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Abstract. Requirements expressed in natural language are an essential artifact
in the software development process, as all stakeholders can understand them.
However, their inherent ambiguity remains a persistent challenge. To address
this issue, organizations such as the Institute of Electrical and Electronics Engi-
neers (IEEE) and the International Council on Systems Engineering (INCOSE)
publish guidelines with rules that support the task of writing clearer require-
ments. Additionally, agile methodologies propose patterns and structures for
formulating stakeholder needs in natural language, aiming to reduce ambiguity.
Nevertheless, differences in stakeholders’ understanding of the requirements
and how to express them correctly make the specification task even more diffi-
cult. Recently, large language models (LLMs) have emerged to enhance natural
language processing tasks. These are deep learning architectures that emulate
attention mechanisms similar to those used by humans. This work aims to as-
sess the potential of LLMs in this domain. The goal is to use these models to
improve the quality of software requirements, assisting analysts in the tasks of
analysis and specification. The proposed framework, its architecture, key com-
ponents, and their interactions are described. A conceptual test is also conduct-
ed to evaluate the framework's usefulness. Finally, the paper discusses the
framework’s potential and limitations, as well as future directions for its valida-
tion and refinement.

Keywords: Requirements Engineering, Requirements Quality, Large Language
Models.
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Resumen. Los requerimientos expresados en lenguaje natural son un artefacto
indispensable en el proceso de desarrollo de software, ya que pueden ser com-
prendidos por todas las partes interesadas. Sin embargo, su ambigiiedad repre-
senta un desafio persistente. Para abordar esta problematica, organizaciones
como el Institute of Electrical and Electronics Engineers (IEEE) y el Internatio-
nal Council on Systems Engineering (INCOSE) publican guias para escribir re-
querimientos con reglas que aportan a la tarea. Por otro lado, las metodologias
agiles proponen patrones y estructuras para redactar en lenguaje natural las ne-
cesidades de las partes interesadas, tratando de evitar la ambigiiedad. Sin em-
bargo, la diferencia de conocimiento entre estas partes respecto a los requeri-
mientos y su correcta formulacion dificulta la tarea de especificacion. Recien-
temente, los grandes modelos lingiiisticos (LLM, por sus siglas en inglés) han
emergido para mejorar las tareas de procesamiento de lenguaje natural, estos
son arquitecturas basadas en modelos profundos que emulan mecanismos de
atencion similares a los humanos. Este trabajo tiene como objetivo evaluar el
potencial de los LLM en este dominio. El proposito es utilizar estos modelos
para mejorar la calidad de los requerimientos de software, ayudando a los ana-
listas en las tareas de andlisis y especificacion de requerimientos. Se detallan el
marco propuesto, la arquitectura, los componentes clave y las interacciones en-
tre ellos. Ademas, se desarrolla una prueba conceptual de la propuesta para eva-
luar su utilidad. Por ultimo, se discuten el potencial y las limitaciones del marco
de trabajo, asi como las direcciones futuras para continuar su validacion y refi-
namiento.

Palabras clave: Ingenieria de Requerimientos, Calidad de Requerimientos,
Grandes Modelos Lingiiisticos.

1 Introduccion

El Proceso de Ingenieria de Requerimientos (IR) es esencial en el desarrollo de
software. El objetivo de este proceso es garantizar que se incorporan todas las necesi-
dades, limitaciones y exigencias de calidad del cliente, y que el software a producir
las satisface. Los requerimientos generados en esta fase proceden de varios tipos de
fuentes: distintos documentos del dominio, stakeholders y sistemas heredados, si exis-
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ten (Wiegers et al., 2013). Dos de estas fuentes, los documentos y los stakeholders,
tienen como caracteristica principal el uso del lenguaje natural. Por un lado, los do-
cumentos estan escritos en lenguaje natural y por otro, el lenguaje natural facilita la
comunicacion y validacion de los requerimientos con todas las partes interesadas.

