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Abstract. Requirements expressed in natural language are an essential artifact 

in the software development process, as all stakeholders can understand them. 

However, their inherent ambiguity remains a persistent challenge. To address 

this issue, organizations such as the Institute of Electrical and Electronics Engi-

neers (IEEE) and the International Council on Systems Engineering (INCOSE) 

publish guidelines with rules that support the task of writing clearer require-

ments. Additionally, agile methodologies propose patterns and structures for 

formulating stakeholder needs in natural language, aiming to reduce ambiguity. 

Nevertheless, differences in stakeholders’ understanding of the requirements 

and how to express them correctly make the specification task even more diffi-

cult. Recently, large language models (LLMs) have emerged to enhance natural 

language processing tasks. These are deep learning architectures that emulate 

attention mechanisms similar to those used by humans. This work aims to as-

sess the potential of LLMs in this domain. The goal is to use these models to 

improve the quality of software requirements, assisting analysts in the tasks of 

analysis and specification. The proposed framework, its architecture, key com-

ponents, and their interactions are described. A conceptual test is also conduct-

ed to evaluate the framework's usefulness. Finally, the paper discusses the 

framework’s potential and limitations, as well as future directions for its valida-

tion and refinement. 

Keywords: Requirements Engineering, Requirements Quality, Large Language 

Models. 
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Resumen. Los requerimientos expresados en lenguaje natural son un artefacto 

indispensable en el proceso de desarrollo de software, ya que pueden ser com-

prendidos por todas las partes interesadas. Sin embargo, su ambigüedad repre-

senta un desafío persistente. Para abordar esta problemática, organizaciones 

como el Institute of Electrical and Electronics Engineers (IEEE) y el Internatio-

nal Council on Systems Engineering (INCOSE) publican guías para escribir re-

querimientos con reglas que aportan a la tarea. Por otro lado, las metodologías 

ágiles proponen patrones y estructuras para redactar en lenguaje natural las ne-

cesidades de las partes interesadas, tratando de evitar la ambigüedad. Sin em-

bargo, la diferencia de conocimiento entre estas partes respecto a los requeri-

mientos y su correcta formulación dificulta la tarea de especificación. Recien-

temente, los grandes modelos lingüísticos (LLM, por sus siglas en inglés) han 

emergido para mejorar las tareas de procesamiento de lenguaje natural, estos 

son arquitecturas basadas en modelos profundos que emulan mecanismos de 

atención similares a los humanos. Este trabajo tiene como objetivo evaluar el 

potencial de los LLM en este dominio. El propósito es utilizar estos modelos 

para mejorar la calidad de los requerimientos de software, ayudando a los ana-

listas en las tareas de análisis y especificación de requerimientos. Se detallan el 

marco propuesto, la arquitectura, los componentes clave y las interacciones en-

tre ellos. Además, se desarrolla una prueba conceptual de la propuesta para eva-

luar su utilidad. Por último, se discuten el potencial y las limitaciones del marco 

de trabajo, así como las direcciones futuras para continuar su validación y refi-

namiento. 

Palabras clave: Ingeniería de Requerimientos, Calidad de Requerimientos, 

Grandes Modelos Lingüísticos. 

1 Introducción 

El Proceso de Ingeniería de Requerimientos (IR) es esencial en el desarrollo de 

software. El objetivo de este proceso es garantizar que se incorporan todas las necesi-

dades, limitaciones y exigencias de calidad del cliente, y que el software a producir 

las satisface. Los requerimientos generados en esta fase proceden de varios tipos de 

fuentes: distintos documentos del dominio, stakeholders y sistemas heredados, si exis-
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ten (Wiegers et al., 2013). Dos de estas fuentes, los documentos y los stakeholders, 

tienen como característica principal el uso del lenguaje natural. Por un lado, los do-

cumentos están escritos en lenguaje natural y por otro, el lenguaje natural facilita la 

comunicación y validación de los requerimientos con todas las partes interesadas. 

