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Resumen. En el marco de la agricultura digital, la disponibilidad de mapas de
propiedades del suelo, como del contenido de materia organica (MO), facilita la
toma de decisiones en el manejo agricola. Para generar estos mapas, pueden em-
plearse diversas técnicas de interpolacion espacial orientadas al mapeo de varia-
bles edéficas a escala fina. El objetivo del presente trabajo fue comparar la capa-
cidad predictiva de modelos de aprendizaje automatico para el mapeo de MO
intralote. Se evaluaron dos modelos, arboles de regresion cuantilica (QRFI), y
redes neuronales artificiales (ANN), utilizando como covariables datos intensi-
vos de conductividad eléctrica aparente y rendimiento de cultivos obtenidos me-
diante monitores de rendimiento. Como método de referencia se empled Kriging
regresion (RK). Las predicciones espaciales se realizaron en siete lotes ubicados
en las provincias de Cdrdoba y Santiago del Estero, Argentina. Los ajustes de los
modelos se realizaron teniendo en cuenta la informacion de todos los lotes (mo-
delo global) o de manera individual para cada lote (modelo local). En todos los
casos los modelos ANN presentaron el mejor desempefio, mostrando los menores
valores de error cuadratico medio de prediccion. La cantidad de observaciones
por lote, asi como la variabilidad conjunta del contenido de MOy las covariables,
influyeron en el desempefio de modelos globales y locales. Los modelos ANN se
consolidan como una alternativa promisoria para el mapeo de la variabilidad es-
pacial del suelo a escala de lote agricola.

Palabras clave: Interpolacion Espacial, Redes Neuronales, Agricultura de Pre-
cision.
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Field-scale Soil Organic Matter Prediction: Evaluating
Machine Learning and Deep Le\arning Models

Abstract. Within the framework of agriculture, soil features maps availability,
as for example those of soil organic matter (SOM) facilitates decision-making in
agricultural management. Many techniques have been developed to generate
these field scale maps. The objective of this study was to compare the prediction
capability of machine learning models for field scale SOM mapping. Quantile
Regression Forests (QRFI) and Avrtificial Neural Networks (ANN) were evalu-
ated using soil features and crop yield as covariates. Regression Kriging was used
as reference method. Spatial interpolation was performed in seven fields located
in Cérdoba and Santiago del Estero provinces, Argentina. Models were fitted us-
ing information from all fields (global models) or only from the target field (local
models). For all fields, ANN models presented better fit, showing lower normal-
ized root mean squared errors. Sample size per field, as well as the joint variabil-
ity of SOM and covariates affected the performance of global versus local mod-
els. ANN models stand as a promissory option for field scale soil variability map-

ping.

Keywords: Spatial Interpolation, Neural Networks, Precision Agriculture

1 Introduccion

El contenido de materia orgénica en el suelo (MO) desempefia un papel fundamental
en los sistemas agricolas y se considera un indicador clave de la fertilidad edéafica (Ties-
sen et al, 1994). A escala de lote agricola, el mapeo de MO constituye una herramienta
estratégica para identificar areas degradadas y optimizar las medidas agroambientales
(Piccini et al. 2014), favoreciendo la implementacion de técnicas de manejo sitio-espe-
cifico que permiten mejorar la eficiencia en el uso de insumos y reducir los costos de
produccion (Véazquez, 2016). Tradicionalmente la obtencion de mapas de MO se ha
realizado mediante el uso de técnicas de interpolacion espacial aplicadas a datos obte-
nidos mediante muestreo de suelo. Sin embargo, este enfoque requiere una gran canti-
dad de puntos de muestreo para generar mapas confiables y de alta calidad. El alto costo
asociado a la recoleccion intensiva de datos ha impulsado la necesidad de desarrollar
métodos para inferir la distribucién espacial de propiedades del suelo como la MO
(Garcia Tomillo et al., 2017). Estos métodos pueden incorporar variables auxiliares
(covariables) que mejoran la capacidad predictiva y reducen la cantidad de sitios de
muestreo requeridos para la obtencion de un mapa confiable (Odeh et al. 1995). La
relacion entre la MO y variables edéaficas como la conductividad eléctrica, ha sido am-
pliamente documentada (Omonode & Vyn, 2006; Kweon et al., 2013). Asimismo, se
ha demostrado su relacion con otras variables como el rendimiento de cultivos, varia-
bles climéticas e indices de vegetacion (Oldfield et al, 2022, Bashie et al., 2024). En el
marco de la agricultura de precision, la disponibilidad de grandes volimenes de datos
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para un mismo lote se ha incrementado significativamente gracias al desarrollo y difu-
sion de equipamiento como monitores de cosecha y sensores capaces de recopilar datos
en tiempo real (Adamchuk et al., 2004).

