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Resumen. En el marco de la agricultura digital, la disponibilidad de mapas de 

propiedades del suelo, como del contenido de materia orgánica (MO), facilita la 

toma de decisiones en el manejo agrícola. Para generar estos mapas, pueden em-

plearse diversas técnicas de interpolación espacial orientadas al mapeo de varia-

bles edáficas a escala fina. El objetivo del presente trabajo fue comparar la capa-

cidad predictiva de modelos de aprendizaje automático para el mapeo de MO 

intralote. Se evaluaron dos modelos, árboles de regresión cuantílica (QRFI), y 

redes neuronales artificiales (ANN), utilizando como covariables datos intensi-

vos de conductividad eléctrica aparente y rendimiento de cultivos obtenidos me-

diante monitores de rendimiento. Como método de referencia se empleó Kriging 

regresión (RK). Las predicciones espaciales se realizaron en siete lotes ubicados 

en las provincias de Córdoba y Santiago del Estero, Argentina. Los ajustes de los 

modelos se realizaron teniendo en cuenta la información de todos los lotes (mo-

delo global) o de manera individual para cada lote (modelo local). En todos los 

casos los modelos ANN presentaron el mejor desempeño, mostrando los menores 

valores de error cuadrático medio de predicción. La cantidad de observaciones 

por lote, así como la variabilidad conjunta del contenido de MO y las covariables, 

influyeron en el desempeño de modelos globales y locales. Los modelos ANN se 

consolidan como una alternativa promisoria para el mapeo de la variabilidad es-

pacial del suelo a escala de lote agrícola.  

Palabras clave: Interpolación Espacial, Redes Neuronales, Agricultura de Pre-

cisión. 
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Field-scale Soil Organic Matter Prediction: Evaluating 

Machine Learning and Deep Le\arning Models 

Abstract. Within the framework of agriculture, soil features maps availability, 

as for example those of soil organic matter (SOM) facilitates decision-making in 

agricultural management. Many techniques have been developed to generate 

these field scale maps. The objective of this study was to compare the prediction 

capability of machine learning models for field scale SOM mapping. Quantile 

Regression Forests (QRFI) and Artificial Neural Networks (ANN) were evalu-

ated using soil features and crop yield as covariates. Regression Kriging was used 

as reference method. Spatial interpolation was performed in seven fields located 

in Córdoba and Santiago del Estero provinces, Argentina. Models were fitted us-

ing information from all fields (global models) or only from the target field (local 

models). For all fields, ANN models presented better fit, showing lower normal-

ized root mean squared errors. Sample size per field, as well as the joint variabil-

ity of SOM and covariates affected the performance of global versus local mod-

els. ANN models stand as a promissory option for field scale soil variability map-

ping.  

Keywords: Spatial Interpolation, Neural Networks, Precision Agriculture 

1 Introducción 

El contenido de materia orgánica en el suelo (MO) desempeña un papel fundamental 

en los sistemas agrícolas y se considera un indicador clave de la fertilidad edáfica (Ties-

sen et al, 1994). A escala de lote agrícola, el mapeo de MO constituye una herramienta 

estratégica para identificar áreas degradadas y optimizar las medidas agroambientales 

(Piccini et al. 2014), favoreciendo la implementación de técnicas de manejo sitio-espe-

cífico que permiten mejorar la eficiencia en el uso de insumos y reducir los costos de 

producción (Vázquez, 2016). Tradicionalmente la obtención de mapas de MO se ha 

realizado mediante el uso de técnicas de interpolación espacial aplicadas a datos obte-

nidos mediante muestreo de suelo. Sin embargo, este enfoque requiere una gran canti-

dad de puntos de muestreo para generar mapas confiables y de alta calidad. El alto costo 

asociado a la recolección intensiva de datos ha impulsado la necesidad de desarrollar 

métodos para inferir la distribución espacial de propiedades del suelo como la MO 

(García Tomillo et al., 2017). Estos métodos pueden incorporar variables auxiliares 

(covariables) que mejoran la capacidad predictiva y reducen la cantidad de sitios de 

muestreo requeridos para la obtención de un mapa confiable (Odeh et al. 1995). La 

relación entre la MO y variables edáficas como la conductividad eléctrica, ha sido am-

pliamente documentada (Omonode & Vyn, 2006; Kweon et al., 2013). Asimismo, se 

ha demostrado su relación con otras variables como el rendimiento de cultivos, varia-

bles climáticas e índices de vegetación (Oldfield et al, 2022, Bashie et al., 2024). En el 

marco de la agricultura de precisión, la disponibilidad de grandes volúmenes de datos 

CAI 2025, 17º Congreso Argentino de Agroinformática 2025

Memorias de las 54 JAIIO - CAI 2025 - ISSN: 2451-7496 - Página 2



 

para un mismo lote se ha incrementado significativamente gracias al desarrollo y difu-

sión de equipamiento como monitores de cosecha y sensores capaces de recopilar datos 

en tiempo real (Adamchuk et al., 2004). 

