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Resumen En los últimos años, muchos experimentos científicos son rea-
lizados por medio de workflows científicos. Estas tecnologías facilitan la
realización de experimentos que son computacionalmente intensivos, y
que muchas veces requieren ser ejecutados en Clouds públicas. Esto hace
que optimizar la ejecución de estas aplicaciones sea un problema desafian-
te debido a que la virtualización de recursos en Cloud crea necesidades de
planificación a la vez de representar incertidumbre en la ejecución. Por
este motivo, se han usado heurísticas y metaheurísticas para este proble-
ma. En particular, se ha intentado resolver el problema usando técnicas
de Aprendizaje por Refuerzo y algoritmos evolutivos. En este trabajo se
presenta un problema markoviano de decisión para resolver este proble-
ma desde el punto de vista de Aprendizaje por Refuerzo. En conjunto
con este modelado, se presenta también una variación que permite abor-
dar el mismo problema como un algoritmo evolutivo multiobjetivo. Estas
dos estrategias son comparadas usando 4 workflows de referencia de la
literatura, utilizando el simulador CloudSimPlus y máquinas virtuales
presentes en Amazon. Para este análisis se estudia el costo monetario
de ejecución, el tiempo total de ejecución (makespan) y la norma L2 de
estas dos métricas.
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Resumen In recent years, many scientific experiments have been per-
formed using scientific workflows. These technologies facilitate the per-
formance of computationally intensive experiments, which often require
to be executed on public Clouds. Optimizing these applications becomes
a challenging problem since resource virtualization demands scheduling
needs to be satisfied, at the same time it has to deal with uncertainties
during execution. For this reason, heuristic and metaheuristic solutions
have been proposed to this problem. Indeed, Reinforcement Learning
and evolutionary algorithms have been used to tackled this problem.
This paper presents a Markovian Decision Problem that can be used
to solve this problem using Reinforcement Learning. Additionally, a va-
riation of this modeling is introduced to solve the same problem using
multi-objective evolutionary algorithms. These two strategies are com-
pared using 4 benchmark workflows using the simulator CloudSimPlus
and virtual machines present on Amazon public clouds. Total monetary
cost of the execution, total execution time (i.e. makespan), and the L2
norm of these two quantities are used for the comparative analysis.

Keywords: Reinforcement Learning, Evolutionary Algorithm, Cloud
Computing, Scientific Workflow

1. Introducción

Los experimentos científicos requieren grandes capacidades de computo de-
bido a la complejidad de los problemas que abordan. Frente a esto, los workflows
científicos han surgido como una alternativa para estructurar estos experimen-
tos. Además, las infraestructuras de Cloud Computing han sabido responder a
las necesidades de workflows científicos. La elasticidad de los servicios de Cloud
Computing permite adaptar dinámicamente los recursos usados por los work-
flows según las necesidades al momento de la ejecución (Mell et al., 2011).

Una buena estrategia de asignación de recursos es aquella que sabe adaptar
estos recursos a las necesidades de ejecución buscando minimizar una función
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objetivo. Por ejemplo, se puede buscar la minimización del tiempo de ejecución
o la minimización de los costos asociados a la ejecución. Este aprovisionamiento
de recursos y la posterior asignación de esos recursos a cada tarea del workflow
buscando minimizar alguna de las cantidades anteriores es un problema conocido
como autoescalado o autoscaling (Mao & Humphrey, 2013; Monge et al., 2017).
Este problema pertenece al conjunto de los problemas NP-duro, por lo que la
búsqueda de soluciones ha sido explorada a través del uso de técnicas heurísticas
y metaheurísticas (Monge et al., 2018).

Los servicios de Cloud públicos‖ ofrecen a sus usuarios máquinas virtuales
(MV) que pueden ser adquiridas según sus necesidades. Esto se logra a partir de
estrategias de virtualización de los recursos, lo cual genera una incertidumbre en
el rendimiento de la infraestructura contratada de un 20 % (Ericson et al., 2017;
Pu et al., 2010; Schad et al., 2010). Anteriormente, el Aprendizaje por Refuerzo
(AR) (Sutton & Barto, 2018) fue utilizado en el problema del autoescalado (Garí
et al., 2022, 2024) dado que permite trabajar en entornos con alta incertidumbre.

En Chellapilla y Fogel (2001) se propone la búsqueda de agentes por medio
de algoritmos evolutivos (AE). En este sentido, se busca que los AE encuentren
funciones aproximadoras que permitan identificar las mejores acciones de un
agente para un estado del sistema. Cabe señalar que este modelado de agentes
es similar a AR y podría usarse en problemas de autoescalado.

