 

Tras seleccionar y depurar datos, el caso de estudio se resolvió en una primera etapa 

considerando 119 países en un horizonte temporal de 25 años. Para cada país y período 

de tiempo, se incluyó información referida a áreas disponibles para la siembra de maíz, 

rendimiento por unidad de área sembrada, stock inicial proveniente de la campaña 

2000, demanda o consumo interno. Además, se definieron dos criterios de parada: 

● Alcanzar la optimalidad de la solución.  

● Superar el tiempo de cómputo admisible de 36 horas.  
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El modelo (modelo inicial) se implementó y ejecutó en GAMS (General Algebraic 

Modeling System) versión 42.4 en un equipo Intel(R) Core (TM) i7-8700, 3.20 GHz., 

y se empleó CPLEX 22.1 como resolvedor. A pesar de tratarse de una formulación 

relativamente sencilla, el problema presenta 365926 ecuaciones, 714001 variables 

continuas y 351050 discretas. Al tamaño de la propuesta de modelado se suma, además, 

el considerable volumen de datos procesados. Esta combinación condujo a una 

ejecución que no pudo completarse exitosamente. La interrupción de la corrida se 

produjo al alcanzar el tiempo de cómputo máximo establecido, sin converger a una 

solución óptima y con un gap de aproximadamente 69,89%. 

Este resultado evidencia algunas de las limitaciones que pueden presentar los 

enfoques convencionales de IO al abordar problemas de optimización en contextos 

caracterizados por una alta densidad de información. No obstante, es importante aclarar 

que la dificultad observada no se debe exclusivamente al tamaño del modelo, que en 

términos relativos puede considerarse compacto. Por el contrario, este caso pone de 

manifiesto que incluso modelos de dimensión moderada pueden presentar importantes 

desafíos de resolución cuando se enfrentan a ciertas características estructurales o 

volúmenes de datos significativos. En este contexto, nuestro objetivo no es señalar una 

falencia general de las técnicas de IO, sino resaltar la necesidad de contar con enfoques 

complementarios. Así como es habitual recurrir a heurísticas ante escenarios complejos, 

consideramos igualmente valioso explorar alternativas innovadoras, como las que 

ofrece el AA, capaces de gestionar eficazmente grandes volúmenes de datos y adaptarse 

a entornos dinámicos. 

3 Metodología 

La metodología propuesta involucra un proceso iterativo para la optimización, que 

combina modelado con IO y AA. El primer paso consiste en la recopilación y la 

depuración de los datos relevantes para el problema de optimización. Esta etapa es 

fundamental para comprender la información disponible y preparar los datos para las 

siguientes fases. En este sentido, se utilizó una base de datos del Departamento de 

Agricultura de Estados Unidos, específicamente, del Servicio Agrícola Exterior1. La 

información fue seleccionada y depurada para realizar la primera implementación, 

como se menciona en la sección 2.2.   

El segundo paso consiste en formular y ejecutar un modelo de optimización inicial 

utilizando los datos recopilados. El objetivo es obtener una primera solución (sección 

2.2). Entonces, se evalúa si el resultado obtenido del modelo de optimización es 

considerado aceptable según los criterios de parada definidos. Si este es el caso, se 

avanza directamente al análisis de resultados. Caso contrario, se aplica una técnica de 

AA (agrupamiento o clustering) a los datos (Oyewole et al., 2023). En el caso de estudio 

propuesto, el objetivo es identificar grupos de países de forma tal que se minimicen las 

distancias entre el centroide del grupo o clúster y los restantes países pertenecientes al 

grupo. La explicación de esta etapa se profundiza en la sección 3.1. 

 
1 https://apps.fas.usda.gov/psdonline/app/index.html#/app/home 
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Después de realizar el agrupamiento, se ejecuta el modelo de optimización para cada 

uno de los grupos de países identificados (IntraC). El objetivo es obtener soluciones 

factibles para cada clúster y minimizar el tiempo de cómputo al subdividir el problema 

en problemas más pequeños. 