Existen diversos métodos de interpolación para predecir valores en sitios no muestrea-

dos. Entre ellos, el método geoestadístico kriging es una de las técnicas de interpolación 

espacial más utilizadas en la agricultura de precisión (Oliver, 2010). Sin embargo, su 

aplicación requiere cumplir con ciertos supuestos estadísticos poco flexibles y disponer 

de un número suficiente de muestras (>100) para llevar a cabo un modelado confiable 

de la semivarianza (Oliver & Webster, 2015), lo cual no siempre resulta viable en la 

práctica. La incorporación de covariables en el modelado ha permitido flexibilizar los 

métodos de interpolación geoestadística mediante su integración con modelos de regre-

sión lineal, en un procedimiento conocido como Kriging Regresión (RK) (Odeh et al., 

1995). En este enfoque, primero se ajusta un modelo lineal entre la variable respuesta 

y las covariables; luego se modela la estructura espacial de los residuos mediante un 

semivariograma, y finalmente se genera la predicción como la suma de la predicción 

del modelo de regresión lineal y la predicción de los residuos obtenida mediante kri-

ging. La integración de RK con técnicas de aprendizaje automático (ML) permitió ex-

pandir el alcance de esta herramienta, combinando las fortalezas de ambos enfoques 

(Mohammadpour et al., 2024). Entre sus ventajas, se destaca que kriging modela en 

forma explícita la autocorrelación espacial de los datos y permite obtener una medida 

cuantificable de la incertidumbre asociada a la predicción. Por su parte, los métodos de 

ML son más flexibles que los enfoques tradicionales, ya que permiten capturar relacio-

nes no lineales en los datos y mejorar la precisión predictiva. Además, facilitan la inte-

gración de información proveniente de múltiples fuentes o lotes y la incorporación de 

múltiples covariables sitio-específicas, enriqueciendo el modelado. 

Los algoritmos de ML revolucionaron el análisis de datos, y son ampliamente utili-

zados para la resolución de problemáticas asociadas a la producción agrícola (Bhat & 

Huang, 2021). Los métodos basados en bosques aleatorios (random forest, RF) se des-

tacan por su capacidad predictiva y robustez. Estos algoritmos combinan los resultados 

de múltiples árboles de decisión o árboles de regresión, según la naturaleza de las va-

riables (Lantz, 2015). Específicamente, los árboles de regresión realizan predicciones 

a partir de un promedio de las predicciones de todos los árboles, almacenando en cada 

nodo de cada árbol el valor observado promedio. Una variante de RF, conocida como 

árboles de regresión cuantílica (QRF), permite estimar cuantiles de la distribución con-

dicional de las variables, y no solo su valor medio (Meinshausen & Ridgeway, 2006), 

permitiendo estimar cuantiles de la predicción. La aplicación de este método para la 

interpolación espacial (QRFI) a escala de lote mostró una mayor capacidad predictiva 

y menor tiempo de ejecución respecto a kriging (Córdoba & Balzarini, 2021). 

Las redes neuronales artificiales (ANN) constituyen un método más complejo dentro 

de ML, a veces encajado en una categoría más específica, aprendizaje profundo, según 

el grado de complejidad que alcanzan (Jurafksy & Martin, 2024). Estos algoritmos pre-
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sentan una estructura de pequeñas unidades de cómputo, llamadas “neuronas”, interco-

nectadas y dispuestas en varias capas que procesan la información de manera iterativa, 

recibiendo señales de entrada (input), que son modificadas por una serie de pesos 𝑤𝑖  y 

un término de sesgo 𝑏 (ecuación 1). En base a la información recibida, cada neurona 

emite señales de salida (output) reguladas por una función f(a) no lineal conocida como 

función de activación (Candel & LeDell, 2024). 