El lenguaje natural tiene características no deseadas, tales como la ambigüedad, que 

dificultan la redacción del documento resultante del proceso de IR, llamado Especifi-

cación de Requerimientos de Software (ERS). Esta especificación contiene todas las 

necesidades, restricciones y demandas de calidad obtenidas de las partes interesadas y 

extraídas de los documentos y sistemas heredados. Un uso incorrecto del lenguaje 

natural en el proceso y en la creación de este documento, puede dar lugar a malenten-

didos u omisiones que dificulten el desarrollo del software en etapas posteriores. 

INCOSE publica y mantiene una guía para escribir requerimientos (GtWR Homepa-

ge, 2025) que recomienda un conjunto de características y reglas para ayudar a los 

analistas en el proceso de especificación de requerimientos. En esta guía, se enumera 

un conjunto de características no deseadas, y la ambigüedad es la más común de ellas. 

La ambigüedad existe con frecuencia en las expresiones del lenguaje natural en varios 

sentidos, y es necesario eliminarla de las expresiones de requerimientos, porque éstas 

necesitan tener un significado único. 

En los últimos tiempos, con el crecimiento de la inteligencia artificial, se han propues-

to nuevos modelos profundos que han demostrado un gran rendimiento en el proce-

samiento del lenguaje natural. Estos modelos, llamados LLM, se basan en un modelo 

base propuesto en el trabajo Attention is all that you need (Vaswani et al., 2017), lla-

mado Transformer. A partir del Transformer han surgido varios modelos con varian-

tes de su arquitectura, algunos de los cuales han demostrado mejoras significativas en 

tareas de lenguaje natural, tales como la generación de resúmenes (Liu et al., 2024), 

traducciones (Volk et al., 2024) y respuestas a preguntas (Robinson et al., 2022), entre 

otras. 

Este artículo pretende incorporar el uso de LLMs para ayudar al analista en tareas de 

especificación de requerimientos, basándose en las grandes cualidades de estos mode-

los para mejorar el procesamiento de lenguaje natural. Se propone un marco de traba-

jo para interactuar con los modelos en varias tareas dentro de un proceso que pretende 

mejorar la calidad de los requerimientos de software especificados. 

El resto de este trabajo se organiza como sigue: la Sección 2 presenta los fundamen-

tos, la Sección 3 describe el marco propuesto, la Sección 4 desarrolla una prueba con-

ceptual de la propuesta y evalúa los resultados, y la Sección 5 discute los resultados, 

expone las conclusiones y propone los trabajos futuros. 

2 Marco Teórico y Trabajos Relacionados 

En tiempos recientes, con la llegada de los LLMs, distintos estudios han investigado y 

propuesto el uso de estos modelos profundos como herramienta en el proceso de IR. 

Entre ellos, Porter et al. (2025) revisan la evolución de las herramientas automáticas 

para evaluar la calidad. Destacan el potencial de la inteligencia artificial, especialmen-

te los transformers, para realizar análisis más contextuales y precisos, y presentan la 

herramienta en desarrollo ARQM que integra estas tecnologías para mejorar la cali-

dad de los requerimientos según el estándar IEEE 29148. También Reinpold et al. 
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(2024) investigan el uso de LLMs para verificar si las especificaciones técnicas cum-

plen con los requerimientos. Realizando pruebas con un conjunto de datos acotado y 

modelos avanzados como GPT-4o y Claude 3.5 Sonnet, obtuvieron puntuaciones F1 

de entre el 79 % y el 94 % en la identificación de requerimientos no cumplidos. En 

otra línea Norheim et al. (2024) realizan una revisión y analizan críticamente el éxito 

y las dificultades de aplicar LLMs en distintas tareas del proceso de IR, resaltando y 

concluyendo la falta de una forma de evaluar el aporte real de estas herramientas a las 

tareas del proceso. 

En particular, este artículo presenta un marco de trabajo, basado en el uso de 

LLMs, para mejorar la calidad de las expresiones de requerimientos de software. 

