

Combined use of radiomics and artificial neural networks for the three-dimensional automatic segmentation of glioblastoma multiforme

Alexander Mulet de los Reyes^{1,2}, Victoria Hyde Lord³, María Elena Buemi⁴, Daniel Gandía⁵, Luis Gómez Déniz⁶, Maikel Noriega Alemán⁷, Cecilia Suárez^{1,2}

¹ Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Argentina

² Instituto de Física Interdisciplinaria y Aplicada, CONICET – Universidad de Buenos Aires, Argentina

³ Instituto Tecnológico Buenos Aires, Argentina

⁴ Facultad de Ciencias Exactas y Naturales, Departamento de Computación, Universidad de Buenos Aires, Argentina

⁵ Centro de Especialidades Médicas, Provincia de Buenos Aires, Argentina

⁶ Departamento de Ingeniería Electrónica y Automática, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain

⁷ Facultad de Ingeniería en Telecomunicaciones, Informática y Biomédica, Universidad de Oriente, Santiago de Cuba, Cuba

Abstract. Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumour that has the worst prognosis in adults. Currently, the automatic segmentation of this kind of tumour is being intensively studied. Here, the automatic three-dimensional segmentation of the GBM is achieved with its related subzones (active tumour, inner necrosis, and peripheral oedema). Preliminary segmentations were first defined based on the four basic magnetic resonance imaging modalities and classic image processing methods (multithreshold Otsu, Chan–Vese active contours, and morphological erosion). After an automatic gap-filling post processing step, these preliminary segmentations were combined and corrected by a supervised artificial neural network of multilayer perceptron type with a hidden layer of 80 neurons, fed by 30 selected radiomic features of gray intensity and texture. Network classification has an overall accuracy of 83.9%, while the complete combined algorithm achieves average Dice similarity coefficients of 89.3%, 80.7%, 79.7%, and 66.4% for the entire region of interest, active tumour, oedema, and necrosis segmentations, respectively. These values are in the range of the best reported in the present bibliography, but even with better Hausdorff distances and lower computational costs. Results presented here evidence that it is possible to achieve the automatic segmentation of this kind of tumour by traditional radiomics. This has relevant clinical potential at the time of diagnosis, precision radiotherapy planning, or post-treatment response evaluation.

Keywords: Artificial Neural Networks, Automatic Segmentation, Glioblastoma Multiforme, Image Processing, Radiomics.

Expert Systems 2024, 41: e13598. <https://doi.org/10.1111/exsy.13598>.

Impact factor: 3, **Quartile:** Q2

(<https://journalsearches.com/journal.php?title=expert%20systems>)