  𝑎 =  ∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑛
𝑖=1  (1) 

Distintos aspectos como el número de iteraciones o 𝑓(𝑎) pueden ser fijados en dis-

tintos valores con el fin de minimizar una función de pérdida de información (Goodfe-

llow et al., 2016). Dicha función también se puede modificar mediante técnicas de re-

gularización para evitar sobreajuste, como Lasso (L1) y Ridge (L2). Con el mismo fin 

es posible controlar aspectos asociados a la detención temprana del ajuste, siendo fac-

tible determinar una métrica de detención, usualmente una medida de error, para la cual 

se especifica un criterio numérico de tolerancia y la cantidad de iteraciones por debajo 

de dicho criterio necesarias para detener el ajuste. Otros aspectos de interés cuya varia-

bilidad está descrita en la bibliografía son la tasa de aprendizaje y la proporción de datos 

usada para validación respecto al total (Kamilaris & Prenafeta, 2018), aunque esta úl-

tima opción suele ser más flexible ante grandes volúmenes de datos. El hallazgo de los 

valores óptimos para todas estas características es un proceso denominado optimización 

de hiperparámetros. Por otro lado, la estructura de las ANN presenta dos grandes as-

pectos: la cantidad de capas ocultas, y la cantidad de neuronas en cada capa oculta. 

Relaciones más complejas entre las variables conllevan la necesidad de emplear redes 

más complejas, ya sea por mayor número de neuronas o mayor cantidad de capas. Ex-

cederse en la complejidad de esta arquitectura puede llevar al sobreajuste de modelos, 

en tanto que estructuras demasiado simples pueden restringir la no-linealidad deseable 

al ajustar ANN.  

En los últimos años, las ANN han ganado protagonismo en la predicción de propie-

dades del suelo (Wang et al., 2024; Zhang et al., 2025). Honorato Fernandes et al. 

(2019) calibraron y validaron modelos ANN para la predicción de MO a partir de va-

lores de covariables de suelo mostrando buena precisión. Otros estudios (Heil et al., 

2022) emplearon información de imágenes satelitales y variables ambientales para este 

mismo fin. Sin embargo, existen pocos estudios sobre el uso de modelos predictivos 

ANN para la predicción de MO a escala de lote integrando información de otros lotes 

y utilizando covariables de sitio y rendimiento.  

El objetivo del presente trabajo fue evaluar la capacidad de predicción a escala fina 

de modelos de aprendizaje automático para el contenido de MO a partir de covariables 

de suelo y rendimiento de cultivos. 
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2 Materiales y Métodos 

2.1 Datos 

Se analizaron datos provenientes de dos establecimientos productivos, uno situado en 

el departamento Juárez Celman, provincia de Córdoba; otro situado en el departamento 

Moreno, provincia de Santiago del Estero, Argentina. Se tomaron 218 muestras distri-

buidas en siete lotes (cinco de Córdoba y dos de Santiago del Estero; Fig. 1) de super-

ficie variable entre 51 y 210 hectáreas, con densidades de muestreo similares (0.285 ± 

0.024 muestras por hectárea).  

 
 

Fig. 1. Distribución de los puntos muestrales en los lotes ubicados en la provincia de 

Córdoba (izq.) y Santiago del Estero (der.).  

Con el perímetro de cada uno de los lotes se elaboraron grillas individuales con celda 

de 10×10 metros. Para cada lote se contó con datos de rendimiento de soja (Glycine 

max L.) o maíz (Zea mays L.) en la campaña 2022/23 obtenidos con monitor de cosecha, 

además de valores de conductividad eléctrica superficial, subsuperficial y elevación 

obtenidos con rastra Veris. 

Cada una de las covariables fue interpolada mediante kriging universal, extrayendo 

posteriormente valores predichos para cada una de ellas en los puntos de muestreo. Los 

valores predichos fueron posteriormente estandarizados por lote.  

 

2.2 Metodología de análisis 

Se evaluaron para cada uno de los lotes modelos QRFI, incluyendo un modelo local—

que utiliza exclusivamente los datos del lote objetivo— y uno global, que incorpora 

información proveniente de todos los lotes del estudio. En estos últimos se incluyó 

como covariable una variable categórica que identifica la pertenencia de cada observa-

ción a un lote determinado. Estos mismos enfoques también fueron implementados me-
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diante RK. Además, se ajustaron modelos supervisados basados en ANN pre-alimenta-

das (feedforward) entrenadas mediante retro-propagación a través del optimizador de 

descenso de gradiente estocástico (H2O.ai, 2024). 

Tanto en QRFI como ANN, fue necesario incorporar la correlación espacial de los 

datos. Para ello, se estimó para cada celda de la grilla de predicción el valor de MO 

interpolado mediante el método de la distancia inversa ponderada (IDW), utilizando los 

cinco puntos de muestreo más cercanos y excluyendo la celda objetivo. Estos valores 

de predicción fueron empleados como una covariable adicional en el modelo.   