2.1 Proceso de IR 

La IR es una rama de la Ingeniería del Software (IS) que se ocupa de la gestión de 

los servicios y restricciones de los sistemas de software (Nuseibeh et al., 2000). El 

proceso de IR puede dividirse en cuatro actividades principales: estudio de factibili-

dad, obtención y análisis, especificación y validación de requerimientos, según Som-

merville (Sommerville, 2016). Estas actividades no se ordenan secuencialmente, sino 

que pueden realizarse de forma iterativa a lo largo del proceso y a medida que cam-

bian los requerimientos o se descubren nuevos. El marco propuesto en este trabajo 

pretende asistir a los analistas principalmente en las actividades de obtención, análisis 

y especificación de requerimientos. 

2.2 Grandes Modelos Lingüísticos 

A partir del trabajo Attention is all that you need (Vaswani et al., 2017), se propuso 

el Transformer, un modelo de aprendizaje profundo con una arquitectura dividida en 

dos estructuras, el codificador y el decodificador, basado en el mecanismo de atención 

multicabeza. Mientras que los modelos recurrentes procesan el texto secuencialmente, 

el Transformer utiliza un mecanismo de atención que le permite considerar todas las 

palabras de una frase simultáneamente. Este mecanismo permite a los modelos lin-

güísticos destacar las partes más relevantes de un texto de entrada para comprender 

mejor su significado y contexto. Así, el modelo puede captar las relaciones de largo 

alcance entre las palabras, lo que se traduce en un mejor rendimiento en diversas ta-

reas de lenguaje natural. 

Desde el Transformer, se siguieron desarrollando modelos basados en su estructura, 

tales como BERT (Bidirectional Encoder Representations from Transformers) (De-

vlin et al., 2018), GPT (Generative Pretraining Transformer) (Brown et al., 2020) y 

T5 (Text-to-Text Transfer Transformer) (Raffel et al., 2019), que se entrenaron con 

conjuntos de datos aún mayores, compuestos por texto y código. Estos modelos des-

tacan por su capacidad para generar texto de alta calidad y realizar diversas tareas de 

procesamiento de lenguaje natural (PLN). Posteriormente, el uso de LLM se extiende 

aún más con la aparición de ChatGPT (ChatGPT Homepage, 2025) en 2022, una apli-

cación de la empresa OpenAI que permite utilizar IA generativa a través de una inter-

faz de chat basada en el modelo GPT para generar respuestas. 
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2.3 Prompt Engineering 

La interacción con LLM generativos propone un nuevo paradigma en el que se 

puede interactuar con un modelo con expresiones en lenguaje natural. En estos mode-

los de lenguaje, la entrada del usuario se denomina prompt, que es una instrucción o 

conjunto de palabras diseñadas para iniciar y guiar la respuesta del modelo. Es impor-

tante la forma en que se genera esta expresión, ya que el modelo generará la salida a 

partir de la misma. Las buenas prácticas recomiendan elementos que un prompt puede 

contener en busca de lograr la respuesta esperada (Tabla 1). 

Tabla 1. Elementos recomendados en un prompt. (Prompt Engineering Guide, 2024). 

Elemento Descripción 

Instrucción Tarea específica que se desea 

Contexto 
Información adicional que puede orientar al modelo y completar la 

respuesta. 

Entrada La entrada sobre la que se desea la acción. 

Salida Formato que se desea para la respuesta del modelo. 

 

Los cuatro elementos en un prompt no son obligatorios. Incluirlos o no, depende de la 

necesidad expresada. Además, en la entrada que se le proporciona al modelo se pue-

den incluir ejemplos de la tarea que esperamos del mismo. Según la cantidad de 

ejemplos, se distinguen tres enfoques: zero-shot (sin ejemplos), one-shot (un solo 

ejemplo) y few-shots (varios ejemplos), siendo este último el más potente por su ca-

pacidad de generalización. 

2.4 Generación Aumentada por Recuperación (RAG) 

La arquitectura RAG (Figura 1) permite superar las limitaciones de conocimiento 

estático de los LLM, mejorando sus respuestas mediante la recuperación de informa-

ción actualizada y contextual desde fuentes externas durante la generación. 

 
Fig. 1. Proceso de RAG. 