El objetivo del presente trabajo consiste en utilizar AE usando las ideas de
Chellapilla y Fogel (2001) para crear agentes de autoescalado de ejecuciones
de workflows científicos en Cloud. El resto del trabajo está estructurado de la
siguiente manera. En la sección , se describe el contexto del problema que motiva
al presente trabajo. Allí también se introducen las técnicas a comparar. En la
sección 3, se describe el modelado de las políticas de autoescalado a encontrar
por métodos evolutivos. En la sección 4, se discuten los resultados obtenidos, y
para poder analizar la calidad de los nuevos resultados obtenidos, se los compara
con los resultados de (Garí et al., 2022). Finalmente, en la sección 5 presentan
las conclusiones y se discuten los trabajos futuros.

2. Contexto del Problema

Desde casi el inicio de la computación y hasta hoy, el aumento de la poten-
cia computacional disponible ha permitido lograr ejecutar eficientemente gran
cantidad de aplicaciones. En este contexto, los workflows científicos se han es-
tablecido como una importante abstracción para el procesamiento de datos y
la ejecución de grandes y complejos experimentos (Liu et al., 2016; Meade &
Fluke, 2018; Vandenbrouck et al., 2019). Las tecnologías de workflows han per-
mitido acelerar el desarrollo de aplicaciones científicas porque desacoplan los
saberes disciplinares del experimento del know-how específico de ciencias de la
computación.

‖Por ejemplo, Amazon EC2 https://aws.amazon.com/ec2, Microsoft Azure https:
//azure.microsoft.com/en-us/, Google Cloud Platform https://cloud.google.com/
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En general, un workflow define un objetivo complejo que es alcanzado me-
diante la realización de un conjunto de tareas que poseen dependencias entre
sí. Además, las características de las tareas y las dependencias determinan una
carga de trabajo variable durante la ejecución. Es decir, en diferentes momentos
de la ejecución, múltiples tareas pueden ser ejecutadas en paralelo, mientras que
en otros momentos las tareas deben ser ejecutadas de forma secuencial. Además,
cada tarea del workflow requerirá distintos tipos de recursos computacionales,
como por ejemplo, poder de procesamiento, ancho de banda o memoria.

El paradigma Cloud Computing ha sido aplicado a workflows científicos prin-
cipalmente por su elasticidad a la demanda. Cloud permite un acceso ubicuo,
conveniente y bajo demanda a través de la red a un conjunto compartido de
recursos configurables que pueden ser aprovisionados o liberados rápidamente
con un mínimo esfuerzo de gestión o interacción del proveedor de servicios (Mell
et al., 2011).Un usuario puede decidir aumentar o disminuir el número de CPUs
a utilizar, o la cantidad de instancias según la necesidad de la aplicación. Para
poder ofrecer a los usuarios distintos tipos de recursos, Cloud utiliza tecnolo-
gías de virtualización. Luego, las MVs están disponibles para ser adquiridas por
medio de un esquema de pago por su uso.

Las Cloud públicas permiten modificar de manera dinámica los recursos dis-
ponibles y ajustarlos según la demanda durante la ejecución de workflows. Esta
modificación dinámica permite introducir lo que se conoce como el problema del
autoescalado que ha sido abordado en la literatura reciente (Garí et al., 2019,
2022; Monge & Garino, 2014; Monge et al., 2017, 2018, 2020).

Dado un conjunto de tareas a ejecutar, un número de recursos de diferentes
tipos, y ciertos objetivos de optimización, el autoescalado se define a través de
dos subproblemas de optimización interrelacionados:

• Se llama escalado (scaling) al problema de decidir cuántos recursos de cada
tipo se necesitan en cada momento de acuerdo a la demanda de la aplicación.

• Se llama planificación (scheduling) al problema de decidir la asignación de
las tareas a los recursos específicos para su ejecución.

Es muy importante señalar que el problema queda definido una vez fijado el
objetivo a optimizar. Por ejemplo, en el contexto de workflows en Cloud, se
puede buscar minimizar el tiempo de ejecución o el costo de asociado al uso de
diferentes MVs, entre otros.