El lenguaje natural tiene caracteristicas no deseadas, tales como la ambigiiedad, que
dificultan la redaccion del documento resultante del proceso de IR, llamado Especifi-
cacion de Requerimientos de Software (ERS). Esta especificacion contiene todas las
necesidades, restricciones y demandas de calidad obtenidas de las partes interesadas y
extraidas de los documentos y sistemas heredados. Un uso incorrecto del lenguaje
natural en el proceso y en la creacion de este documento, puede dar lugar a malenten-
didos u omisiones que dificulten el desarrollo del software en etapas posteriores.
INCOSE publica y mantiene una guia para escribir requerimientos (GtWR Homepa-
ge, 2025) que recomienda un conjunto de caracteristicas y reglas para ayudar a los
analistas en el proceso de especificacion de requerimientos. En esta guia, se enumera
un conjunto de caracteristicas no deseadas, y la ambigiiedad es la mas comun de ellas.
La ambigiiedad existe con frecuencia en las expresiones del lenguaje natural en varios
sentidos, y es necesario eliminarla de las expresiones de requerimientos, porque éstas
necesitan tener un significado tnico.

En los ultimos tiempos, con el crecimiento de la inteligencia artificial, se han propues-
to nuevos modelos profundos que han demostrado un gran rendimiento en el proce-
samiento del lenguaje natural. Estos modelos, llamados LLM, se basan en un modelo
base propuesto en el trabajo Attention is all that you need (Vaswani et al., 2017), lla-
mado Transformer. A partir del Transformer han surgido varios modelos con varian-
tes de su arquitectura, algunos de los cuales han demostrado mejoras significativas en
tareas de lenguaje natural, tales como la generacion de resimenes (Liu et al., 2024),
traducciones (Volk et al., 2024) y respuestas a preguntas (Robinson et al., 2022), entre
otras.

Este articulo pretende incorporar el uso de LLMs para ayudar al analista en tareas de
especificacion de requerimientos, basandose en las grandes cualidades de estos mode-
los para mejorar el procesamiento de lenguaje natural. Se propone un marco de traba-
jo para interactuar con los modelos en varias tareas dentro de un proceso que pretende
mejorar la calidad de los requerimientos de software especificados.

El resto de este trabajo se organiza como sigue: la Seccion 2 presenta los fundamen-
tos, la Seccion 3 describe el marco propuesto, la Seccion 4 desarrolla una prueba con-
ceptual de la propuesta y evalua los resultados, y la Seccion 5 discute los resultados,
expone las conclusiones y propone los trabajos futuros.

2 Marco Teorico y Trabajos Relacionados

En tiempos recientes, con la llegada de los LLMs, distintos estudios han investigado y
propuesto el uso de estos modelos profundos como herramienta en el proceso de IR.
Entre ellos, Porter et al. (2025) revisan la evolucion de las herramientas automaticas
para evaluar la calidad. Destacan el potencial de la inteligencia artificial, especialmen-
te los transformers, para realizar analisis mas contextuales y precisos, y presentan la
herramienta en desarrollo ARQM que integra estas tecnologias para mejorar la cali-
dad de los requerimientos segin el estandar IEEE 29148. También Reinpold et al.

Memorias de las 54 JAIIO - ASSE - ISSN: 2451-7496 - Pagina 74



ASSE, Argentine Symposium on Software Engineering 2025

(2024) investigan el uso de LLMs para verificar si las especificaciones técnicas cum-
plen con los requerimientos. Realizando pruebas con un conjunto de datos acotado y
modelos avanzados como GPT-40 y Claude 3.5 Sonnet, obtuvieron puntuaciones F1
de entre el 79 % y el 94 % en la identificacion de requerimientos no cumplidos. En
otra linea Norheim et al. (2024) realizan una revision y analizan criticamente el éxito
y las dificultades de aplicar LLMs en distintas tareas del proceso de IR, resaltando y
concluyendo la falta de una forma de evaluar el aporte real de estas herramientas a las
tareas del proceso.

En particular, este articulo presenta un marco de trabajo, basado en el uso de
LLMs, para mejorar la calidad de las expresiones de requerimientos de software.

2.1 Proceso de IR

La IR es una rama de la Ingenieria del Software (IS) que se ocupa de la gestion de
los servicios y restricciones de los sistemas de software (Nuseibeh et al., 2000). El
proceso de IR puede dividirse en cuatro actividades principales: estudio de factibili-
dad, obtencion y andlisis, especificacion y validacion de requerimientos, segun Som-
merville (Sommerville, 2016). Estas actividades no se ordenan secuencialmente, sino
que pueden realizarse de forma iterativa a lo largo del proceso y a medida que cam-
bian los requerimientos o se descubren nuevos. El marco propuesto en este trabajo
pretende asistir a los analistas principalmente en las actividades de obtencion, analisis
y especificacion de requerimientos.