El proceso de RAG se inicia con el envío de un prompt por parte del usuario. Este 

es transformado en una representación vectorial y procesado por el recuperador, que 

consulta una base de datos externa, también vectorizada, con el fin de identificar los 
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fragmentos de información más relevantes. Esta base de datos almacena representa-

ciones numéricas de textos que capturan su significado semántico, lo que permite 

recuperar información en función del contenido y no solo de coincidencias literales. 

Los textos recuperados se combinan posteriormente con el prompt original. Esta en-

trada enriquecida es procesada por un LLM que genera una respuesta contextualizada 

en función del contenido recuperado (Klesel y Wittmann, 2025). 

3 Marco de trabajo propuesto 

Esta propuesta se basa en interacciones entre requerimientos, fuentes de informa-

ción y modelos con el objetivo de mejorar la calidad de los requerimientos. A conti-

nuación, se describe la arquitectura (Figura 2) y los distintos componentes que pueden 

implementarse dependiendo del dominio, alcance y tipo de problema a resolver.  

3.1 Arquitectura 

La arquitectura propuesta da soporte al proceso que tiene como objetivo mejorar la 

calidad de los requerimientos. Este proceso comienza con un primer modelo (Modelo 

evaluador) que evalúa la expresión de requerimiento. Esta evaluación puede imple-

mentarse con distintos tipos de LLM o ensambles, dependiendo de qué tan amplias se 

pretendan la evaluación y la salida. Puede utilizarse desde un simple codificador co-

mo parte de un clasificador binario, hasta un modelo generativo que devuelva una 

salida detallada describiendo la calidad del requerimiento. Es importante definir y 

documentar los criterios y modelo o modelos que se utilizarán en esta primera etapa, a 

fin de sustentar la decisión posterior de mejorar o no la expresión. 

 
Fig. 2. Arquitectura de la propuesta. 

El segundo modelo se ejecuta si, a partir de la salida del primero, se concluye que la 

calidad de la expresión del requerimiento no es suficiente. Para este caso, el segundo 

modelo (Modelo Generador de Preguntas) analiza la expresión del requerimiento y la 
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salida obtenida en la primera tarea, con el fin de obtener preguntas que mejoren su 

calidad. 

Las preguntas generadas en la segunda tarea tienen como objetivo obtener respuestas 

que con su contenido aporten a mejorar la expresión del requerimiento, ya sea com-

pletando información o despejando dudas que disminuyan la ambigüedad de la expre-

sión. Dependiendo del dominio, estas preguntas pueden utilizarse con dos tipos de 

fuentes. Por un lado, puede consultarse directamente a stakeholders y, por otro, pue-

den utilizarse con el tercer modelo propuesto y una fuente documental, si se dispone 

de ésta. 

El tercer modelo es (RAG) toma como entradas un conjunto de preguntas sobre una 

expresión de requerimiento y busca en una base de datos vectorizada, con informa-

ción de contexto, las posibles respuestas a estas preguntas. La utilización de este mo-

delo depende de la existencia de documentación. 

Un cuarto modelo (Modelo Generador de Requerimientos) recibe como entradas: el 

requerimiento original, un conjunto de preguntas y respuestas, fragmentos de contexto 

y patrones para redacción de requerimientos -si se dispone de éstos- para generar un 

nuevo requerimiento mejorado. 

Finalmente, esta nueva expresión generada vuelve a ser evaluada por el primer mode-

lo, a fin de verificar que cumple con la calidad esperada. De no ser así puede comen-

zarse una nueva iteración del proceso descripto. 

3.2 Componentes 

El funcionamiento del marco propuesto depende de tres componentes fundamenta-

les: los modelos, las interfaces y, opcionalmente, un agente orquestador. Dado que se 

trata de un marco adaptable a diferentes contextos de aplicación, los modelos pueden 

ser de distintos tipos y estar implementados en diversas formas. Estos incluyen mode-

los generativos, clasificadores o ensambles orquestados, entre otros. Para automatizar 

las interacciones entre ellos, se requieren interfaces accesibles, que pueden variar 

desde simples archivos de texto hasta bases de datos documentales. Finalmente, si se 

busca una ejecución automática, un agente debe encargarse de interpretar interfaces, 

tomar decisiones y coordinar la ejecución. Aunque su uso no es obligatorio, su diseño 

resulta clave en implementaciones totalmente automatizadas. 