Se sabe que ambos subproblemas de autoescalado son NP-duros (Mao &
Humphrey, 2013), y en particular, ambos problemas han sido abordados usando
Aprendizaje por Refuerzo (AR) (Garí et al., 2021). Por medio de AR se genera
un agente que aprende un comportamiento adecuado para optimizar un deter-
minado objetivo. Este aprendizaje ocurre mediante la interacción del agente con
el entorno. Por cada acción tomada por el agente, se observa su impacto a través
de una señal numérica de recompensa. Al mismo tiempo, las acciones del agente,
pueden modificar el entorno (Sutton & Barto, 2018). Cuando esto ocurre se dice
que el sistema ha pasado de un estado a otro estado. El análisis estadístico de
estos factores permiten que el agente aprenda a definir qué acciones tomar en

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 52



qué momento. Esta decisión está representada con las políticas que son aprendi-
das durante el entrenamiento. En Garí et al. (2022) se evaluaron de políticas de
autoescalado de workflows científicos generadas por AR en entornos Cloud.

Cabe señalar que es difícil realizar estos estudios en infraestructuras Cloud
reales ya que los tiempos de entrenamiento serían del orden de años. Por este
motivo, se utilizan simuladores como CloudSimPlus (Silva Filho et al., 2017).
Al recurrir a simulaciones, un trabajo que demoraría horas en un servidor real,
transcurre en unos pocos segundos dentro del simulador. De esta manera, se
puede entrenar una política en unos pocos minutos. Otra ventaja de usar si-
mulaciones, es que los tiempos de entrenamiento son menores y por lo tanto el
consumo de energía es menor. Esto es muy importante, dado que nuevos de-
sarrollos en Machine Learning han dado lugar a mayores preocupaciones en el
impacto ambiental de estos experimentos (Ding & Shi, 2024).

En el presente trabajo se propone utilizar un algoritmo genético para la crea-
ción de estos agentes. Como se dijo anteriormente, la optimización de autoesca-
lado de workflows es un problema desafiante debido a lo complejo del problema
y a la dinámica del mismo. Por esta razón, las políticas deben ser eficientes y
adaptativas. Garí et al. (2021) señala que AR es una técnica muy usada para
autoescalado, pero también lo es la computación evolutiva. De hecho, los autores
de este trabajo señalan al menos 3 trabajos que combinan ambas técnicas.

La computación evolutiva tiene muchísima relevancia en la búsqueda de solu-
ciones en grandes espacios de búsqueda garantizando gran diversidad y calidad
de las soluciones encontradas. Por otro lado, AR es altamente efectivo en el
aprendizaje adaptativo basado en la interacción con ambientes dinámicos. Por
lo anterior, resulta interesante comparar los resultados entre algoritmos gené-
ticos y AR para entender sus limitaciones. En la siguiente sección se describe
cómo este problema de decisión markoviano fue modificado para crear un agente
que pudiera ser encontrado por métodos evolutivos.

3. Modelado del problema

Para la obtención de políticas para el problema de autoescalado se partió
de un problema de decisión markoviano conocido (Garí et al., 2022). Sobre este
problema, se plantearon modificaciones para poder transformarlo en un pro-
blema de optimización basado en algoritmos evolutivos (AE). En las siguientes
subsecciones se presentan las características de estos dos espacios de estados y
acciones. En primer lugar, se presenta el espacio de estados y su discretización.
Luego, se describe el espacio de acciones, así como las limitaciones existentes a
las acciones para cada estado. Tras esto, se introduce esquemáticamente qué es
un AE. Finalmente, se describe el problema de optimización presentado y cuál
es la codificación de las políticas usadas como solución.

3.1. Espacio de estados

En Garí et al. (2022) se propuso un modelo para definir el estado de la
ejecución de un workflow basado en la estructura de dependencias, las tareas en
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ejecución y las máquinas virtuales (MV) en uso. Esta caracterización se basa en
las variables:

N : Número de tareas listas para ejecutar en el workflow. Esas tareas son
aquellas tareas para las cuales todas sus dependencias han sido completadas.
F : Número de tareas listas para ejecutar que son dependencias de más de
una tarea. Se usa F para señalar que son tareas con una estructura tipo fork.
En la figura 3.1 se corresponden con la estructura llamada distribution.
J : Número de tareas listas para ejecutar que tienen más de una tarea como
dependencia. Se usa J para señalar que estas tareas tienen una estructura
tipo join. En la figura 3.1, las estructura tipo join son llamadas aggregation.
P : Número de tareas listas para ejecutar que dependen y son dependencia de
una única tarea. Se usa P para señalar que estas tareas tienen una estructura
tipo pipeline. En la figura 3.1 se muestra una estructura pipeline.
I: Número de MVs listas para ser usadas durante la ejecución. Se usa I para
hacer referencia a la infraestructura contratada para la ejecución.