2.2 Grandes Modelos Lingiiisticos

A partir del trabajo Attention is all that you need (Vaswani et al., 2017), se propuso

el Transformer, un modelo de aprendizaje profundo con una arquitectura dividida en
dos estructuras, el codificador y el decodificador, basado en el mecanismo de atencion
multicabeza. Mientras que los modelos recurrentes procesan el texto secuencialmente,
el Transformer utiliza un mecanismo de atencién que le permite considerar todas las
palabras de una frase simultdneamente. Este mecanismo permite a los modelos lin-
giiisticos destacar las partes mas relevantes de un texto de entrada para comprender
mejor su significado y contexto. Asi, el modelo puede captar las relaciones de largo
alcance entre las palabras, lo que se traduce en un mejor rendimiento en diversas ta-
reas de lenguaje natural.
Desde el Transformer, se siguieron desarrollando modelos basados en su estructura,
tales como BERT (Bidirectional Encoder Representations from Transformers) (De-
vlin et al., 2018), GPT (Generative Pretraining Transformer) (Brown et al., 2020) y
T5 (Text-to-Text Transfer Transformer) (Raffel et al., 2019), que se entrenaron con
conjuntos de datos aiin mayores, compuestos por texto y codigo. Estos modelos des-
tacan por su capacidad para generar texto de alta calidad y realizar diversas tareas de
procesamiento de lenguaje natural (PLN). Posteriormente, el uso de LLM se extiende
aun mas con la apariciéon de ChatGPT (ChatGPT Homepage, 2025) en 2022, una apli-
cacion de la empresa OpenAl que permite utilizar [A generativa a través de una inter-
faz de chat basada en el modelo GPT para generar respuestas.
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2.3  Prompt Engineering

La interaccion con LLM generativos propone un nuevo paradigma en el que se
puede interactuar con un modelo con expresiones en lenguaje natural. En estos mode-
los de lenguaje, la entrada del usuario se denomina prompt, que es una instruccion o
conjunto de palabras disefiadas para iniciar y guiar la respuesta del modelo. Es impor-
tante la forma en que se genera esta expresion, ya que el modelo generara la salida a
partir de la misma. Las buenas practicas recomiendan elementos que un prompt puede
contener en busca de lograr la respuesta esperada (Tabla 1).

Tabla 1. Elementos recomendados en un prompt. (Prompt Engineering Guide, 2024).

Elemento Descripcion
Instruccion Tarea especifica que se desea
Informacion adicional que puede orientar al modelo y completar la
Contexto res
puesta.
Entrada La entrada sobre la que se desea la accion.
Salida Formato que se desea para la respuesta del modelo.

Los cuatro elementos en un prompt no son obligatorios. Incluirlos o no, depende de la
necesidad expresada. Ademas, en la entrada que se le proporciona al modelo se pue-
den incluir ejemplos de la tarea que esperamos del mismo. Segun la cantidad de
ejemplos, se distinguen tres enfoques: zero-shot (sin ejemplos), one-shot (un solo
ejemplo) y few-shots (varios ejemplos), siendo este Gltimo el mas potente por su ca-
pacidad de generalizacion.

2.4  Generacion Aumentada por Recuperacion (RAG)

La arquitectura RAG (Figura 1) permite superar las limitaciones de conocimiento
estatico de los LLM, mejorando sus respuestas mediante la recuperacion de informa-
cion actualizada y contextual desde fuentes externas durante la generacion.

Recuperador

28

Respuesta

Fig. 1. Proceso de RAG.
El proceso de RAG se inicia con el envio de un prompt por parte del usuario. Este

es transformado en una representacion vectorial y procesado por el recuperador, que
consulta una base de datos externa, también vectorizada, con el fin de identificar los
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fragmentos de informacién mas relevantes. Esta base de datos almacena representa-
ciones numéricas de textos que capturan su significado semantico, lo que permite
recuperar informacion en funcion del contenido y no solo de coincidencias literales.
Los textos recuperados se combinan posteriormente con el prompt original. Esta en-
trada enriquecida es procesada por un LLM que genera una respuesta contextualizada
en funcion del contenido recuperado (Klesel y Wittmann, 2025).