3.3 Ejemplos de Implementación 

A continuación, se muestran dos posibles ejemplos de implementación del marco 

con distintas adaptaciones de la arquitectura propuesta.  

Ejemplo A (Figura 3). En esta implementación se utilizan tres modelos generativos. 

(a) es modelo preentrenado, ajustado, que evalúa la expresión, (b) es un modelo pren-

trenado, ajustado, que genera preguntas para mejorar la expresión y (c) es un modelo 

preentrenado y utilizado con una técnica de few-shot prompting que genera los reque-

rimientos de acuerdo con una plantilla. En esta implementación no se utiliza un agen-

te y es el usuario el que cumple este rol, primero decide si el requerimiento tiene la 

calidad deseada de acuerdo con la salida del modelo (a), y luego necesita recolectar de 

los stakeholders las respuestas a las preguntas generadas por el modelo (b), para fi-

nalmente darles el formato adecuado para que sean utilizadas en la última etapa. 
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Ejemplo B (Figura 4). Esta propuesta de implementación utiliza primero un clasifi-

cador (a) que evalúa desde distintas perspectivas la expresión para evaluar si ésta 

tiene la calidad deseada. Si no es así, un modelo generativo preentrenado y ajustado 

(b) genera las preguntas para mejorar la expresión, luego una arquitectura RAG pro-

vee las respuestas a las preguntas utilizando documentos de estándares y transcripcio-

nes de entrevistas y reuniones. Finalmente, un modelo generativo preentrenado utili-

zado con una técnica de few-shot prompting genera los requerimientos de acuerdo 

con una plantilla. En este caso, el proceso es totalmente automático por lo que se ne-

cesita un agente que orqueste el funcionamiento de la implementación. 

 

 
Fig. 3. Implementación del ejemplo A. 

 

 
Fig. 4. Implementación del ejemplo B. 
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4 Prueba conceptual 

4.1 Modelo utilizado 

Es conocida la utilización de distintos asistentes, tales como Gemini (Gemini Ho-

mepage, 2025), Copilot (Copilot Homepage, 2025) o ChatGPT (ChatGPT Homepage, 

2025), basados en LLM para dar soporte en infinidad de tareas, y no escapan a esta 

tendencia las actividades desarrolladas en el proceso de IR. Es por este motivo que las 

pruebas iniciales de esta propuesta se desarrollan utilizando un asistente bien conoci-

do, ChatGPT versión 4o mini, aplicando técnicas de Prompt Engineering. Cabe acla-

rar que los resultados de las pruebas no son reproducibles con exactitud, debido a la 

naturaleza no determinística de las salidas que ofrecen estos modelos, aunque se repi-

tieron algunas de las mismas obteniéndose resultados muy similares. Por último, el 

idioma elegido para el desarrollo de las pruebas es el inglés. 

4.2 Metodología 

Se utilizan tres requerimientos (Tabla 2) que fueron escritos para estas pruebas con 

el objetivo de representar características funcionales y no funcionales de forma com-

prensible. Primero, se consulta a ChatGPT con una consigna genérica para que sugie-

ra mejoras a cada requerimiento por separado. Luego, se aplica una versión simplifi-

cada del marco propuesto con el mismo fin. Finalmente, se comparan los resultados 

para realizar una primera evaluación de la propuesta y planificar pruebas a mayor 

escala. 

Tabla 2. Expresiones de Requerimientos utilizadas en las pruebas iniciales. 

# Expresión 

R1 The system must allow the inventory manager to generate a list of missing products. 

R2 The system will have a user-friendly interface and support all common browsers. 

R3 A customer can cancel an order if he has not yet received it. 