Figura 1. Representación gráfica de las tareas en un workflow. Se muestran las es-
tructuras fork, pipeline y join con los nombres distribution, pipeline y aggregation,
respectivamente

A partir de las variables N,F, J, P, I se definen 5 nuevas variables:

f =
F

N
j =

J

N
p =

P

N

i =


si I > 0

N

I

si I = 0 −1

m =

 si I ⩾ 60 1

si I < 60 0

(1)

En la ecuación 1 se observa, i = N
I solo si el número de MVs listas para usar

es mayor a 0. De lo contrario, i = −1. Adicionalmente, m representa que se ha
llegado a la cantidad máxima de MVs disponibles para alquilar. Los workflows
usados tienen 100 tareas a ejecutar. Al elegir 60 MVs como el número máxi-
mo de tareas a usar se evita que se seleccione una MV por tarea. Además 60
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MVs representa más del 50 % de las tareas. Las variables f, j, p, i son variables
continuas; esto lleva a que existan infinitos estados.

Para evitar esto y trabajar con una cantidad discreta de estados en Garí
et al., 2022 se realizó una discretización de la siguiente forma:

f =



si f = 0 None

si 0 < f ⩽
1

3
Low

si
1

3
< f ⩽

2

3
Medium

si
2

3
< i ⩽ 1 High

(2)

La discretización de la ecuación 2 aplica también a las variables j y p.
Adicionalmente, la variable i fue discretizada siguiendo la ecuación 3:

i =


si i = −1 None

si 0 < i < 1 Low

si i = 1 Medium

si i > 1 High

(3)

Dado que la variable m ya es discreta (solo toma valores 0 y 1), ahora el
espacio de estados S tiene forma definida por la ecuación 4:

A = {None,Low,Medium,High}
B = {0, 1}
S = A4 × B

(4)

De la ecuación 4 se puede observar que |S| = 512

3.2. Espacio de acciones

En el trabajo presentado en (Garí et al., 2022) se realizó la implementación
de 3 acciones de dos tipos:

Acciones de escalado: son acciones donde se alquila una MV adicional para
la ejecución, es decir,aumenta la infraestructura disponible para las tareas
que se encuentren listas para ejecutarse. Se consideran dos tipos de MVs:

• T1: Se contrata una MV tipo t2.micro del servicio Amazon EC2. Esta
MV consta de 1 vCPU, su uso por hora cuesta 0.013 USD y tiene un
poder de computo de 1 ECU. Un ECU es una unidad llamada EC2
Computing Unit (ECU). Esta medida es usada por Amazon para estimar
las características de sus MVs en términos de su poder de cómputo.

• T3: Se contrata una MV tipo c3.2xlarge. Consta de 8 vCPU. su costo
por hora es de 0.42 USD y tiene un poder de computo total de 28 ECU,
es decir 3.5 ECU por vCPU

Acciones de planificación: son acciones donde se envía a ejecutar las tareas
listas para ejecutar a los recursos que se tienen disponibles en un determinado
momento. En el modelo actual existe una sola acción llamada ECU. En esta
acción se eligen MVs para cada tarea, priorizando los ECU altos.
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Limitaciones a las acciones Como se dijo anteriormente, existen dos tipos de
acciones, acciones de escalado y acciones de planificación. Conviene señalar que
ambas acciones están limitadas por el estado en el que se encuentra el sistema.
Es decir, no todas las acciones pueden llevarse a acabo para cada estado.

La limitación más intuitiva es el caso de la variable m: esta variable informa
si se ha alcanzado o no el número máximo de MVs a usar. En estudios anteriores
se observó que cuando este valor es de 60 se obtienen buenos resultados (Garí
et al., 2022). En este sentido, las acciones de escalado quedan excluidas cuando
m = 1, ya que no se dispone de recursos.

La otra limitación está asociada a las acciones de planificación. Cuando no
hay MVs alquiladas, carece de sentido ejecutar una acción de planificación. Por
lo tanto, las acciones de planificación quedan excluidas cuando i = None.

Dada la forma en que m e i dependen de la infraestructura contratada, no
existen estados con m = 1 y i = None. Esto sería equivalente a tener 60 MVs
contratadas (para satisfacer m = 1) al mismo tiempo que no tener contratada
ninguna MV (para satisfacer i = None)

De esta manera, las acciones permitidas quedan representadas en la figura 2.