3 Marco de trabajo propuesto

Esta propuesta se basa en interacciones entre requerimientos, fuentes de informa-
ciéon y modelos con el objetivo de mejorar la calidad de los requerimientos. A conti-
nuacion, se describe la arquitectura (Figura 2) y los distintos componentes que pueden
implementarse dependiendo del dominio, alcance y tipo de problema a resolver.

3.1 Arquitectura

La arquitectura propuesta da soporte al proceso que tiene como objetivo mejorar la
calidad de los requerimientos. Este proceso comienza con un primer modelo (Modelo
evaluador) que evalta la expresion de requerimiento. Esta evaluacion puede imple-
mentarse con distintos tipos de LLM o ensambles, dependiendo de qué tan amplias se
pretendan la evaluacion y la salida. Puede utilizarse desde un simple codificador co-
mo parte de un clasificador binario, hasta un modelo generativo que devuelva una
salida detallada describiendo la calidad del requerimiento. Es importante definir y
documentar los criterios y modelo o modelos que se utilizaran en esta primera etapa, a
fin de sustentar la decision posterior de mejorar o no la expresion.

S Fuentes de
Requerimiento con la Documentos
Calidad Deseada

A

‘ | oo |
Base de S"0r=
Datos
Modelo  Vectorial Modelo

Generador de Generador de
Preguntas RAG Requerimientos

Fuentes de Modelo
Stakeholders Evaluador

Preguntas para
Mejorar el
Requerimiento

Patrones para
Redaccion de
Regquerimientos

1 -Texta en lenguaje natural - Interface (csv, JSON, ...) d& Modelo o ensamble Agente ‘

Fig. 2. Arquitectura de la propuesta.

El segundo modelo se ejecuta si, a partir de la salida del primero, se concluye que la
calidad de la expresion del requerimiento no es suficiente. Para este caso, el segundo
modelo (Modelo Generador de Preguntas) analiza la expresion del requerimiento y la
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salida obtenida en la primera tarea, con el fin de obtener preguntas que mejoren su
calidad.

Las preguntas generadas en la segunda tarea tienen como objetivo obtener respuestas
que con su contenido aporten a mejorar la expresion del requerimiento, ya sea com-
pletando informacion o despejando dudas que disminuyan la ambigiiedad de la expre-
sion. Dependiendo del dominio, estas preguntas pueden utilizarse con dos tipos de
fuentes. Por un lado, puede consultarse directamente a stakeholders y, por otro, pue-
den utilizarse con el tercer modelo propuesto y una fuente documental, si se dispone
de ésta.

El tercer modelo es (RAG) toma como entradas un conjunto de preguntas sobre una
expresion de requerimiento y busca en una base de datos vectorizada, con informa-
cioén de contexto, las posibles respuestas a estas preguntas. La utilizacion de este mo-
delo depende de la existencia de documentacion.

Un cuarto modelo (Modelo Generador de Requerimientos) recibe como entradas: el
requerimiento original, un conjunto de preguntas y respuestas, fragmentos de contexto
y patrones para redaccion de requerimientos -si se dispone de éstos- para generar un
nuevo requerimiento mejorado.

Finalmente, esta nueva expresion generada vuelve a ser evaluada por el primer mode-
lo, a fin de verificar que cumple con la calidad esperada. De no ser asi puede comen-
zarse una nueva iteracion del proceso descripto.

3.2  Componentes

El funcionamiento del marco propuesto depende de tres componentes fundamenta-
les: los modelos, las interfaces y, opcionalmente, un agente orquestador. Dado que se
trata de un marco adaptable a diferentes contextos de aplicacion, los modelos pueden
ser de distintos tipos y estar implementados en diversas formas. Estos incluyen mode-
los generativos, clasificadores o ensambles orquestados, entre otros. Para automatizar
las interacciones entre ellos, se requieren interfaces accesibles, que pueden variar
desde simples archivos de texto hasta bases de datos documentales. Finalmente, si se
busca una ejecucion automatica, un agente debe encargarse de interpretar interfaces,
tomar decisiones y coordinar la ejecucion. Aunque su uso no es obligatorio, su disefio
resulta clave en implementaciones totalmente automatizadas.