Existen diversos métodos de interpolacion para predecir valores en sitios no muestrea-
dos. Entre ellos, el método geoestadistico kriging es una de las técnicas de interpolacion
espacial mas utilizadas en la agricultura de precision (Oliver, 2010). Sin embargo, su
aplicacion requiere cumplir con ciertos supuestos estadisticos poco flexibles y disponer
de un nimero suficiente de muestras (>100) para llevar a cabo un modelado confiable
de la semivarianza (Oliver & Webster, 2015), lo cual no siempre resulta viable en la
practica. La incorporacién de covariables en el modelado ha permitido flexibilizar los
métodos de interpolacion geoestadistica mediante su integracion con modelos de regre-
sion lineal, en un procedimiento conocido como Kriging Regresion (RK) (Odeh et al.,
1995). En este enfoque, primero se ajusta un modelo lineal entre la variable respuesta
y las covariables; luego se modela la estructura espacial de los residuos mediante un
semivariograma, y finalmente se genera la prediccion como la suma de la prediccion
del modelo de regresion lineal y la prediccién de los residuos obtenida mediante kri-
ging. La integracién de RK con técnicas de aprendizaje automético (ML) permitio ex-
pandir el alcance de esta herramienta, combinando las fortalezas de ambos enfoques
(Mohammadpour et al., 2024). Entre sus ventajas, se destaca que kriging modela en
forma explicita la autocorrelacion espacial de los datos y permite obtener una medida
cuantificable de la incertidumbre asociada a la prediccion. Por su parte, los métodos de
ML son més flexibles que los enfoques tradicionales, ya que permiten capturar relacio-
nes no lineales en los datos y mejorar la precision predictiva. Ademas, facilitan la inte-
gracion de informacion proveniente de multiples fuentes o lotes y la incorporacion de
multiples covariables sitio-especificas, enriqueciendo el modelado.

Los algoritmos de ML revolucionaron el analisis de datos, y son ampliamente utili-
zados para la resolucion de probleméticas asociadas a la produccion agricola (Bhat &
Huang, 2021). Los métodos basados en bosques aleatorios (random forest, RF) se des-
tacan por su capacidad predictiva y robustez. Estos algoritmos combinan los resultados
de multiples arboles de decision o arboles de regresion, segun la naturaleza de las va-
riables (Lantz, 2015). Especificamente, los arboles de regresion realizan predicciones
a partir de un promedio de las predicciones de todos los arboles, almacenando en cada
nodo de cada arbol el valor observado promedio. Una variante de RF, conocida como
arboles de regresién cuantilica (QRF), permite estimar cuantiles de la distribucion con-
dicional de las variables, y no solo su valor medio (Meinshausen & Ridgeway, 2006),
permitiendo estimar cuantiles de la prediccion. La aplicacion de este método para la
interpolacion espacial (QRFI) a escala de lote mostré una mayor capacidad predictiva
y menor tiempo de ejecucion respecto a kriging (Cérdoba & Balzarini, 2021).

Las redes neuronales artificiales (ANN) constituyen un método mas complejo dentro

de ML, a veces encajado en una categoria mas especifica, aprendizaje profundo, segin
el grado de complejidad que alcanzan (Jurafksy & Martin, 2024). Estos algoritmos pre-
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sentan una estructura de pequenas unidades de computo, llamadas “neuronas”, interco-
nectadas y dispuestas en varias capas que procesan la informacion de manera iterativa,
recibiendo sefiales de entrada (input), que son modificadas por una serie de pesos w; y
un término de sesgo b (ecuacion 1). En base a la informacion recibida, cada neurona
emite sefiales de salida (output) reguladas por una funcion f(a) no lineal conocida como
funcion de activacion (Candel & LeDell, 2024).

a= Y wix;+b 1)