Acciones válidas
para un estado ¿ m = 1 ? ¿ i =  None ? 

Sólo usar acciones 
de planificación.

1 acción
256 estados

Sólo usar acciones 
de escalado.
2 acciones

128 estados

Usar todas las 
acciones.

3 acciones
128 estados

SíSí

NoNo

Figura 2. Acciones válidas para el sistema en función de los estados. Existe una única
acción de planificación. Por lo tanto cuando solo se pueden usar acciones de planifica-
ción, existen 256 estados donde el comportamiento es determinista.

3.3. Algoritmos evolutivos

Los algoritmos evolutivos (AE) son un tipo de metaheurística para proble-
mas de optimización que se inspiran los procesos evolutivos por selección natural
de las especies. En líneas generales, un algoritmo evolutivo consta de la estruc-
tura señalada en el Algoritmo 1. Existe un proceso de generación de soluciones
iniciales de manera aleatoria. Luego, se evalúa la aptitud de estas soluciones,
es decir, se analiza qué tanto optimiza cada solución el problema. A partir de
estos valores de aptitud, se eligen soluciones para ser recombinadas. El proceso
de recombinación consiste en tomar información de una o más soluciones padres
para generar nuevas soluciones hijas buscando que tengan lo mejor de las so-
luciones padres. De esta manera, el proceso de recombinación es un proceso de
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explotación en un esquema de explotación-exploración, usa información conoci-
da para mejorar las soluciones. Seguido al proceso de recombinación, ocurre un
proceso de mutación, es decir, se modifica una de las variables o genes de manera
aleatoria. Al agregar nueva información a la población, se dice que este proceso
de mutación es un paso de exploración, en tanto se obtiene nueva información
de las posibles soluciones del problema.

Una vez generadas las nuevas soluciones hijas, se elige cuáles de ellas son
las mejores que reemplazaran a las soluciones de la población original. De esta
manera, se obtiene por analogía un esquema de selección del más apto en la
versión más simplista de la teoría evolutiva. Este proceso es repetido varias veces
como ocurren los cambios de las especies a los largo de varias generaciones.

Algoritmo 1 Evolutive Algorithm
1: procedure Evolutive(maxGenerations, population):
2: Initialize population
3: Evaluate population using FitnessFunction
4: for i← 1 to maxGenerations do
5: Select best fit parents from population
6: Recombine parents with CrossoverOperator creating offsprings
7: Mutate offsprings with MutationOperator
8: Evaluate offsprings using FitnessFunction
9: Select fittest offsprings and population creating new population

A continuación se presenta cómo se encuentra codificada la solución del pro-
blema de optimización. Los detalles de implementación del algoritmo se discuten
en la siguiente sección.

3.4. Problema de optimización

El problema de minimización multiobjetivo está dado por: mı́n (makespan, cost)
Donde mı́n hace referencia al operador minimización multiobjetivo, que devuelve
un conjunto de soluciones donde mejorar uno de los objetivos empeora otro de
los objetivos. Esto da lugar a conjuntos Pareto dominantes. Esta minimización
es llevada a cabo sobre las soluciones al problema de autoescalado. En el con-
texto del problema markoviano de decisión propuesto, se utiliza un simulador
basado en CloudSimPlus para calcular el costo monetario de la ejecución (cost)
y el tiempo de ejecución (makespan)

La política solución deseada debe ser una política que para cada estado del
sistema detecte cuál es la mejor acción posible a realizar. Como se mencionó
en las subsecciones anteriores, el problema tiene 512 estados y 3 acciones. Sin
embargo, cuando m = 1, solo está disponible la acción de planificación. De esta
manera, hay 256 estados que tienen solo una única acción posible. Dicho de otro
modo, hay 256 estados donde el sistema tiene su evolución definida, pues solo se
permite una acción.
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Este hecho permite reducir la representación de las políticas. En lugar de
tener 512 estados con 3 acciones, ahora solo se necesitan 256 estados con 3
acciones, pues en los 256 estados restantes solo es posible una única acción. De
esta manera, la política puede ser representada por un arreglo de enteros de 256
elementos, donde cada elemento es un entero entre 0 y 2 (incluido). Esto da a
lugar a un espacio de búsqueda de 3256 posibles políticas.