3.3 Ejemplos de Implementaciéon

A continuacion, se muestran dos posibles ejemplos de implementacion del marco
con distintas adaptaciones de la arquitectura propuesta.
Ejemplo A (Figura 3). En esta implementacion se utilizan tres modelos generativos.
(a) es modelo preentrenado, ajustado, que evalta la expresion, (b) es un modelo pren-
trenado, ajustado, que genera preguntas para mejorar la expresion y (c) es un modelo
preentrenado y utilizado con una técnica de few-shot prompting que genera los reque-
rimientos de acuerdo con una plantilla. En esta implementacion no se utiliza un agen-
te y es el usuario el que cumple este rol, primero decide si el requerimiento tiene la
calidad deseada de acuerdo con la salida del modelo (a), y luego necesita recolectar de
los stakeholders las respuestas a las preguntas generadas por el modelo (b), para fi-
nalmente darles el formato adecuado para que sean utilizadas en la Gltima etapa.
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Ejemplo B (Figura 4). Esta propuesta de implementacion utiliza primero un clasifi-
cador (a) que evalia desde distintas perspectivas la expresion para evaluar si ésta
tiene la calidad deseada. Si no es asi, un modelo generativo preentrenado y ajustado
(b) genera las preguntas para mejorar la expresion, luego una arquitectura RAG pro-
vee las respuestas a las preguntas utilizando documentos de estandares y transcripcio-
nes de entrevistas y reuniones. Finalmente, un modelo generativo preentrenado utili-
zado con una técnica de few-shot prompting genera los requerimientos de acuerdo
con una plantilla. En este caso, el proceso es totalmente automatico por lo que se ne-
cesita un agente que orqueste el funcionamiento de la implementacion.

Requerimiento con la
Calidad Deseada

Modelo
Generador
de Preguntas

Fuentes de Modelo

e

Modelo
Generador de
Requerimientos

Preguntas para
Mejorar el

Requerimiento

Textos con
Respuestas a las
Preguntas

Kk &k
1
1
]
]

Patrones para
Redaccion de
Requerimientos

’ -Texto en lenguaje natural - Interface (csv, JSON, ) @ Modelo 0 ensamble

Fig. 3. Implementacion del ejemplo A.

m
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Requerimiento con la de Estandares
Calidad Deseada Reuniones Aplicados
V. _V.
w‘ Base de
- Datos
Fuentes de siciol %‘g[’;ﬁ;ﬂ Modelo Vectonal Modelo
Stakeholders o "Jf e 3 Generador de RAG Generador de
asificador Preguntas Requerimientos
Expresion 5 b
. vlo sin Calidad « 0 c Y10 Requerimiento
Entrevistas (a) o 0 ( ) ( ) o Mejorado
Tiene la calidad deseada? I
Cuestionarios q 0 Preguntas para I Textos con
— Mejorar el Respuestas a las
= Requerimiento Preguntas
3 A A
Reuniones
< 7 Patrones para
1) Redaccion de
Regquerimientos

.
’ -Textoen lenguaje natural - Interface (csv, JSON, ..) @ Modelo 0 ensamble @ Agente ‘

Fig. 4. Implementacion del ejemplo B.
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4 Prueba conceptual

4.1 Modelo utilizado

Es conocida la utilizacion de distintos asistentes, tales como Gemini (Gemini Ho-
mepage, 2025), Copilot (Copilot Homepage, 2025) o ChatGPT (ChatGPT Homepage,
2025), basados en LLM para dar soporte en infinidad de tareas, y no escapan a esta
tendencia las actividades desarrolladas en el proceso de IR. Es por este motivo que las
pruebas iniciales de esta propuesta se desarrollan utilizando un asistente bien conoci-
do, ChatGPT version 4o mini, aplicando técnicas de Prompt Engineering. Cabe acla-
rar que los resultados de las pruebas no son reproducibles con exactitud, debido a la
naturaleza no deterministica de las salidas que ofrecen estos modelos, aunque se repi-
tieron algunas de las mismas obteniéndose resultados muy similares. Por ultimo, el
idioma elegido para el desarrollo de las pruebas es el inglés.