Distintos aspectos como el nimero de iteraciones o f(a) pueden ser fijados en dis-
tintos valores con el fin de minimizar una funcién de pérdida de informacién (Goodfe-
llow et al., 2016). Dicha funcién también se puede modificar mediante técnicas de re-
gularizacion para evitar sobreajuste, como Lasso (L1) y Ridge (L2). Con el mismo fin
es posible controlar aspectos asociados a la detencién temprana del ajuste, siendo fac-
tible determinar una métrica de detencidn, usualmente una medida de error, para la cual
se especifica un criterio numérico de tolerancia y la cantidad de iteraciones por debajo
de dicho criterio necesarias para detener el ajuste. Otros aspectos de interés cuya varia-
bilidad esta descrita en la bibliografia son la tasa de aprendizaje y la proporcidn de datos
usada para validacion respecto al total (Kamilaris & Prenafeta, 2018), aunque esta Ul-
tima opcion suele ser mas flexible ante grandes volimenes de datos. El hallazgo de los
valores 6ptimos para todas estas caracteristicas es un proceso denominado optimizacion
de hiperparametros. Por otro lado, la estructura de las ANN presenta dos grandes as-
pectos: la cantidad de capas ocultas, y la cantidad de neuronas en cada capa oculta.
Relaciones mas complejas entre las variables conllevan la necesidad de emplear redes
mas complejas, ya sea por mayor nimero de neuronas o0 mayor cantidad de capas. Ex-
cederse en la complejidad de esta arquitectura puede llevar al sobreajuste de modelos,
en tanto que estructuras demasiado simples pueden restringir la no-linealidad deseable
al ajustar ANN.

En los Gltimos afios, las ANN han ganado protagonismo en la prediccion de propie-
dades del suelo (Wang et al., 2024; Zhang et al., 2025). Honorato Fernandes et al.
(2019) calibraron y validaron modelos ANN para la prediccion de MO a partir de va-
lores de covariables de suelo mostrando buena precision. Otros estudios (Heil et al.,
2022) emplearon informacion de imagenes satelitales y variables ambientales para este
mismo fin. Sin embargo, existen pocos estudios sobre el uso de modelos predictivos
ANN para la prediccion de MO a escala de lote integrando informacion de otros lotes
y utilizando covariables de sitio y rendimiento.

El objetivo del presente trabajo fue evaluar la capacidad de prediccion a escala fina

de modelos de aprendizaje automatico para el contenido de MO a partir de covariables
de suelo y rendimiento de cultivos.

Memorias de las 54 JAIIO - CAI 2025 - ISSN: 2451-7496 - Pagina 4



CAl 2025, 17° Congreso Argentino de Agroinformatica 2025

2 Materiales y Métodos
2.1  Datos

Se analizaron datos provenientes de dos establecimientos productivos, uno situado en
el departamento Juarez Celman, provincia de Cordoba; otro situado en el departamento
Moreno, provincia de Santiago del Estero, Argentina. Se tomaron 218 muestras distri-
buidas en siete lotes (cinco de Cérdoba y dos de Santiago del Estero; Fig. 1) de super-
ficie variable entre 51 y 210 hectareas, con densidades de muestreo similares (0.285 +
0.024 muestras por hectarea).
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Fig. 1. Distribucion de los puntos muestrales en los lotes ubicados en la provincia de
Cordoba (izq.) y Santiago del Estero (der.).

Con el perimetro de cada uno de los lotes se elaboraron grillas individuales con celda
de 10x10 metros. Para cada lote se cont6 con datos de rendimiento de soja (Glycine
max L.) 0 maiz (Zea mays L.) en la campafia 2022/23 obtenidos con monitor de cosecha,
ademas de valores de conductividad eléctrica superficial, subsuperficial y elevacion
obtenidos con rastra Veris.

Cada una de las covariables fue interpolada mediante kriging universal, extrayendo
posteriormente valores predichos para cada una de ellas en los puntos de muestreo. Los
valores predichos fueron posteriormente estandarizados por lote.

2.2 Metodologia de analisis

Se evaluaron para cada uno de los lotes modelos QRFI, incluyendo un modelo local—
que utiliza exclusivamente los datos del lote objetivo— y uno global, que incorpora
informacion proveniente de todos los lotes del estudio. En estos dltimos se incluyd
como covariable una variable categorica que identifica la pertenencia de cada observa-
cién a un lote determinado. Estos mismos enfoques también fueron implementados me-
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diante RK. Ademas, se ajustaron modelos supervisados basados en ANN pre-alimenta-
das (feedforward) entrenadas mediante retro-propagacion a través del optimizador de
descenso de gradiente estocastico (H20.ai, 2024).

