
 

Precipitación Integrada Satelital: Combinación de 
Productos, Temperatura de Brillo Infrarroja y Actividad 

Eléctrica mediante Redes Neuronales Convolucionales 
 

Sergio Hernán González1,2,3,4 [0009−0009−1531−2182], Juan Jose Ruiz1,2,3 [0000−0002−5079−641X], 
Pablo Negri5,6 [0000−0003−0250−5208], Luciano Vidal4 [0000−0001−6715−2648], Ezequiel Geslin3 

 
1 Centro de Investigaciones del Mar y la Atmósfera (CIMA/CONICET-UBA), Buenos Aires, 

Argentina, 
2 Instituto Franco-Argentino de Estudios sobre el Clima y sus Impactos (IRL 

IFAECI/CNRS-IRD-CONICET-UBA), Buenos Aires, Argentina, 
3 Departamento de Ciencias de la Atmósfera y los Océanos (DCAO-FCEN-UBA), Buenos 

Aires, Argentina 
4 Servicio Meteorológico Nacional de Argentina, Buenos Aires, Argentina 

5 Instituto de Investigación en Ciencias de la Computación (ICC/CONICET-UBA), 
(DC,FCEyN/UBA), Buenos Aires, Argentina 

6 Departamento de Computación (DC-FCEN-UBA), Buenos Aires, Argentina 
sergio.gonzalez@cima.fcen.uba.ar, jruiz@cima.fcen.uba.ar, 
lvidal@smn.gov.ar, pnegri@gmail.com, ezegeslin@gmail.com 

 
Resumen. El monitoreo de la precipitación es sumamente crucial para la actividad 
agropecuaria, ya que es un componente fundamental del balance hidrológico que tiene un gran 
impacto en los rindes. Las observaciones in-situ a través de pluviómetros son escasas, por lo 
cual se complementa con estimaciones de precipitación provenientes de sensores remotos (i.e. 
satélites y radares meteorológicos) que incrementan la cobertura espacial y temporal. En este 
trabajo se propone utilizar un modelo de redes neuronales convolucionales con una arquitectura 
de tipo UNet a partir de datos provistos por el satélite GOES-16. En particular, se evaluará el 
uso combinado de temperatura de brillo en infrarrojo (que brinda información de la temperatura 
del tope de las nubes) y la actividad eléctrica (que brinda información sobre la intensidad de la 
convección). El entrenamiento del modelo se realiza utilizando datos de precipitación estimada 
por el radar meteorológico a bordo del satélite GPM. 
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Integrated Satellite Precipitation: Combining Products, 
Infrared Brightness Temperature and Electrical Activity 

by Convolutional Neural Networks 
 
Abstract. Precipitation monitoring is extremely crucial for agricultural activities, since it is a 
fundamental component of the hydrological balance that has a great impact on yields. In-situ 
observations through rain gauges are scarce, so it is complemented with precipitation estimates 
from remote sensors (i.e. satellites and meteorological radars) that increase the spatial and 
temporal coverage. In this work we propose to use a convolutional neural network model with a 
UNet type architecture, based on data provided by the GOES-16 satellite. In particular, the 
combined use of infrared brightness temperature (which provides information on cloud top 
temperature) and electrical activity (which provides information on convection intensity) will 
be evaluated. Model training is performed using precipitation data estimated by the GPM 
satellite-borne weather radar. 
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1​ Introducción 
 
La variabilidad de la precipitación a escalas espaciales y temporales no puede 
resolverse completamente con pluviómetros convencionales, especialmente en 
regiones con escasez de datos de superficie. Con el objetivo de complementar estas 
observaciones se han desarrollado diferentes metodologías para aprovechar el 
potencial de los sensores remotos. Los radares pueden proporcionar una estimación de 
la precipitación en tiempo real y con alta resolución espacial, pero esta solo está 
disponible en su rango de medición. Los satélites geoestacionarios tienen una amplia 
cobertura espacial y disponibilidad en tiempo real, con una resolución 
espacio-temporal relativamente alta. Estas características son muy relevantes para la 
detección y el monitoreo de nubes precipitantes. 