La optimización de hiperparámetros para ANN se realizó mediante un criterio de 

búsqueda aleatorio (Bergstra & Bengio, 2012) el cual permite obtener un desempeño 

similar al método de grilla con una mínima fracción del tiempo computacional que éste 

requiere, siendo un método ideal para la optimización de hiperparámetros sobre sets de 

datos no analizados. Se fijó un tope de 100 modelos ajustados para cada búsqueda, 

empleando distintas funciones de activación y pérdida, estructuras de red y parámetros 

de detención temprana (Tabla 1). 

Entre las estructuras evaluadas se incluyeron opciones simples de una o dos capas 

ocultas de entre 5 y 30 neuronas, y otras complejas, ya sea por número de neuronas por 

capa (256) o por número de capas (3 capas ocultas de 30 neuronas cada una). Se optó 

por emplear una lista discreta de valores y no un intervalo continuo para facilitar la 

comparación y análisis posterior de los modelos ajustados. 

 
Tabla 1. Hiperparámetros evaluados en modelos de redes neuronales ajustados para la predicción 

a escala fina del contenido de materia orgánica, y valores puestos a prueba para cada uno. 

Hiperparámetro Valores evaluados 

Estructura de la red  

(5) 

(10) 

(20) 

(30) 

(5 5) 

(10 10) 

(20 20) 

(30 30) 

(256 256) 

(30 30 30) 

Función de activación Rectifier, Tanh, Maxout 

Función de pérdida L1 0, 1e-5 

Función de pérdida L2 0, 1e-5 

Desactivación de neuronas Sí, No 

Iteraciones de detención temprana 3, 5 

Tasa de aprendizaje 
0.001 

0.005 
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0.01 

 

Los modelos fueron evaluados mediante validación cruzada k-fold (k = 10). Para com-

parar el ajuste de los modelos, se utilizó la raíz del error cuadrático medio (RMSE), la 

cual se obtiene calculando la media de los residuos elevados al cuadrado (error cuadrá-

tico medio, MSE) y aplicando la raíz cuadrada. También se calculó una variante nor-

malizada de este indicador (nRMSE) (ecuación 3) la cual divide su valor por el valor 

promedio de las observaciones (𝑌̅). 

  𝑛𝑅𝑀𝑆𝐸 =  
√

1

𝑛
∑ (𝑦𝑝𝑟𝑒𝑑− 𝑦𝑜𝑏𝑠)2𝑛

𝑖=1

𝑌̅
 (3) 

Adicionalmente, los valores predichos por cada modelo para cada lote fueron compa-

rados de a pares mediante una prueba T modificada, que ajusta el estadístico para con-

templar la autocorrelación espacial de los datos (Kvamme, 1994). Esta prueba permite 

evaluar la correlación lineal entre las predicciones generadas por los distintos métodos 

de interpolación espacial. Para los análisis fueron utilizadas las librerías automap, ca-

ret, cowplot, h2o, leaflet, ggmap, meteo, paar, SpatialPack y sf del software R. 

3 Resultados y Discusión 

Los valores de MO observados en las muestras fueron de entre 1.45% y 2.66% (Tabla 

2), con coeficientes de variación de entre 8% y 20%. Los lotes F y G, de Santiago del 

Estero, presentaron los valores promedio más elevados (2.23% y 2.66%, respectiva-

mente) y menor variabilidad relativa (CV=8% y 10%, respectivamente). En el lote A 

se registró la mayor variabilidad (CV = 20%).  

 
Tabla 2. Media, coeficiente de variación (CV), valores mínimos (Min) y máximos (Max) para el 

contenido de materia orgánica del suelo (%) evaluado por lote (L), y varianza multivariada (VM) 

por lote. 

L n Media CV Min Max VM 

A 55 1.915 20 1.15 2.82 0.142 

B 57 2.07 17 1.025 2.992 0.043 

C 17 1.788 14 1.357 2.339 0.361 

D 17 2.085 17 1.358 2.734 2.62 

E 17 1.458 18 0.774 1.84 0.663 

F 26 2.272 8 1.943 2.648 0.002 

G 28 2.662 10 2.287 3.371 0.015 

Desde la perspectiva multivariada, considerando tanto los valores de MO como de las 

covariables, el lote C presentó la varianza multivariada más elevada (2.62), estimada 
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como el determinante de la matriz de varianzas-covarianzas; le siguieron en magnitud 

las varianzas de los lotes E (0.663), D (0.361) y A (0.142); para los tres lotes restantes 

(B, F y G) este indicador tuvo valores inferiores a 0.05. Al estudiar los lotes mediante 

un método de cluster jerárquico (Fig. 2) se distinguen dos grupos principales, que re-

sultan equivalentes a los dos campos evaluados, mostrando que existe una clara dife-

renciación entre las características de ambos establecimientos. 

 
Fig. 2. Dendrograma obtenido mediante análisis de clúster jerárquico de los lotes. 