4.3 Evaluación genérica de las expresiones 

Las tres expresiones de requerimientos fueron utilizadas para realizar una consulta 

genérica a un modelo que tiene como objetivo mejorar la calidad del requerimiento. 

Además, el prompt utilizado pretende obtener en la respuesta del modelo recomenda-

ciones para mejorar la expresión y una nueva expresión mejorada. 

Para la redacción de la consulta se siguieron las técnicas recomendadas de prompt 

engineering en busca de una mejor respuesta. Como se puede observar en la Figura 5, 

inicialmente la expresión llama a la acción de mejorar el requerimiento de software y 

referencia la expresión a ser examinada. 

 

User Prompt 

Indicate how the following software requirement can be improved. 

Software Requirement: "The system must allow the inventory manager to generate a list of 

missing products." 
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Model 

The given software requirement can be improved … 

Issues in the Original Requirement: 

1. Ambiguity in "missing products" – Does this mean out-of-stock items… 

Improved Requirement: 

"The system must enable the inventory manager to generate a report listing products that 

are out of stock or below the predefined threshold. The report should be available in CSV 

and PDF formats and accessible via the inventory management dashboard. The inventory 

manager must be able to generate this report on demand and receive an automatic daily 

summary via email."… 

Fig. 5. Resumen de la consulta genérica sobre el primer requerimiento. 

 

Esta expresión mejorada propuesta por el modelo es luego evaluada contra la obtenida 

con la implementación simplificada del marco propuesto. 

4.4 Evaluación de las expresiones con el marco propuesto 

En esta sección se desarrolla una Prueba Conceptual para evaluar la factibilidad del 

enfoque. Para simplificar el ejemplo se utiliza ChatGPT como único modelo en las 

distintas etapas. Esta implementación del marco requiere tres modelos, a) evaluador 

de la expresión, b) generador de preguntas y c) generador de una nueva expresión 

mejorada. La decisión sobre la calidad del requerimiento la toma el analista y las res-

puestas a las preguntas que alimentan el último modelo fueron generadas para estas 

pruebas. No se utiliza un agente, ya que el analista asume ese rol coordinando los 

componentes. 

Modelo Evaluador (a). La propuesta requiere definir previamente cómo se evaluarán 

los requerimientos, lo que permite identificar con claridad los problemas en las expre-

siones. Dado que las pruebas se realizan con un modelo generativo, la primera inter-

acción establece y verifica que el modelo comprenda el contexto, en este caso, la guía 

de INCOSE (Figura 6). 

 

User Prompt 

Do you know the characteristics of well-formed requirements: "Necessary, Appropriate, 

Unambiguous, Complete, Singular, Feasible, Verifiable, Correct and Conforming" pub-

lished in “INCOSE Guide for writing requirements “? 

Model 

Yes! The INCOSE (International Council on Systems Engineering) Guide for Writing 

Requirements defines well-formed requirements using the following characteristics: 

1. Necessary – The requirement must be essential to meet stakeholder needs … 

Fig. 6. Resumen de la primera interacción con el modelo. 

 

Luego de esta interacción inicial, se procede a evaluar el requerimiento. El prompt 

está compuesto por: la tarea a realizar, el texto del requerimiento y, por último, define 

el formato deseado para la respuesta (Figura 7). 
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Con la salida obtenida en la última interacción se puede tomar la decisión sugerida en 

el marco, acerca de si el requerimiento tiene la calidad esperada o no. En este caso, la 

decisión es tomada por el analista, aunque el marco deja abierta esta decisión que 

podría ser tomada de forma automática implementando un agente. 

 

User Prompt 

Verify that the requirement meets these characteristics.  

Requirement: “The system must allow the inventory manager to generate a list of missing 

products.”  

Your answer should be only a table with the columns [Feature Name, Feature Detail, Ful-

filled (yes/no)] 

Model 

Feature Name Feature Detail Fulfilled (yes/no) 

Necessary Essential for inventory management Yes 

Appropriate At the correct level for system requirements Yes 

Unambiguous Clearly defines the function No 

Complete Contains all necessary information No 

Singular Addresses only one function Yes 

Feasible Achievable with existing technology Yes 

Verifiable Testable via inspection or system validation No 

Correct Accurately describes the needed function Yes 

Conforming Follows standard requirement guidelines No 
 

Fig. 7. Salida del modelo evaluador para el primer requerimiento. 