Los datos provenientes de satélites de órbita geoestacionaria que utilizan 
sensores en el rango infrarrojo (IR) ofrecen ventajas como una alta frecuencia 
temporal y cobertura espacial sobre continentes y océanos. Esto permite capturar el 
ciclo de vida de las nubes precipitantes, a diferencia de los satélites de órbita terrestre 
baja, cuya frecuencia y cobertura de observación son limitadas debido a su tiempo de 
revisita y ancho de escaneo. Asimismo, satélites geoestacionarios como el 
Geostationary Operational Environmental Satellites (GOES) - 16 y el actual GOES-19 
poseen sensores ópticos que detectan los destellos provenientes de la actividad 
eléctrica asociada a tormentas. 

Estudios previos han demostrado la relación entre la temperatura de brillo 
(TB) infrarroja, la actividad eléctrica y la precipitación [1,2,3]. Los datos de IR solo 
proporcionan información sobre las características del tope de las nubes, mientras que 
los destellos ubican las regiones donde la convección húmeda profunda es más activa.  

En este trabajo se propone utilizar un modelo de aprendizaje automático 
basado en una arquitectura UNet [4] que estime la precipitación a partir del algoritmo 
de ECP Rainfall Rate and Quantitative Precipitation Estimation (RRQPE) proveniente 
del satélite GOES-16 [5], y evaluar su desempeño incluyendo datos de TB en 
infrarrojo y actividad eléctrica. La red se entrena con estimaciones de precipitación 
del sensor Dual-frequency Precipitation Radar (DPR) [6] a bordo del satélite de órbita 
baja Global Precipitation Measurement (GPM). 

 
2​ Datos 
 
El objetivo del trabajo es el desarrollo de modelos de estimaciones de precipitación 
satelitales mediante redes neuronales convolucionales. Como datos de entrada se 
utilizan el algoritmo de ECP del satélite GOES-16 (RRQPE), derivado de datos en 
infrarrojo; la temperatura de brillo (TB) del canal 13 (10,3 μm) del sensor Advance 
Baseline Imager (ABI); y del sensor óptico Geostationary Lightning Mapper (GLM) 
[7] la variable Flash Extent Density (FED), que es el conjunto de diversos grupos de 
pulsos ópticos, que cada uno representa a un flash individual. Los datos del GLM son 
provistos en pares de datos latitud/longitud con una resolución temporal de 20 
segundos, a lo cual se utilizó la herramienta de GLMTools [8] para proyectar los datos 
al reticulado del sensor ABI y en acumulados de un minuto. Finalmente estos datos 
poseen una resolución temporal de 10 minutos (1 minuto para el GLM) y espacial de 
2 km, con una cobertura espacial de América y los océanos adyacentes. 
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El algoritmo de estimación de precipitación en superficie del sensor DPR del 
satélite GPM constituye el target del modelo. Esta estimación está basada en datos de 
radar (en microondas activas), pero con un periodo de revisita de 1 o 2 días, con un 
ancho de sensado de 245 km2 y una resolución espacial de 5 km. Las estadísticas de 
validación de este sensor son un error cuadrático medio de 1.83 mm h⁻¹, una 
correlación lineal de Pearson de 0.61 y un sesgo positivo de 0.2 mm h⁻¹ [9]. 

 
3​ Metodología 
 
3.A​ Construcción del Conjunto de Datos 
 
Los datos comprenden el periodo de enero 2020 a junio 2021 inclusive, sobre la 
región de Sudamérica (90°O-30°O | 50°S-10°N). El conjunto de datos para el 
entrenamiento del modelo consiste en sectores cuadrados de 240 km2 tomados a lo 
largo de la pasada del DPR que se superponen en un 40% (para incrementar el tamaño 
del conjunto de entrenamiento). Por otra parte, se cuenta con estimaciones del 
RRQPE, la TB y el FED interpoladas a la retícula de los sectores del DPR utilizando 
interpolación bi-lineal y el dato más cercano en tiempo. Para el FED se realizó un 
acumulado de 10 minutos anteriores al minuto del DPR. 

Las imágenes utilizadas para el entrenamiento son seleccionadas mediante el 
siguiente criterio: que la imagen cuente con al menos un 20% de los píxeles con PP 
mayor a 0.1 mm.h-1 del DPR. Mediante este criterio se obtuvieron un total de 6160 
muestras de entrenamiento. Este criterio solo se refiere al RRQPE, debido a que es el 
objetivo evaluar la inclusión de más variables de entrada. 

 
3.B​  UNet  
 
El modelo implementado es un modelo de redes neuronales convolucionales con una 
arquitectura del tipo UNet propuesta en [4]. Para entrenar y evaluar el desempeño de 
la red se utilizó un conjunto de datos de entrenamiento (90%) y validación (10%) de 
los datos de enero 2020 a junio 2021; se excluyen los datos de enero y junio de 2021 
para el periodo de testeo. 