Para todos los lotes analizados en este estudio, los modelos ANN presentaron un mejor 

ajuste que los modelos QRFI y RK (Tabla 3). Para los lotes C, D y F el modelo que 

mejor ajustó fue un ANN global (nRMSE = 7.6, 9.4 y 7.2, respectivamente), mientras 

que para los demás la mejor opción fue un modelo local. En los lotes C y D, la elevada 

variabilidad multivariada en estos lotes podría ser un indicador de que los valores de 

las covariables pudieron haber comprometido la capacidad predictiva de los modelos 

locales.  

Por su parte, los modelos QRFI mostraron en líneas generales mejor ajuste que los 

modelos RK. QRFI local fue el mejor modelo – excluyendo los modelos ANN – en los 

lotes A y F (nRMSE = 12.2 y 8.1, respectivamente). Para el lote G el modelo con menor 

grado de error fue un RK local (nRMSE = 10.8). Los lotes F y G fueron los que pre-

sentaron menor variabilidad de MO. Esta homogeneidad relativa posiblemente haya 

facilitado que los modelos locales, a pesar de disponer de menos datos, hayan mostrado 

mejor ajuste. 
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Tabla 3. Raíz del error cuadrático medio expresada como porcentaje (nRMSE) para la predicción 

del contenido de materia orgánica en cada uno de los lotes (L), mediante modelos de aprendizaje 

automático: Quantile Regression Forest Spatial Interpolation (QRFI), Kriging Regresión (RK); 

y redes neuronales artificiales (ANN). En negrita se señala el mejor modelo para cada lote. 

L QRFI RK ANN 

 Global Local Global Local Global Local 

A 13.5 12.2 13.9 12.5 11.4 11.1 

B 11.1 12.4 14.7 11.1 9.5 9.4 

C 13.1 13.6 16.6 17.3 7.6 8.1 

D 15.6 21.7 17.8 22.2 9.4 11.8 

E 17.6 19.1 29.2 17.0 7.6 7.3 

F 9.6 8.1 11.2 8.5 7.2 7.6 

G 10.9 11.0 15.7 10.8 10.0 6.2 

El número de muestras tomadas por lote resultó crucial a la hora de definir el desem-

peño de modelos globales o locales. Los lotes con menor número de muestras (C, D y 

E; n = 17 muestras cada uno) exhibieron en general mejor ajuste en los modelos globa-

les para los tres métodos de predicción, a excepción del del lote E usando ANN, donde 

existe una leve mejora del modelo local (nRMSE = 7.3 vs 7.6). Dado que la densidad 

de muestreo fue relativamente homogénea en todos los lotes, los resultados sugieren 

que los modelos de predicción local pierden capacidad predictiva cuando la cantidad 

de muestras del lote es baja (< 30) sin importar la superficie. Un muestreo más intenso 

en estos lotes podría reduciría los errores de predicción. 

 Es necesario aclarar que los modelos “globales” ajustados mediante ANN para cada 

lote no son iguales, dado que tanto los hiperparámetros como los pesos asignados a 

cada covariable han sido ajustados utilizando como set de datos de validación los datos 

del lote objetivo. Es decir, cada fila de la columna ANN Global representa un modelo 

diferente, no el ajuste de un mismo modelo sobre todos los lotes. El término Global en 

este trabajo hace referencia al uso de todos los datos disponibles en el set de datos de 

entrenamiento. 

La combinación de hiperparámetros del modelo de mejor ajuste fue diferente para 

cada uno de los lotes (Tabla 4), aunque una tasa de aprendizaje de 0.01 se repitió en 

cinco lotes. En dos casos el uso de dropout fue necesario. En tres de los lotes fue pre-

ferible el uso de las funciones de regularización L1 y L2 en conjunto; estos tres casos 

presentaron una estructura neuronal de mayor complejidad. Lo contrario ocurrió para 

los lotes A, B, D y F, los cuales además presentaron estructuras más sencillas, con una 

única capa oculta. Para los lotes B, D y F no fue necesario emplear ninguna técnica de 

regularización.  
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Tabla 4. Hiperparámetros correspondientes al mejor modelo ajustado para cada lote (L). L1 y 

L2: funciones de pérdida; SR: iteraciones de detención anticipada; LR: tasa de aprendizaje. 