Una vez que se han obtenido resultados factibles para cada grupo de países, se 

ejecuta un modelo de optimización global (InterC) que considera las soluciones 

específicas de cada grupo para obtener una solución general optimizada. Si se alcanza 

una solución factible y aceptable según los criterios de optimización definidos, se pasa 

al análisis de resultados. En caso de que no se encuentre una solución óptima o factible 

aceptable, se realiza un nuevo agrupamiento para refinar los grupos y mejorar los 

tiempos de corrida del modelo de optimización. Este proceso iterativo permite realizar 

varias pruebas hasta encontrar una solución adecuada al problema.  

La Fig. 1 presenta el diagrama de flujo correspondiente a la metodología iterativa 

descrita anteriormente. En este diagrama, los rectángulos azules representan etapas de 

análisis de datos, los rectángulos verdes identifican las etapas de IO, y el rectángulo 

naranja refiere a la etapa de AA introducida. Cabe destacar que, si bien este esquema 

proporciona una estructura general para guiar el desarrollo del proceso, tanto la 

metodología en su conjunto como cada uno de los diagramas de flujo particulares deben 

adaptarse cuidadosamente a las características específicas y a los requerimientos 

particulares del problema que se desea abordar. 

 
Fig. 1. Diagrama de flujo de la metodología. 

El enfoque de esta metodología podría inscribirse dentro de una línea conocida en la 

literatura de IO como ‘cluster-first, optimize-second’ (Miranda-Bront et al., 2017). No 

obstante, cabe señalar que el objetivo de este trabajo no es centrar la atención en este 
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caso específico, sino más bien explorar una alternativa de integración entre AA e IO. 

Esta integración no pretende ser exhaustiva; por el contrario, reconoce la posibilidad 

de emplear otros algoritmos de AA o configuraciones diferentes de articulación entre 

componentes, lo que abre un espacio amplio para futuras investigaciones y 

adaptaciones en función de las particularidades de cada aplicación. 

3.1 Aprendizaje automático 

La etapa de AA se centra en el análisis de datos utilizando la técnica de agrupamiento. 

Esta etapa se detalla en el diagrama de flujo que se muestra en la Fig. 2. El primer paso 

consiste en elegir el algoritmo para realizar el agrupamiento. En este caso, se utiliza el 

K-Means, en particular, con el algoritmo de Lloyd (Suyal et al., 2024) para identificar 

patrones geográficos en el conjunto de datos sobre países. En el segundo paso, se 

definen los parámetros que se utilizarán en el algoritmo K-Means, incluyendo la 

cantidad de grupos entre los que se podrán explorar distintas soluciones (que se 

establece entre 8 y 12 clusters). El tercer paso del agrupamiento contempla la ejecución 

del algoritmo a partir de los datos de distancias entre países. Este algoritmo busca 

minimizar la proximidad entre países dentro de los clústeres, así como también 

maximizar la separación entre clústeres. Para evitar una asignación desbalanceada de 

los países, se establece un valor inicial de 10 países por clúster y un valor máximo de 

20 países por clúster. Además, con el fin de realizar la búsqueda de soluciones, se 

incluye un parámetro de temperatura. A medida que la temperatura desciende, la 

cantidad máxima de países que puede contener cada clúster aumenta. Así, una 

temperatura alta solo permite soluciones con una cantidad de países por clúster muy 

equilibrada, y esta cantidad se relaja a medida que la temperatura desciende.  

 
Fig. 2. Diagrama de flujo para la aplicación del algoritmo de AA. 
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4 Resultados  

4.1 Aprendizaje automático 

Para realizar la etapa de AA, se utiliza Python y la librería Scikit Learn (Pedregosa et 

al., 2011). La cantidad de grupos para el K-Means varía entre 8 y 12, con lo que se 

intentará encontrar distintas configuraciones de los clústeres. Se define el parámetro de 

temperatura en 10000, que desciende de a uno por cada iteración del algoritmo. 

También, se define la cantidad máxima posible inicial de países por clúster en 10. Se 

establece como cantidad máxima posible 20 países por clúster. Este valor se alcanza 

cuando el parámetro temperatura llega a 0. 

A continuación, la Fig. 3 presenta una de las configuraciones alcanzadas a modo de 

ejemplo. Este es el caso de dividir los 119 países existentes en la base de datos en 11 

clústeres, cada uno de ellos identificado con un color diferente. Además, la Tabla 1 

presenta la cantidad de países mínima y máxima por clúster para cada una de las 

configuraciones ejecutadas. 