Tanto en QRFI como ANN, fue necesario incorporar la correlacion espacial de los
datos. Para ello, se estimo para cada celda de la grilla de prediccién el valor de MO
interpolado mediante el método de la distancia inversa ponderada (IDW), utilizando los
cinco puntos de muestreo mas cercanos y excluyendo la celda objetivo. Estos valores
de prediccion fueron empleados como una covariable adicional en el modelo.

La optimizacién de hiperpardmetros para ANN se realiz6 mediante un criterio de
busqueda aleatorio (Bergstra & Bengio, 2012) el cual permite obtener un desempefio
similar al método de grilla con una minima fraccion del tiempo computacional que éste
requiere, siendo un método ideal para la optimizacion de hiperparametros sobre sets de
datos no analizados. Se fij6 un tope de 100 modelos ajustados para cada busqueda,
empleando distintas funciones de activacion y pérdida, estructuras de red y pardmetros
de detencion temprana (Tabla 1).

Entre las estructuras evaluadas se incluyeron opciones simples de una o dos capas
ocultas de entre 5y 30 neuronas, y otras complejas, ya sea por himero de neuronas por
capa (256) o por namero de capas (3 capas ocultas de 30 neuronas cada una). Se optd
por emplear una lista discreta de valores y no un intervalo continuo para facilitar la
comparacion y analisis posterior de los modelos ajustados.

Tabla 1. Hiperparametros evaluados en modelos de redes neuronales ajustados para la prediccion

a escala fina del contenido de materia organica, y valores puestos a prueba para cada uno.
Hiperparametro Valores evaluados

®)

(10)

(20)

(30)

(55)

(10 10)

(20 20)

(30 30)

(256 256)

(3030 30)

Funcién de activacion Rectifier, Tanh, Maxout

Funcion de pérdida L1 0, 1e-5

Funcién de pérdida L2 0, 1e-5

Desactivacion de neuronas Si, No

Estructura de la red

Iteraciones de detencion temprana 3,5
0.001

Tasa de aprendizaje 0.005
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0.01

Los modelos fueron evaluados mediante validacion cruzada k-fold (k = 10). Para com-
parar el ajuste de los modelos, se utiliz6 la raiz del error cuadratico medio (RMSE), la
cual se obtiene calculando la media de los residuos elevados al cuadrado (error cuadra-
tico medio, MSE) y aplicando la raiz cuadrada. También se calcul6 una variante nor-
malizada de este indicador (nRMSE) (ecuacion 3) la cual divide su valor por el valor
promedio de las observaciones (7).

\/% Z?=1(J’pred_ Yobs)?
nRMSE = § 3)

Adicionalmente, los valores predichos por cada modelo para cada lote fueron compa-
rados de a pares mediante una prueba T modificada, que ajusta el estadistico para con-
templar la autocorrelacion espacial de los datos (Kvamme, 1994). Esta prueba permite
evaluar la correlacion lineal entre las predicciones generadas por los distintos métodos
de interpolacion espacial. Para los anlisis fueron utilizadas las librerias automap, ca-
ret, cowplot, h20, leaflet, ggmap, meteo, paar, SpatialPack y sf del software R.

3 Resultados y Discusién

Los valores de MO observados en las muestras fueron de entre 1.45% y 2.66% (Tabla
2), con coeficientes de variacion de entre 8% y 20%. Los lotes F y G, de Santiago del
Estero, presentaron los valores promedio mas elevados (2.23% y 2.66%, respectiva-
mente) y menor variabilidad relativa (CV=8% y 10%, respectivamente). En el lote A
se registré la mayor variabilidad (CV = 20%).

Tabla 2. Media, coeficiente de variacion (CV), valores minimos (Min) y maximos (Max) para el
contenido de materia organica del suelo (%) evaluado por lote (L), y varianza multivariada (VM)
por lote.

L n Media CV Min Max VM

A 55 1.915 20 1.15 2.82 0.142
B 57 2.07 17 1.025 2992 0.043
C 17 1.788 14 1.357 2339 0.361
D 17 2.085 17 1.358 2734 2.62

E 17 1.458 18 0.774 184 0.663
F 26 2.272 8 1.943 2.648 0.002
G 28 2.662 10 2.287 3371 0.015

Desde la perspectiva multivariada, considerando tanto los valores de MO como de las
covariables, el lote C presentd la varianza multivariada mas elevada (2.62), estimada
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como el determinante de la matriz de varianzas-covarianzas; le siguieron en magnitud
las varianzas de los lotes E (0.663), D (0.361) y A (0.142); para los tres lotes restantes
(B, Fy G) este indicador tuvo valores inferiores a 0.05. Al estudiar los lotes mediante
un método de cluster jerarquico (Fig. 2) se distinguen dos grupos principales, que re-
sultan equivalentes a los dos campos evaluados, mostrando que existe una clara dife-
renciacion entre las caracteristicas de ambos establecimientos.