 

Del análisis del ejemplo de la Figura 7 se concluye que el requerimiento no tiene la 

calidad esperada debido a que, según la respuesta del modelo, tres características 

deseadas en la propuesta de INCOSE no se cumplen. Estas características son “No 

ambiguo”, “Completo” y “Verificable”. La característica “Conforme” se desestima en 

todas las evaluaciones, ya que estas pruebas no incluyen información acerca de los 

estándares de la organización para la escritura de requerimientos.  

 

Modelo Generador de Preguntas (b). La segunda interacción con un modelo tiene 

como fin obtener preguntas cuyas respuestas mejoren la expresión en las característi-

cas no cumplidas, según la interacción anterior. Para este propósito se confecciona un 

prompt que describe la tarea a realizar y el formato de la salida esperada (Figura 8). 

 

User Prompt 

Define questions whose answers help to comply with the missing characteristics: "unam-

biguous, complete and verifiable".  

Your answer should only be a table with the columns [Feature Name (unambiguous, com-

plete, or verifiable), suggested questions] 

Model 
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Feature Name Suggested Questions 

Unambiguous 
What format should the generated list follow (e.g., PDF, CSV, on-screen 

display)?... 

Complete Should the system allow filtering or sorting the missing product list? … 

Verifiable What criteria will be used to confirm the list is correctly generated? 
 

Fig. 8. Salida resumida del modelo generador de preguntas para el primer requerimiento. 

 

Modelo Generador de Requerimientos (c). A partir de las preguntas generadas en la 

última interacción, se selecciona un conjunto que cubra todos los aspectos a mejorar y 

se generan respuestas sintéticas con el fin de culminar la aplicación del marco. Se 

confecciona un prompt como entrada al último modelo, que describe la tarea a reali-

zar e incluye el texto original del requerimiento, las preguntas y respuestas para mejo-

rarlo y los formatos propuestos para la redacción de requerimientos (Figura 9). 

En la Figura 9, se observa que el modelo propone un requerimiento mejorado. Esta 

expresión incluye detalles extraídos por el modelo de las respuestas provistas. 

 

User Prompt 

Improve the requirement using the answers to questions. The improved requirement 

must be expressed according to the Proposed Format. 

Requirement: “The system must allow the inventory manager to generate a list of miss-

ing products.” 

Questions and answers: 

Q1-What format should the generated list follow (e.g., PDF, CSV, on-screen display)? 

A1-The list should be available in PDF and CSV formats, as well as an on-screen dis-

play for quick review. 

Q2-… 

Proposed formats:  

F1- The <entity> shall <action verb> <object> <measurable outcome>. 

F2- When <condition clause>, the <subject clause> shall <action verb clause> <object 

clause> <qualifying clause>. 

Model 

Improved Requirement (Format F2):  

When the inventory manager or authorized personnel request a missing products list, the 

system shall generate a report that includes out-of-stock items and products below a prede-

fined threshold, providing details such as product name, current quantity, supplier, and 

recommended reorder date. The list shall be available in PDF and CSV formats, as well as 

an on-screen display, and shall support filtering by category, supplier, and stock status, 

with sorting by priority. 

Fig. 9. Salida resumida del modelo generador de preguntas para el primer requerimiento. 

4.5 Evaluación  

Para evaluar las expresiones obtenidas con el marco y facilitar la comparación con 

las obtenidas según la propuesta de la sección 4.3, se utilizó el mismo prompt que 

representa el modelo evaluador (a) descripto en la Figura 6. Por cada requerimiento se 
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evaluó la expresión original (RO), la generada con un prompt genérico (RG) y la ge-

nerada con la implementación del marco (RM) (Tabla 3). 

Tabla 3. Resultados de la evaluación sobre el requerimiento original (RO), el generado con el 

prompt genérico (RG) y el generado con la implementación del marco (RM). 