Fig. 3. Configuración final para una cantidad de 11 clústeres. 

Tabla 1. Cantidad mínima y máxima de países en un clúster para cada una de las 

configuraciones ejecutadas. 

Cantidad de clústeres 
Cantidad mínima de 

países en un clúster 

Cantidad máxima de 

países en un clúster 

12 2 13 

11 5 14 

10 7 15 

9 11 16 

8 8 19 
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4.2 Investigación operativa 

Con los resultados del agrupamiento alcanzados en la etapa de AA, se implementan y 

ejecutan modelos de optimización que requieren ligeras modificaciones, respecto del 

modelado descrito en la sección 2.1. Estos cambios se atribuyen esencialmente a la 

definición de grupos. En una primera etapa (IntraC) se busca minimizar la distancia 

recorrida entre los países y el centroide del clúster al que pertenecen, favoreciendo una 

mayor cohesión interna. Para ello, se resuelve un modelo por cada clúster definido. En 

la segunda etapa (InterC), se optimiza la distancia de distribución de maíz entre 

clústeres, utilizando como referencia la distancia entre los centroides de cada grupo. 

Los respectivos modelos empleados se presentan en las ecuaciones Eq. 8-Eq. 13 

(InterC) y Eq. 14-Eq. 22 (IntraC). Particularmente, las ecuaciones Eq. 8 y Eq. 14 

definen los objetivos de optimización en cada etapa, siempre que puedan identificarse 

flujos de maíz entre grupos o países, respectivamente. Las ecuaciones Eq. 9 y Eq. 15-

Eq. 16 determinan la producción disponible en cada etapa. En este caso, sólo la 

ecuación Eq. 9 introduce una modificación respecto del modelo inicial, debido a que 

debe considerar la producción anual intragrupo como la sumatoria de las producciones 

de todos los países pertenecientes al mismo clúster. Los balances de stock en Eq. 10 y 

Eq. 11 mantienen la misma lógica que el modelo inicial, pero tomando como referencia 

los clústeres definidos. En el caso de las ecuaciones Eq. 17 y Eq. 18, los balances de 

stock de la segunda etapa incorporan un término adicional que refiere a la cantidad de 

maíz proveniente del intercambio entre grupos. Estos volúmenes de maíz se definen en 

la ecuación Eq. 20. Por su parte, las Eq. 12 y Eq. 19 definen el consumo interno por 

grupo (como la suma de las demandas de cada país que integra un mismo clúster) y por 

país, respectivamente. Asimismo, las ecuaciones Eq. 13 y Eq. 19 garantizan la 

definición de flujos de maíz sólo en el caso de existir intercambio entre grupos o países, 

según corresponda. Finalmente, Eq. 22 determina la existencia de consumo de maíz en 

el país 𝑐 proveniente de un clúster externo al que pertenece.  

 ∑𝑛 ∑𝑛′ ∑𝑡 𝐷𝑖𝑠𝑡𝐺𝑛𝑛′ 𝑦𝑛𝑛′𝑡  (8) 

 𝑃𝑟𝑜𝑑𝑢𝑐𝑐𝑖𝑜𝑛𝐺𝑛𝑡 ≤ ∑𝑐𝜖𝐶𝑛
𝐴𝑟𝑒𝑎𝐷𝑖𝑠𝑝𝑜𝑛𝑖𝑏𝑙𝑒𝑐𝑡  𝑅𝑒𝑛𝑑𝑖𝑚𝑖𝑒𝑛𝑡𝑜𝑐𝑡          ∀ 𝑛, 𝑡 (9) 

∑𝑐𝜖𝐶𝑛
𝑆𝑡𝑜𝑐𝑘𝐼𝑛𝑖𝑐𝑖𝑎𝑙𝑐 + 𝑃𝑟𝑜𝑑𝑢𝑐𝑐𝑖𝑜𝑛𝐺𝑛𝑡 + ∑𝑛′ 𝐹𝑙𝑢𝑗𝑜𝐺𝑟𝑢𝑝𝑜𝑠𝑛′𝑛𝑡 =

𝑈𝑠𝑜𝐼𝑛𝑡𝑒𝑟𝑛𝑜𝐺𝑛𝑡 + ∑𝑛′ 𝐹𝑙𝑢𝑗𝑜𝐺𝑟𝑢𝑝𝑜𝑠𝑛𝑛′𝑡 + 𝑆𝑡𝑜𝑐𝑘𝑠𝐺𝑛,𝑡     ∀ 𝑛, 𝑡 = 1  
(10) 