La arquitectura UNet tiene por propósito codificar la información de entrada 
a un espacio de mínima dimensión, la cual posteriormente es decodificada en conjunto 
con la información del mismo nivel de codificación. Para el entrenamiento de la red, 
se utiliza una función de costo de error cuadrático medio, un optimizador ADAM con 
un batch size de 128 imágenes, con una tasa de aprendizaje de 0.001, y se define un 
máximo de 1000 épocas de entrenamiento, implementando un método de reducción de 
la tasa de aprendizaje en función de la optimización de la función de costo para el 
conjunto de validación. 

 
4​ Resultados y Conclusiones 
 
Se desarrolla un modelo de UNet incluyendo sucesivamente diferentes conjuntos de 
datos de entrada. En primera instancia se utiliza el RRQPE; posteriormente se incluye 
la TB y el FED. En la Tabla 1 se presentan las métricas del error cuadrático medio 
(MSE), el sesgo (BIAS) y la correlación de Pearson (CORR) obtenidas. También se 
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incluye el Equitable Skill Score (ETS) como métrica derivada de la matriz de 
confusión para los umbrales de 1 y 5 mm.h-1, que mide la habilidad de detección con 
respecto a un modelo aleatorio.  
 

Estimación MSE [mm.h-1] BIAS [mm.h-1] CORR ETS - 1 mm.h-1 ETS - 5 mm.h-1 
RRQPE 5.48 0.07 0.20 0.16 0.10 
UNet-R 2.29 -0.01 0.24 0.17 0.0 

UNet-RTF 2.24 -0.05 0.26 0.17 0.03 
Tabla 1. Métricas de error cuadrático medio (MSE), el sesgo (BIAS) la correlación de 
Pearson (CORR), y el Equitable Skill Score (ETS) para 1 y 5 mm para el conjunto de 
testeo para el modelo implementado.  
 

 
Figura 1: Ejemplo de aplicación del modelo propuesto en la fecha 12/01/2021 06:14 
UTC. Los datos de entrada RRQPE, TB y FED, el target el DPR y las salidas de la 
UNet utilizando todos los datos de entrada y solo utilizando el RRQPE. 
 

Las estimaciones obtenidas por las UNets propuestas mejoran todas las 
métricas del RRQPE, a excepción del ETS en 5 mmh-1 qué es el producto disponible 
de manera instantánea en alta resolución temporal. Se observa que la inclusión de la 
TB y el FED reduce el MSE, aumenta el BIAS negativo y aumenta la correlación. 
Asimismo, para el ETS de 1 mm.h-1 no se observan diferencias, pero en 5 mm.h-1, se 
observa una leve mejora a partir de la la inclusión de la TB y la FED. Para un trabajo 
similar aplicado sobre la región de Brasil [10], obtienen métricas superadoras con un 
MSE, cercano a 1.5 mm.h-1, un BIAS positivo de 0.01 y una correlación levemente 
menor a 0.5. Sin embargo, el target que utilizan combina el DPR (basado en 
microondas activas) con estimaciones provenientes de microondas pasivas, lo cual 
podría dar resultados que, aunque numéricamente sean superiores, se basan en una 
referencia diferente. 

En la Figura 1 se muestra un ejemplo de aplicación, en la que se visualizan 
los datos de entrada, el DPR y las salidas según el conjunto de datos utilizado. 
Utilizando todas las variables de entrada, la UNet-TRF mejora la posición de 
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precipitación convectiva intensa, respecto de solo el UNet-R y el RRQPE. 
Como trabajo futuro se explorarán funciones de costo que, en conjunto con 

los diversos datos de entrada, mejoren la detección y representación de precipitaciones 
intensas que son subrepresentadas por el modelo, en parte debido al uso del MSE 
como función de costo. Además, se incluirán verificaciones con datos observados de 
precipitaciones in situ, como estaciones meteorológicas automáticas, y se evaluará el 
desempeño con respecto a otros productos de ECP del estado del arte. 
 

Esta investigación ha contado con el apoyo parcial del proyecto PREVENIR, 
ejecutado por la Agencia Japonesa de Cooperación Internacional y la Agencia 
Japonesa de Ciencia y Tecnología en el marco del Programa de Asociación de 
Investigación Científica y Tecnológica para el Desarrollo Sostenible. 
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