4.2  Metodologia

Se utilizan tres requerimientos (Tabla 2) que fueron escritos para estas pruebas con
el objetivo de representar caracteristicas funcionales y no funcionales de forma com-
prensible. Primero, se consulta a ChatGPT con una consigna genérica para que sugie-
ra mejoras a cada requerimiento por separado. Luego, se aplica una version simplifi-
cada del marco propuesto con el mismo fin. Finalmente, se comparan los resultados
para realizar una primera evaluacion de la propuesta y planificar pruebas a mayor
escala.

Tabla 2. Expresiones de Requerimientos utilizadas en las pruebas iniciales.

# Expresion

R1 The system must allow the inventory manager to generate a list of missing products.
R2 The system will have a user-friendly interface and support all common browsers.
R3 A customer can cancel an order if he has not yet received it.

4.3  Evaluacion genérica de las expresiones

Las tres expresiones de requerimientos fueron utilizadas para realizar una consulta

genérica a un modelo que tiene como objetivo mejorar la calidad del requerimiento.
Ademas, el prompt utilizado pretende obtener en la respuesta del modelo recomenda-
ciones para mejorar la expresion y una nueva expresion mejorada.
Para la redaccion de la consulta se siguieron las técnicas recomendadas de prompt
engineering en busca de una mejor respuesta. Como se puede observar en la Figura 5,
inicialmente la expresion llama a la accion de mejorar el requerimiento de software y
referencia la expresion a ser examinada.

User Prompt

Indicate how the following software requirement can be improved.
Software Requirement: "The system must allow the inventory manager to generate a list of
missing products."
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The given software requirement can be improved ...
Issues in the Original Requirement:

1. Ambiguity in "missing products' — Does this mean out-of-stock items...
Improved Requirement:
"The system must enable the inventory manager to generate a report listing products that
are out of stock or below the predefined threshold. The report should be available in CSV
and PDF formats and accessible via the inventory management dashboard. The inventory
manager must be able to generate this report on demand and receive an automatic daily
summary via email."...

Fig. 5. Resumen de la consulta genérica sobre el primer requerimiento.

Esta expresion mejorada propuesta por el modelo es luego evaluada contra la obtenida
con la implementacion simplificada del marco propuesto.

4.4 Evaluacion de las expresiones con el marco propuesto

En esta seccion se desarrolla una Prueba Conceptual para evaluar la factibilidad del
enfoque. Para simplificar el ejemplo se utiliza ChatGPT como tinico modelo en las
distintas etapas. Esta implementacion del marco requiere tres modelos, a) evaluador
de la expresion, b) generador de preguntas y c¢) generador de una nueva expresion
mejorada. La decision sobre la calidad del requerimiento la toma el analista y las res-
puestas a las preguntas que alimentan el ultimo modelo fueron generadas para estas
pruebas. No se utiliza un agente, ya que el analista asume ese rol coordinando los
componentes.

Modelo Evaluador (a). La propuesta requiere definir previamente como se evaluaran
los requerimientos, 1o que permite identificar con claridad los problemas en las expre-
siones. Dado que las pruebas se realizan con un modelo generativo, la primera inter-
accion establece y verifica que el modelo comprenda el contexto, en este caso, la guia
de INCOSE (Figura 6).

User Prompt

Do you know the characteristics of well-formed requirements: "Necessary, Appropriate,
Unambiguous, Complete, Singular, Feasible, Verifiable, Correct and Conforming" pub-

lished in “INCOSE Guide for writini reiuirements “?

Yes! The INCOSE (International Council on Systems Engineering) Guide for Writing
Requirements defines well-formed requirements using the following characteristics:

1. Necessary — The requirement must be essential to meet stakeholder needs ...

Fig. 6. Resumen de la primera interaccion con el modelo.
Luego de esta interaccion inicial, se procede a evaluar el requerimiento. El prompt

esta compuesto por: la tarea a realizar, el texto del requerimiento y, por ultimo, define
el formato deseado para la respuesta (Figura 7).
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Con la salida obtenida en la tltima interaccion se puede tomar la decisién sugerida en
el marco, acerca de si el requerimiento tiene la calidad esperada o no. En este caso, la
decision es tomada por el analista, aunque el marco deja abierta esta decision que
podria ser tomada de forma automatica implementando un agente.