<L M
Fig. 2. Dendrograma obtenido mediante andlisis de cluster jerarquico de los lotes.

Para todos los lotes analizados en este estudio, los modelos ANN presentaron un mejor
ajuste que los modelos QRFI y RK (Tabla 3). Para los lotes C, D y F el modelo que
mejor ajustd fue un ANN global (nRMSE = 7.6, 9.4 y 7.2, respectivamente), mientras
gue para los demas la mejor opcién fue un modelo local. En los lotes C y D, la elevada
variabilidad multivariada en estos lotes podria ser un indicador de que los valores de
las covariables pudieron haber comprometido la capacidad predictiva de los modelos
locales.

Por su parte, los modelos QRFI mostraron en lineas generales mejor ajuste que los
modelos RK. QRFI local fue el mejor modelo — excluyendo los modelos ANN —en los
lotes Ay F (nRMSE = 12.2 y 8.1, respectivamente). Para el lote G el modelo con menor
grado de error fue un RK local (nRMSE = 10.8). Los lotes F y G fueron los que pre-
sentaron menor variabilidad de MO. Esta homogeneidad relativa posiblemente haya
facilitado que los modelos locales, a pesar de disponer de menos datos, hayan mostrado
mejor ajuste.
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Tabla 3. Raiz del error cuadratico medio expresada como porcentaje (nRMSE) para la prediccion
del contenido de materia organica en cada uno de los lotes (L), mediante modelos de aprendizaje
automatico: Quantile Regression Forest Spatial Interpolation (QRFI), Kriging Regresion (RK);
y redes neuronales artificiales (ANN). En negrita se sefiala el mejor modelo para cada lote.

L QRFI RK ANN
Global Local Global Local Global Local
A 135 12.2 13.9 125 114 111
B 11.1 12.4 14.7 11.1 9.5 9.4
C 131 13.6 16.6 17.3 7.6 8.1
D 156 21.7 17.8 22.2 9.4 11.8
E 176 19.1 29.2 17.0 7.6 7.3
F 96 8.1 11.2 8.5 7.2 7.6
G 109 11.0 15.7 10.8 10.0 6.2

El nimero de muestras tomadas por lote resulto crucial a la hora de definir el desem-
pefio de modelos globales o locales. Los lotes con menor nimero de muestras (C, D y
E; n = 17 muestras cada uno) exhibieron en general mejor ajuste en los modelos globa-
les para los tres métodos de prediccion, a excepcién del del lote E usando ANN, donde
existe una leve mejora del modelo local (nRMSE = 7.3 vs 7.6). Dado que la densidad
de muestreo fue relativamente homogénea en todos los lotes, los resultados sugieren
gue los modelos de prediccién local pierden capacidad predictiva cuando la cantidad
de muestras del lote es baja (< 30) sin importar la superficie. Un muestreo mas intenso
en estos lotes podria reduciria los errores de prediccion.

Es necesario aclarar que los modelos “globales” ajustados mediante ANN para cada
lote no son iguales, dado que tanto los hiperparametros como los pesos asignados a
cada covariable han sido ajustados utilizando como set de datos de validacién los datos
del lote objetivo. Es decir, cada fila de la columna ANN Global representa un modelo
diferente, no el ajuste de un mismo modelo sobre todos los lotes. El término Global en
este trabajo hace referencia al uso de todos los datos disponibles en el set de datos de
entrenamiento.

La combinacion de hiperparametros del modelo de mejor ajuste fue diferente para
cada uno de los lotes (Tabla 4), aunque una tasa de aprendizaje de 0.01 se repitié en
cinco lotes. En dos casos el uso de dropout fue necesario. En tres de los lotes fue pre-
ferible el uso de las funciones de regularizacién L1 y L2 en conjunto; estos tres casos
presentaron una estructura neuronal de mayor complejidad. Lo contrario ocurrié para
los lotes A, B, D y F, los cuales ademas presentaron estructuras mas sencillas, con una
Unica capa oculta. Para los lotes B, D y F no fue necesario emplear ninguna técnica de
regularizacion.
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Tabla 4. Hiperparametros correspondientes al mejor modelo ajustado para cada lote (L). L1y
L2: funciones de pérdida; SR: iteraciones de detencion anticipada; LR: tasa de aprendizaje.