L Método Función de Activación Estructura L1 L2 SR LR 

A Local Maxout with Dropout (10) 1e-5 0 3 0.01 

B Local Rectifier (20) 0 0 3 0.01 

C Global Rectifier with Dropout (256,256) 1e-5 1e-5 5 0.01 

D Global Rectifier (20) 0 0 3 0.01 

E Local Tanh (20,20) 1e-5 1e-5 5 0.001 

F Global Maxout (5) 0 0 3 0.005 

G Local Tanh (30,30,30) 1e-5 1e-5 5 0.01 

Para los lotes C y G la estructura con mejor ajuste fue una estructura compleja, ya sea 

por número de neuronas o por número de capas. No existe a la fecha una regla o ecua-

ción probada para la determinación de la estructura neuronal óptima. Si bien los coefi-

cientes de error y el uso de técnicas de regularización apuntan en otro sentido, un posi-

ble sobreajuste de los modelos debe ponerse sobre la mesa al presentarse modelos de 

un cierto grado de complejidad frente a conjuntos pequeños de datos (Ying, 2018). 

El tiempo de ajuste de los modelos locales fue notablemente menor (10.16 vs. 2.6 

segundos en promedio), aunque hay que considerar el número de parámetros internos 

del modelo, relacionado a la cantidad de variables explicativas (13 para modelos locales 

y 5 para globales) y el tamaño del conjunto de datos cargado en cada uno (489 vs. 17-

55). Corrigiendo el tiempo computacional requerido por los modelos por la cantidad de 

parámetros, los valores fueron más cercanos, aunque los modelos locales siguieron ex-

hibiendo mayor celeridad (0.782 vs. 0.52 segundos/parámetro en promedio). El proce-

samiento y análisis de los datos, se realizó en un servidor remoto Ubuntu 20.04.6 LTS, 

con procesador Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz × 12 núcleos y 62 GB 

de RAM.  

Los mapas evaluados a partir del mejor modelo para cada lote mostraron coherencia 

desde el punto de vista espacial, sin observarse artefactos como líneas rectas u otros 

elementos no deseados (Fig. 3), los cuales son comunes en métodos que incorporan 

información de covariables geográficas (Xie et al., 2022). En el límite entre algunos de 

los lotes (ej. Sur del lote B y norte del lote C) se observan cambios a nivel del valor 

promedio de MO, lo cual es esperable dado que los modelos usados para la predicción 

fueron específicos para cada lote. No obstante, se aprecia cierta continuidad en el patrón 

espacial, lo que indica coherencia en la distribución de MO a mayor escala.  
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Fig. 3. Mapa de valores de materia orgánica (MO%) predichos para los lotes evaluados, 

utilizando redes neuronales.  

Las predicciones de todos los modelos en general presentan una correlación positiva 

significativa (p < 0.05) entre sí, según la prueba T modificada. Como excepción, el 

método RK global presentó una correlación negativa con el modelo RK local en el lote 

C (r = -0.58 y -0.69 para modelos con y sin efecto de lote, p < 0.05) y con el modelo 

ANN local en el lote G (r = -0.54 para ambos casos, p < 0.01). Los modelos ANN local 

y global presentaron correlación significativa en todos los lotes, al igual que los mode-

los QRFI, con excepción del lote F, donde la correlación no fue significativa. 

 Los modelos propuestos en este trabajo son individuales para cada lote, es decir, su 

aplicabilidad se restringe únicamente a un lote, permitiendo evaluar dentro de cada uno 

el máximo desempeño de los distintos métodos. En vistas a una aplicación más práctica 

de los conocimientos generados por este trabajo, estudios futuros deberían apuntar al 
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ajuste de un único modelo global con un desempeño aceptable en todos los lotes a la 

vez. 

4 Conclusiones 

Los modelos basados en redes neuronales artificiales se consolidan como una alter-

nativa promisoria para la predicción de MO a escala de lote. La optimización de hiper-

parámetros de los modelos debe apuntar a corregir potencial sobreajuste a los datos, 

especialmente frente a conjuntos de datos de menor dimensión. Las predicciones reali-

zadas mediante los distintos modelos estuvieron correlacionadas entre sí, mostrando 

convergencia en la captura de los patrones de variabilidad espacial del contenido de 

MO en el suelo. 

Referencias Bibliográficas 

Adamchuk, V.I., Hummel, J.W., Morgan, M.T., Upadhyaya, S.K. (2004). On-the-go sensors for 

precision agricultura. Computers and Electronics in Agriculture 44(1): 71 – 91. 

https://doi.org/10.1016/j.compag.2004.03.002 

Bashie, A.L., Ayankukwa, A.U., Owojoku, O.D., Nicholas, O.G., Ishoro, A.P., Christiana, U.A. 

(2024). Predicting Environmental Covariates of Soil Organic Matter at Sub-Regional Scale 

for Sustainable Agricultural Development in Southeast Nigeria. Pol. J. Environ. Stud. 34(3): 

2011 – 2021. doi: 10.15244/pjoes/186888 

Bergstra, J., Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization. Journal of 

Machine Learning Research 13(1): 281 – 305.  