User Prompt

Verify that the requirement meets these characteristics.
Requirement: “The system must allow the inventory manager to generate a list of missing
products.”
Your answer should be only a table with the columns [Feature Name, Feature Detail, Ful-
filled i ies/no i
Feature Name Feature Detail Fulfilled (yes/no)
Necessary Essential for inventory management Yes
Appropriate At the correct level for system requirements Yes
Unambiguous Clearly defines the function No
Complete Contains all necessary information No
Singular Addresses only one function Yes
Feasible Achievable with existing technology Yes
Verifiable Testable via inspection or system validation No
Correct Accurately describes the needed function Yes
Conforming  Follows standard requirement guidelines No

Fig. 7. Salida del modelo evaluador para el primer requerimiento.

Del analisis del ejemplo de la Figura 7 se concluye que el requerimiento no tiene la
calidad esperada debido a que, segin la respuesta del modelo, tres caracteristicas
deseadas en la propuesta de INCOSE no se cumplen. Estas caracteristicas son “No
ambiguo”, “Completo” y “Verificable”. La caracteristica “Conforme” se desestima en
todas las evaluaciones, ya que estas pruebas no incluyen informacion acerca de los
estandares de la organizacion para la escritura de requerimientos.

Modelo Generador de Preguntas (b). La segunda interacciéon con un modelo tiene
como fin obtener preguntas cuyas respuestas mejoren la expresion en las caracteristi-
cas no cumplidas, seglin la interaccion anterior. Para este propdsito se confecciona un
prompt que describe la tarea a realizar y el formato de la salida esperada (Figura 8).

User Prompt
Define questions whose answers help to comply with the missing characteristics: "unam-
biguous, complete and verifiable".

Your answer should only be a table with the columns [Feature Name (unambiguous, com-
plete, or verifiable), suggested
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Feature Name Suggested Questions
. What format should the generated list follow (e.g., PDF, CSV, on-screen
Unambiguous .
display)?...
Complete Should the system allow filtering or sorting the missing product list? ...
Verifiable What criteria will be used to confirm the list is correctly generated?

Fig. 8. Salida resumida del modelo generador de preguntas para el primer requerimiento.

Modelo Generador de Requerimientos (¢). A partir de las preguntas generadas en la
ultima interaccion, se selecciona un conjunto que cubra todos los aspectos a mejorar y
se generan respuestas sintéticas con el fin de culminar la aplicacion del marco. Se
confecciona un prompt como entrada al Gltimo modelo, que describe la tarea a reali-
zar ¢ incluye el texto original del requerimiento, las preguntas y respuestas para mejo-
rarlo y los formatos propuestos para la redaccion de requerimientos (Figura 9).

En la Figura 9, se observa que el modelo propone un requerimiento mejorado. Esta
expresion incluye detalles extraidos por el modelo de las respuestas provistas.

Improve the requirement using the answers to questions. The improved requirement
must be expressed according to the Proposed Format.

Requirement: “The system must allow the inventory manager to generate a list of miss-
ing products.”

Questions and answers:

Q1-What format should the generated list follow (e.g., PDF, CSV, on-screen display)?

A1-The list should be available in PDF and CSV formats, as well as an on-screen dis-
play for quick review.

Q2-...

Proposed formats:

F1- The <entity> shall <action verb> <object> <measurable outcome>.

F2- When <condition clause>, the <subject clause> shall <action verb clause> <object

clause> <iualiﬁini clause>.

Improved Requirement (Format F2):

When the inventory manager or authorized personnel request a missing products list, the
system shall generate a report that includes out-of-stock items and products below a prede-
fined threshold, providing details such as product name, current quantity, supplier, and
recommended reorder date. The list shall be available in PDF and CSV formats, as well as
an on-screen display, and shall support filtering by category, supplier, and stock status,

with sorting by priority.
Fig. 9. Salida resumida del modelo generador de preguntas para el primer requerimiento.

4.5 Evaluacion

Para evaluar las expresiones obtenidas con el marco y facilitar la comparacion con
las obtenidas seglin la propuesta de la seccion 4.3, se utilizé el mismo prompt que
representa el modelo evaluador (a) descripto en la Figura 6. Por cada requerimiento se
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evalud la expresion original (RO), la generada con un prompt genérico (RG) y la ge-
nerada con la implementacion del marco (RM) (Tabla 3).

Tabla 3. Resultados de la evaluacion sobre el requerimiento original (RO), el generado con el
prompt genérico (RG) y el generado con la implementacion del marco (RM).