𝑆𝑡𝑜𝑐𝑘𝑠𝐺𝑛,𝑡−1 + 𝑃𝑟𝑜𝑑𝑢𝑐𝑐𝑖𝑜𝑛𝐺𝑛𝑡 + ∑𝑛′ 𝐹𝑙𝑢𝑗𝑜𝐺𝑟𝑢𝑝𝑜𝑠𝑛′𝑛𝑡 =

𝑈𝑠𝑜𝐼𝑛𝑡𝑒𝑟𝑛𝑜𝐺𝑛𝑡 + ∑𝑛′ 𝐹𝑙𝑢𝑗𝑜𝐺𝑟𝑢𝑝𝑜𝑠𝑛𝑛′𝑡 + 𝑆𝑡𝑜𝑐𝑘𝑠𝐺𝑛,𝑡            ∀ 𝑐, 𝑡 > 1    
(11) 

 𝑈𝑠𝑜𝐼𝑛𝑡𝑒𝑟𝑛𝑜𝐺𝑛𝑡 = ∑𝑐𝜖𝐶𝑛
𝐷𝑒𝑚𝑎𝑛𝑑𝑎𝑐𝑡    ∀ 𝑛, 𝑡 (12) 

 𝐹𝑙𝑢𝑗𝑜𝐺𝑟𝑢𝑝𝑜𝑠𝑛𝑛′𝑡 ≤ 𝐵𝑖𝑔𝑁    𝑦𝑛𝑛′𝑡          , ∀ 𝑛, 𝑛′, 𝑡 (13) 

 ∑𝑐𝜖𝐶𝑛
∑

𝑐′𝜖𝐶𝑛
∑𝑡 𝐷𝑖𝑠𝑡𝑐𝑐′   𝑥𝑐𝑐′𝑡 + ∑𝑐𝜖𝐶𝑛

∑𝑡 𝐷𝑖𝑠𝑡𝐶𝑐   𝑤𝑐𝑡 (14) 
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 𝐴𝑟𝑒𝑎𝑈𝑠𝑎𝑑𝑎𝑐𝑡 ≤ 𝐴𝑟𝑒𝑎𝐷𝑖𝑠𝑝𝑜𝑛𝑖𝑏𝑙𝑒𝑐𝑡                 , ∀ 𝑐𝜖𝐶𝑛 , 𝑡 (15) 

 𝐴𝑟𝑒𝑎𝑈𝑠𝑎𝑑𝑎𝑐𝑡   𝑅𝑒𝑛𝑑𝑖𝑚𝑖𝑒𝑛𝑡𝑜𝑐𝑡 = 𝑃𝑟𝑜𝑑𝑢𝑐𝑐𝑖𝑜𝑛𝑐𝑡             ,  ∀ 𝑐𝜖𝐶𝑛, 𝑡 (16) 

𝑆𝑡𝑜𝑐𝑘𝐼𝑛𝑖𝑐𝑖𝑎𝑙𝑐 + 𝑃𝑟𝑜𝑑𝑢𝑐𝑐𝑖𝑜𝑛𝑐𝑡 + ∑𝑐′ 𝐹𝑙𝑢𝑗𝑜𝑃𝑎𝑖𝑠𝑒𝑠𝑐′𝑐𝑡 +

𝑀𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑐𝑡 = 𝑈𝑠𝑜𝐼𝑛𝑡𝑒𝑟𝑛𝑜𝑐𝑡 + ∑𝑐′ 𝐹𝑙𝑢𝑗𝑜𝑃𝑎𝑖𝑠𝑒𝑠𝑐𝑐′𝑡 +
𝑆𝑡𝑜𝑐𝑘𝑠𝑐,𝑡           , ∀ 𝑐𝜖𝐶𝑛, 𝑡 = 1  

(17) 