Bhat, S.A., Huang, N. (2021). Big Data and AI Revolution in Precision Agriculture: Survey and 

Challenges. Ieee Access 9: 110209 – 110222. doi: 10.1109/ACCESS.2021.3102227 

Candel, A., LeDell, E. (2024). Deep learning with H2O. 6a ed. H2O ai, Mountain View, CA. 

Córdoba, M., Paccioretti P.A., Giannini Kurina, F., Bruno, C.I., Balzarini, M.G. (2020). Guía 

para el análisis de datos espaciales: Aplicaciones en agricultura. 1a ed. Editorial Brujas, Bue-

nos Aires, Argentina. ISBN: 978-987-760-272-2 

Córdoba, M., Balzarini, M. (2020). Mapeo de materia orgánica del suelo a escala de campo. 

Congreso Argentino de Agroinformática, Jornadas Argentinas de Informática e Investigación 

Operativa 7(4): 176 – 186. ISSN: 2525-0949 

Córdoba, M., Balzarini, M. (2021). A random forest-based algorithm for data-intensive spatial 

interpolation in crop yield mapping. Computers and Electronics in Agriculture 184, 106094. 

https://doi.org/10.1016/j.compag.2021.106094 

Fryda, T., LeDell, E., Gill, N., Aiello, S., Fu, A., Candel, A., Click, C., Kraljevic, T., Nykodym, 

T., Ahoyoum, P., Kurka, M., Malohlava, M., Poirier, S., Wong, W., Rehak, L., Eckstrand, E., 

Hill, B., Vidrio, S., Jadhawani, S., … Novotny, M. (2024). H2o: R Interface for the ‘H2O’ 

Scalable Machine Learning Platform. doi: 10.32614/CRAN.package.h2o 

García Tomillo, A., Mirás Avalos, J.M., Dafonte Dafonte, J., Paz González, A. (2017). Estimat-

ing soil organic matter using interpolation methods with a electromagnetic induction sensor 

and topographic parameters: a case study in a humid region. Precision Agriculture 18: 882 – 

897. https://doi.org/10.1007/s11119-016-9481-6 

Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep Learning. MIT Press, Cambridge, MA. 

CAI 2025, 17º Congreso Argentino de Agroinformática 2025

Memorias de las 54 JAIIO - CAI 2025 - ISSN: 2451-7496 - Página 12

https://doi.org/10.1016/j.compag.2004.03.002
https://doi.org/10.1016/j.compag.2021.106094
https://doi.org/10.32614/CRAN.package.h2o


 

H2O.ai. (2024). Deep Learning (Neural Networks). Consultada el 22 de marzo de 2025. URL: 

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/deep-learning.html  

Heil, J., Jörges, C., Stumpe, B. (2022). Fine-Scale Mapping of Soil Organic Matter in Agricul-

tural Soils Using UAVs and Machine Learning. Remote Sens. 14(14), 3349. 

https://doi.org/10.3390/rs14143349 

Honorato Fernandes, M.M., Prates Coelho, A., Fernandes, C., da Silva, M.F., Campos Dela 

Marta, C. (2019). Estimation of soil organic matter content by modelling with artificial neural 

networks. Geoderma 350: 46 – 51. https://doi.org/10.1016/j.geoderma.2019.04.044 

Jurafsky, D., Martin, J.H. (2024). Speech and Language Processing: An Introduction to Natural 

Language Processing, Computational Linguistics, and Speech Recognition with Language 

Models [Manuscrito sin publicar]. 3a ed. 

URL: https://web.stanford.edu/~jurafsky/slp3/ed3book_Jan25.pdf 

Kamilaris, A., Prenafeta-Baldú, F.X. (2018). Deep learning in agriculture: A survey. Computers 

and Electronics in Agriculture 147 70 – 90. https://doi.org/10.1016/j.compag.2018.02.016 

Kvamme, K.L. (1994). Spatial statistics and GIS: An integrated approach. En: Andresen, J., Mad-

sen, T., Scollar, I. (eds.). Computing the Past: Computer Applications and Quantitative Meth-

ods in Archaeology. Aarhus University Press, Aarhus, Dinamarca. 91 – 103. 

Kweon, G., Lund, E., Maxton, C. (2013). Soil organic matter and cation-exchange capacity sens-

ing with on-the-go electrical conductivity and optical sensors. Geoderma 199: 80 – 89. 

https://doi.org/10.1016/j.geoderma.2012.11.001 

Lantz, B. (2015). Machine learning with R. 2a ed. Packt Publishing Ltd., Birmingham, Reino 

Unido. ISBN: 978-1-78439-390-8 

LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. Nature 521: 436 – 444.  