L Meétodo Funcién de Activacion Estructura L1 L2 SR LR
A Local Maxout with Dropout (10) le-5 0 3 0.01
B Local Rectifier (20) 0 0 3 0.01
C Global Rectifier with Dropout (256,256) le-5 le5 5 0.01
D Global Rectifier (20) 0 0 3 0.01
E Local Tanh (20,20) le-5 le-5 5 0.001
F  Global Maxout (5) 0 0 3 0.005
G Local Tanh (30,30,30) le-5 le-5 5 0.01

Para los lotes C y G la estructura con mejor ajuste fue una estructura compleja, ya sea
por nimero de neuronas o por nimero de capas. No existe a la fecha una regla o ecua-
cién probada para la determinacidn de la estructura neuronal 6ptima. Si bien los coefi-
cientes de error y el uso de técnicas de regularizacién apuntan en otro sentido, un posi-
ble sobreajuste de los modelos debe ponerse sobre la mesa al presentarse modelos de
un cierto grado de complejidad frente a conjuntos pequefios de datos (Ying, 2018).

El tiempo de ajuste de los modelos locales fue notablemente menor (10.16 vs. 2.6
segundos en promedio), aunque hay que considerar el nimero de pardmetros internos
del modelo, relacionado a la cantidad de variables explicativas (13 para modelos locales
y 5 para globales) y el tamafio del conjunto de datos cargado en cada uno (489 vs. 17-
55). Corrigiendo el tiempo computacional requerido por los modelos por la cantidad de
parametros, los valores fueron méas cercanos, aunque los modelos locales siguieron ex-
hibiendo mayor celeridad (0.782 vs. 0.52 segundos/parametro en promedio). El proce-
samiento y analisis de los datos, se realizd en un servidor remoto Ubuntu 20.04.6 LTS,
con procesador Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz x 12 nlcleos y 62 GB
de RAM.

Los mapas evaluados a partir del mejor modelo para cada lote mostraron coherencia
desde el punto de vista espacial, sin observarse artefactos como lineas rectas u otros
elementos no deseados (Fig. 3), los cuales son comunes en métodos que incorporan
informacion de covariables geograficas (Xie et al., 2022). En el limite entre algunos de
los lotes (ej. Sur del lote B y norte del lote C) se observan cambios a nivel del valor
promedio de MO, lo cual es esperable dado que los modelos usados para la prediccién
fueron especificos para cada lote. No obstante, se aprecia cierta continuidad en el patrén
espacial, lo que indica coherencia en la distribucion de MO a mayor escala.
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Fig. 3. Mapa de valores de materia organica (MO%) predichos para los lotes evaluados,
utilizando redes neuronales.

Las predicciones de todos los modelos en general presentan una correlacion positiva
significativa (p < 0.05) entre si, segun la prueba T modificada. Como excepcion, el
método RK global present6 una correlacion negativa con el modelo RK local en el lote
C (r =-0.58 y -0.69 para modelos con y sin efecto de lote, p < 0.05) y con el modelo
ANN local en el lote G (r = -0.54 para ambos casos, p < 0.01). Los modelos ANN local
y global presentaron correlacion significativa en todos los lotes, al igual que los mode-
los QRFI, con excepcidn del lote F, donde la correlacion no fue significativa.

Los modelos propuestos en este trabajo son individuales para cada lote, es decir, su
aplicabilidad se restringe Unicamente a un lote, permitiendo evaluar dentro de cada uno
el maximo desempefio de los distintos métodos. En vistas a una aplicacién més practica
de los conocimientos generados por este trabajo, estudios futuros deberian apuntar al
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ajuste de un Unico modelo global con un desempefio aceptable en todos los lotes a la
Vez.

4 Conclusiones

Los modelos basados en redes neuronales artificiales se consolidan como una alter-
nativa promisoria para la prediccion de MO a escala de lote. La optimizacién de hiper-
parametros de los modelos debe apuntar a corregir potencial sobreajuste a los datos,
especialmente frente a conjuntos de datos de menor dimension. Las predicciones reali-
zadas mediante los distintos modelos estuvieron correlacionadas entre si, mostrando
convergencia en la captura de los patrones de variabilidad espacial del contenido de
MO en el suelo.
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