𝑆𝑡𝑜𝑐𝑘𝑠𝑐,𝑡−1 + 𝑃𝑟𝑜𝑑𝑢𝑐𝑐𝑖𝑜𝑛𝑐𝑡 + ∑𝑐′ 𝐹𝑙𝑢𝑗𝑜𝑃𝑎𝑖𝑠𝑒𝑠𝑐′𝑐𝑡 + 𝑀𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑐𝑡 =

𝑈𝑠𝑜𝐼𝑛𝑡𝑒𝑟𝑛𝑜𝑐𝑡 + ∑𝑐′ 𝐹𝑙𝑢𝑗𝑜𝑃𝑎𝑖𝑠𝑒𝑠𝑐𝑐′𝑡 + 𝑆𝑡𝑜𝑐𝑘𝑠𝑐,𝑡          , ∀ 𝑐𝜖𝐶𝑛, 𝑡 > 1  
(18) 

 𝑈𝑠𝑜𝐼𝑛𝑡𝑒𝑟𝑛𝑜𝑐𝑡 = 𝐷𝑒𝑚𝑎𝑛𝑑𝑎𝑐𝑡        ,  ∀ 𝑐𝜖𝐶𝑛, 𝑡 (19) 

 ∑𝑛′ 𝐹𝑙𝑢𝑗𝑜𝐺𝑟𝑢𝑝𝑜𝑠𝑛′𝑛𝑡 ≥ ∑𝑐𝜖𝐶𝑛
𝑀𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑐𝑡                ∀ 𝑡 (20) 

 𝐹𝑙𝑢𝑗𝑜𝑃𝑎𝑖𝑠𝑒𝑠𝑐′𝑐𝑡 ≤ 𝐵𝑖𝑔𝑀    𝑥𝑐𝑐′𝑡          ∀ 𝑐𝜖𝐶𝑛, 𝑐′𝜖𝐶𝑛 , 𝑡 (21) 

 𝑀𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑐𝑡 ≤ 𝐵𝑖𝑔𝐿    𝑤𝑐𝑡          ∀ 𝑐𝜖𝐶𝑛, 𝑡 (22) 

La Tabla 2 resume los resultados más relevantes de las etapas de IO para los casos 

de 9 y 11 clústeres, incluyendo además las estadísticas del modelo inicial con el objetivo 

de facilitar la comparación de desempeño. Estos casos se presentan con fines 

ilustrativos, seleccionados por razones de espacio, aunque el análisis y las conclusiones 

se fundamentan en base a la totalidad de ejecuciones realizadas. Cabe aclarar que, las 

ejecuciones correspondientes a las etapas IntraC e InterC se limitaron a un total de 36 

horas de CPU, con el fin de mantener la coherencia con las restricciones 

computacionales definidas para el modelo inicial.  

Los resultados obtenidos evidencian las mejoras alcanzadas mediante la 

incorporación del AA en los modelos convencionales de IO, al reducir 

significativamente el tamaño de los modelos a resolver y los tiempos de cómputo 

requeridos. Por ejemplo, el modelo inicial que considera 119 países alcanza un tamaño 

de 365.926 ecuaciones y más de 1 millón de variables (714.001 continuas y 351.050 

discretas), y no logra converger en las 36 horas de CPU asignadas, registrando un gap 

del 69,89 %. 

En contraste, los modelos generados a partir del agrupamiento en clústeres de menor 

tamaño (entre 8 y 12 grupos) presentan una drástica reducción en la dimensión del 

problema: el número máximo de ecuaciones en un submodelo fue de 11.426, lo que 

representa una reducción superior al 96 % respecto del modelo inicial. De forma 

similar, las variables discretas se redujeron hasta en un 97 %. 

Desde el punto de vista computacional, la etapa InterC reduce el gap entre un 68% 

(11 clústeres) y un 99% (12 clústeres), lo que se traduce en soluciones más robustas, 

aun cuando no alcanza optimalidad debido a las limitaciones de tiempo de ejecución 

impuestas. Es importante destacar que este tiempo de CPU permitido es 

considerablemente inferior al límite de tiempo establecido como criterio de parada en 

el modelo inicial. En el caso de la etapa IntraC, la mayoría de los submodelos se 
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resolvieron en menos de una hora, alcanzando optimalidad. Incluso en los casos de 

menor eficiencia, el mayor gap observado fue de 4,69 %, representando una mejora de 

más del 93% respecto del modelo inicial. Analizando la función objetivo, la distancia 

total recorrida al considerar 9 clústeres es de 661800,96 km, reduciendo un 59% con 

respecto al modelo global, mientras que al considerar 11 clusteres, se recorre 

1252990,59 km, reduciendo un 22%. 