Mohammadpour, M., Roshan, H., Arashpour, M., Masoumi, H. (2024). Machine learning as-

sisted Kriging to capture spatial variability in petrophysical property modelling. Marine and 

Petroleum Geology 167, 106967. https://doi.org/10.1016/j.marpetgeo.2024.106967 

Meinshausen, N., Ridgeway, G. (2006). Quantile Regression Forests. Journal of Machine Learn-

ing Research 7(6): 983 – 999. 

Odeh, I.O.A., McBratney, A.B., Chittleborough, D.J. (1995). Further results on prediction of soil 

properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma 

67(3-4): 215 – 226. https://doi.org/10.1016/0016-7061(95)00007-B 

Oldfield, E.E., Bradford, M.A., Augarten, A.J., Cooley, E.T., Radatz, A.M., Radatz, T., Ruark, 

M.D. (2022). Positive associations of soil organic matter and crop yields across a regional 

network of working farms. Soil Science Society of America Journal 86(2): 384 – 397. 

https://doi.org/10.1002/saj2.20349 

Oliver, M.A. (2010). Geostatistical Applications for Precision Agriculture. 1a ed. Springer, Dor-

drecht, Países Bajos. ISBN: 978-90-481-9133-8 

Oliver, M.A., Webster, R. (2015). Basic Steps in Geostatistics: The Variogram and Kriging. 1a 

ed. Springer, Cham, Suiza. ISBN: 978-3-319-15865-5 

Omonode, R.A., Vyn, T.J. (2006). Spatial dependence and relationships of electrical conductivity 

to soil organic matter, phosphorus, and potassium. Soil Science 171(3): 223 – 238. doi: 

10.1097/01.ss.0000199698.94203.a4 

Piccini, C., Marchetti, A., & Francaviglia, R. (2014). Estimation of soil organic matter by geo-

statistical methods: Use  of  auxiliary  information  in  agricultural  and  environmental as-

sessment. Ecological Indicators, 36, 301–314. 

Tiessen, H., Cuevas, E., Chacon, P. (1994). The role of soil organic matter in sustaining soil 

fertility. Nature 371: 783 – 785. 

CAI 2025, 17º Congreso Argentino de Agroinformática 2025

Memorias de las 54 JAIIO - CAI 2025 - ISSN: 2451-7496 - Página 13

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/deep-learning.html
https://doi.org/10.3390/rs14143349
https://doi.org/10.1016/j.geoderma.2019.04.044
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1016/j.geoderma.2012.11.001
https://doi.org/10.1016/j.marpetgeo.2024.106967
https://doi.org/10.1016/0016-7061(95)00007-B
https://doi.org/10.1002/saj2.20349


Vázquez, J.M. (2016). Manejo sitio específico. En: Gueçaimburu, J.M., Rojo, V., Reposo, G., 

Vázquez, J.M., Martínez, M. Manejo del sistema agropecuario. 1a ed. Editorial Universidad 

Nacional de Luján (EdUNLu), Luján, Buenos Aires, Argentina. 

Wang, Y., Shi, L., Hu, Y., Hu, X., Song, W., Wang, L. (2024). A comprehensive study of Deep 

learning for soil moisture prediction. Hess 28(4): 917 – 943. 

Xie, J., Huang, J., Zheng, C., Huang, S., Burton, G., (2022). A generic framework for geotech-

nical subsurface modeling with machine learning. Journal of Rock Mechanics and Geotech-

nical Engineering 14(5): 1366 – 1379. https://doi.org/10.1016/j.jrmge.2022.08.001 

Ying, X. (2019). An Overview of Overfitting and its Solutions. IOP Conf. Series: Journal of 

Physics. Conf. Series 1168. https://doi.org/10.1088/1742-6596/1168/2/022022 

Zhang, Y., Luo, C., Zhang, W., Wu, Z., Zang, D. (2025). Mapping Soil Organic Matter in Black 

Soil Cropland Areas Using Remote Sensing and Environmental Covariates. Agriculture 15(3), 

339. https://doi.org/10.3390/agriculture15030339 

CAI 2025, 17º Congreso Argentino de Agroinformática 2025

Memorias de las 54 JAIIO - CAI 2025 - ISSN: 2451-7496 - Página 14

https://doi.org/10.3390/agriculture15030339

	1 Introducción
	2 Materiales y Métodos
	2.1 Datos
	2.2 Metodología de análisis

	3 Resultados y Discusión
	4 Conclusiones
	Referencias Bibliográficas