# Requerimiento 1 Requerimiento 2 Requerimiento 3 

Característica RO RG RM RO RG RM RO RG RM 

Necesario Si Si Si Si Si Si Si Si Si Si 

Apropiado Si Si Si No Si Si Si Si Si Si 

No ambiguo No No Si No Si Si Si No No Si 

Completo No No Si No Si Si Si No No Si 

Singular Si No No No No Si Si Si No Si 

Factible Si Si Si Si Si Si Si Si Si Si 

Verificable No Si Si No Si Si Si Si No Si 

Correcto Si Si Si No Si Si Si Si Si Si 

% Caract. 

Cumplidas 62.5 62.5 87.5 25 87.5 100 100 75 50 100 

 

Para interpretar la Tabla 3, se aclara que para el Requerimiento 2 existe una columna 

extra en la expresión obtenida con el marco propuesto. Esto se debe a que la propues-

ta detectó la no singularidad y generó dos expresiones para solucionarla. 

La “calidad” de las expresiones se evalúa a partir de la puntuación devuelta por el 

modelo, utilizando una métrica que refleja el porcentaje de características cumplidas 

por cada una. Esta medida, presentada en la última fila de la tabla, muestra que el 

marco propuesto alcanza los mejores resultados, logrando un 100 % en tres casos 

(Figura 10). 

 

 
Fig. 10. Comparación, según la métrica propuesta, de la calidad de los distintos requerimientos. 
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5 Conclusiones y Trabajos Futuros 

El framework propuesto tiene un gran potencial, sin embargo, es esencial recono-

cer que sólo se presenta una prueba conceptual. La implementación utilizada en este 

trabajo es sencilla y hace uso de sólo tres modelos representados por interacciones 

con ChatGPT. Sin embargo, estas pruebas preliminares sirven para recoger los prime-

ros resultados y conclusiones, así como también guiar futuros trabajos. 

La estrategia de dividir el problema en tareas simples y pequeños incrementos a la 

solución, aporta a los modelos el conocimiento y el contexto que se va acumulando 

luego de cada interacción. Esto no es menor, ya que ese contexto generado en los 

pasos previos suma información a la entrada de la interacción que permite una res-

puesta más precisa y completa. Esto puede observarse, por ejemplo, en el Requeri-

miento 2, donde primero se detecta la no singularidad, luego se genera una pregunta 

acerca de la posibilidad de dividir la expresión y, por último, ante una respuesta afir-

mativa a esta pregunta, el modelo genera dos expresiones. 

Igualmente, es de destacar cómo esta implementación simplificada del marco pudo 

mejorar las expresiones hasta lograr un 96.78% en la métrica propuesta, promediando 

las medidas logradas para las cuatro expresiones generadas.  

Además, se puede observar que las expresiones generadas por una consulta genérica 

no mejoran en todos los casos la expresión original, empeorándola a veces como en el 

requerimiento 3. Estas expresiones logran un puntaje de 66.6% con la métrica pro-

puesta y promediando los puntajes. Puede observarse, por ejemplo, que la consulta 

genérica no soluciona la no singularidad e inclusive, a veces, la causa. 

Por último, se destaca cómo el último modelo generador de expresiones de requeri-

mientos puede crearlas siguiendo patrones que son anexados al prompt de generación.  

Son varios los posibles trabajos futuros que se desprenden de la propuesta, como ser 

la implementación de un prototipo de software funcional que implemente un agente 

para automatizar el proceso y así permitir su aplicación con datos reales de proyectos 

de desarrollo de software. Esto permitiría evaluar la propuesta a mayor escala y con 

distintas implementaciones del marco.  

La variedad de modelos y artefactos posibles exige una mejor y más completa defini-

ción de la propuesta, y una evaluación sobre qué interfaces y repositorios se pueden 

utilizar para conectar los modelos, además de cómo implementar la vectorización de 

texto en la base de datos -en el caso de utilizar RAG- o cómo entrenar modelos y 

preparar los conjuntos de datos son algunos de los desafíos. 
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