Tabla 2. Estadísticas de cada ejecución de los modelos de IO. 

 
Países Ecuac. 

Variables 

Continuas 

Variables 

discretas 

Tiempo 

CPU(s) 

GAP 

(%) 

Dist  

(km) 

Modelo 

Inicial 
119 365926 714001 351050 129600 69,89 1615548.5 

C
-9

 

E9  2701 4276 1800 

75561 

14,88 207524.5 

n1 12 5126 8701 3600 0 37733.6 

n2 16 8426 14801 6400 0 39791.2 

n3 11 4426 7426 3025 2,44 25218.3 

n4 13 5876 10076 4225 4,69 14429.2 

n5 15 7526 13126 5625 1,37 59721.4 

n6 13 5876 10076 4225 0 25159.1 

n7 12 5126 8701 3600 0 20081.5 

n8 15 7526 13126 5625 2.91 200214.0 

n9 12 5126 8701 3600 0 31928.0 

C
-1

1
 

E11  3851 6326 2750 

48084 

22,16 219209.7 

n1 13 5876 10076 5225 0 135903.8 

n2 12 5126 8701 3600 0 72614.6 

n3 11 4426 7426 3025 0 64429.5 

n4 14 6676 11551 4900 0 85124.5 

n5 13 5876 10076 5225 2,55 31518.2 

n6 10 3776 6251 2500 0 36003.2 

n7 5 1276 1876 625 0 120491.0 

n8 8 2626 4201 1600 0 231447.6 

n9 7 2126 3326 1225 0 2948.9 

n10 14 6676 11551 4900 0 210822.9 

n11 12 5126 8701 3600 0,39 42476.7 

*Ecuac. : ecuaciones  
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De este modo, se destaca el aporte de la integración disciplinar en términos de 

escalabilidad y viabilidad computacional. Se hace especial énfasis sobre la mejora 

observada en la robustez de las soluciones obtenidas. 

5 Conclusiones 

En el presente trabajo se desarrolla una metodología de articulación entre la 

investigación operativa (IO) y el aprendizaje automático (AA) orientada a resolver 

problemas complejos con restricciones, donde las perspectivas tradicionales resultan 

insuficientes frente a los grandes volúmenes de información, la alta dimensionalidad de 

los datos y las formulaciones combinatorias. 

A partir de la implementación de un caso de estudio vinculado a la logística 

internacional de distribución de maíz, se muestra como la integración de técnicas de 

AA, como los algoritmos de agrupamiento, permiten descomponer el problema original 

en submodelos de menor escala. Esto se traduce en una reducción sustancial del tamaño 

del modelo a resolver, con una disminución del número de ecuaciones superior al 96 % 

y una baja en el número de variables discretas que alcanza hasta un 97 % en los 

submodelos. Además, se revelan mejoras significativas en los tiempos de cómputo y la 

calidad de las soluciones. Mientras que el modelo inicial no logra alcanzar una solución 

factible de alta calidad dentro del tiempo de cómputo máximo establecido, los 

submodelos alcanzan optimalidad o soluciones cercanas al óptimo en la mayoría de los 

casos. 

Estos resultados respaldan cuantitativamente el valor de la integración disciplinar en 

términos de escalabilidad computacional y robustez de las soluciones, ofreciendo 

pruebas experimentales sobre la pertinencia, viabilidad y efectividad de los enfoques 

híbridos IO–AA. 

Como línea futura de investigación, se propone avanzar en la optimización 

automática de los hiperparámetros de los algoritmos de agrupamiento, así como 

también explorar la incorporación de otras técnicas de AA (supervisado y no 

supervisado) para fortalecer el proceso iterativo de descomposición y mejora de los 

modelos de IO. Asimismo, se planea extender la metodología a otros dominios que 

compartan características estructurales, con el fin de validar la generalización y 

adaptabilidad de la propuesta. 
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