# Requerimiento 1 Requerimiento 2 Requerimiento 3
Caracteristica RO RG RM RO RG RM RO RG RM
Necesario Si Si Si Si Si Si Si Si Si Si
Apropiado Si Si Si No Si Si  Si Si Si Si
No ambiguo No No Si No Si Si Si | No No Si
Completo No No Si No Si Si Si [ No No Si
Singular Si No No No No Si Si Si No Si
Factible Si Si Si Si Si Si Si Si Si Si
Verificable No Si Si No Si Si  Si Si | No Si
Correcto Si Si Si No Si Si  Si Si Si Si
% Caract.

Cumplidas 625 625 875 25 875 100 100 75 50 100

Para interpretar la Tabla 3, se aclara que para el Requerimiento 2 existe una columna
extra en la expresion obtenida con el marco propuesto. Esto se debe a que la propues-
ta detecto la no singularidad y generé dos expresiones para solucionarla.
La “calidad” de las expresiones se evalua a partir de la puntuacién devuelta por el
modelo, utilizando una métrica que refleja el porcentaje de caracteristicas cumplidas
por cada una. Esta medida, presentada en la ultima fila de la tabla, muestra que el
marco propuesto alcanza los mejores resultados, logrando un 100 % en tres casos

(Figura 10).

R. Original MWR. Genérico MR. Marco

62,509
62,50%

REQUERIMIENTO 1

25,00%

100,00%

REQUERIMIENTO 2

5,00%

75

50,00%

100,00%

REQUERIMIENTO 3

Fig. 10. Comparacion, segtin la métrica propuesta, de la calidad de los distintos requerimientos.
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5 Conclusiones y Trabajos Futuros

El framework propuesto tiene un gran potencial, sin embargo, es esencial recono-
cer que solo se presenta una prueba conceptual. La implementacion utilizada en este
trabajo es sencilla y hace uso de solo tres modelos representados por interacciones
con ChatGPT. Sin embargo, estas pruebas preliminares sirven para recoger los prime-
ros resultados y conclusiones, asi como también guiar futuros trabajos.

La estrategia de dividir el problema en tareas simples y pequefios incrementos a la
solucién, aporta a los modelos el conocimiento y el contexto que se va acumulando
luego de cada interaccion. Esto no es menor, ya que ese contexto generado en los
pasos previos suma informacion a la entrada de la interacciéon que permite una res-
puesta mas precisa y completa. Esto puede observarse, por ejemplo, en el Requeri-
miento 2, donde primero se detecta la no singularidad, luego se genera una pregunta
acerca de la posibilidad de dividir la expresion y, por ultimo, ante una respuesta afir-
mativa a esta pregunta, el modelo genera dos expresiones.

Igualmente, es de destacar como esta implementacion simplificada del marco pudo
mejorar las expresiones hasta lograr un 96.78% en la métrica propuesta, promediando
las medidas logradas para las cuatro expresiones generadas.

Ademas, se puede observar que las expresiones generadas por una consulta genérica
no mejoran en todos los casos la expresion original, empeorandola a veces como en el
requerimiento 3. Estas expresiones logran un puntaje de 66.6% con la métrica pro-
puesta y promediando los puntajes. Puede observarse, por ejemplo, que la consulta
genérica no soluciona la no singularidad e inclusive, a veces, la causa.

Por ultimo, se destaca como el ultimo modelo generador de expresiones de requeri-
mientos puede crearlas siguiendo patrones que son anexados al prompt de generacion.
Son varios los posibles trabajos futuros que se desprenden de la propuesta, como ser
la implementacion de un prototipo de software funcional que implemente un agente
para automatizar el proceso y asi permitir su aplicacion con datos reales de proyectos
de desarrollo de software. Esto permitiria evaluar la propuesta a mayor escala y con
distintas implementaciones del marco.

La variedad de modelos y artefactos posibles exige una mejor y mas completa defini-
cion de la propuesta, y una evaluacion sobre qué interfaces y repositorios se pueden
utilizar para conectar los modelos, ademas de como implementar la vectorizacion de
texto en la base de datos -en el caso de utilizar RAG- o como entrenar modelos y
preparar los conjuntos de datos son algunos de los desafios.
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