Dada la longitud de la solución y que se utilizan números enteros para este
problema se utilizaron los operadores de recombinación uniform recombination
y de mutación (random resetting), que se explican en la figura 3. El operador de
mutación aplica sobre un elemento del arreglo usado para representar políticas,
es decir, sobre un gen.

0 2 1 0 1 1 1

1 0 2 1 2 0 0…P

…P

2

0 1

1

0 1 1

1

0

2 1

2

0 0…P

…P

Original Solutions Uniform Crossover (Crossover)

0 2 1 0 0 1 1

2 0 2 1 2 0 0…P

…P

Random Resetting (Mutation)

Figura 3. Operadores de recombinación y de mutación usados en este trabajo. Uniform
crossover es un tipo de operador que toma dos soluciones y crea dos soluciones nuevas
intercambiando elementos con probabilidad Pc. Random Resetting es un operador de
mutación que cambia un elemento a un nuevo valor con probabilidad Pm

Para para la búsqueda de soluciones se utilizó una versión del Algoritmo
NSGA-III (Deb & Jain, 2014) incluido en el framework MOEA. NSGA-III es
un algoritmo de optimización multiobjetivo que usa frentes de Pareto para la
optimización de múltiples objetivos. Luego de generar la nueva población de so-
luciones, NSGA-III establece los diferentes niveles de frentes de Pareto y utiliza
estos frentes para crear la próxima población. Primero incorpora los diferentes
frentes de mejor a peor hasta antes de exceder el tamaño de la población. Si al
agregar el próximo frente de Pareto, la cantidad de soluciones excede el tamaño
de la población, se agregan solo la cantidad necesarias para completar el tamaño
deseado de la población usando técnicas que aseguran la diversidad de las solu-
ciones en la población. En particular, en Deb y Jain (2014) los autores proponen
una elección basada en un conjunto de puntos de referencia. Estos puntos de
referencia son elegidos de manera tal que se encuentren amplia y uniformemente
distribuidos en hiperplanos de los objetivos a optimizar. Luego, las soluciones
en el frente de Pareto son comparadas con los puntos de referencia eligiendo las
más similares.

4. Resultados y discusión

Los experimentos fueron realizados con 4 workflows usados de referencia en la
literatura (Garí et al., 2022): CyberShake, Montage, LIGO’s Inspiral y SIPHT.
Para cada uno de esos workflows se realizaron 100 ejecuciones con una población

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 58



de 1000 individuos usando el algoritmo NSGA-III de MOEA. El operador de
recombinación usado ocurrió con una probabilidad de 100 % mientras que el
operador de mutación ocurrió con una probabilidad de 90 %.

Los experimentos han sido realizados mediante el uso del simulador Cloud-
SimPlus. Los valores de makespan y costo que guían el paso de selección de
NSGA-III son promedios de makespan y costo después 30 ejecuciones de un
mismo workflow. Cada una de las 30 ejecuciones usadas en el promedio, son
ejecuciones en donde se usan técnicas estocásticas para simular la variabilidad
de la duración de cada tarea del workflow.

Usando de referencia Garí et al., 2022 se decidió comparar los resultados de
ese trabajo con los obtenidos por NSGA-III. Para ello, se comparó el costo, el
makespan y la métrica L2 del trabajo anteriormente citado con los presentados
a continuación. La métrica L2, consiste en realizar el cálculo de la raíz cuadrada
de la suma de los cuadrados de las cantidades de los valores objetivo. Es decir,
es análoga a la distancia euclidiana. El uso de está métrica fue justificado en
Garí et al., 2022 dado que el makespan medido en horas y el costo medido en
dólares tenían valores del mismo orden de magnitud.

Para comparar estas dos técnicas se eligió en ambas los agentes con la me-
nor métrica agregada L2. Esto se debió a que una menor métrica agregada se
corresponde a menor makespan y menor costo. En el caso de los resultados con
AE, NSGA-III entrega como resultados las soluciones que pertenecen al primer
frente de Pareto. Sobre este primer frente, se elige aquella política que tiene me-
nor L2. En el caso de los agentes de AR, se elige aquel agente que ha reportado
el menor valor de L2, luego de un 30 ejecuciones de evaluación. En este sentido
la elección de agentes es similar a la realizada para las soluciones evolutivas,
buscando aquellas con menor L2.

makespan
[horas]

costo
[USD]

AR NSGA-III ganancia AR NSGA-III ganancia
CyberShake 5.12 5.14 -0.39% 6.66 6.09 8.56%
Inspiral 28.37 28.33 0.14% 36.13 37.33 -3.32%
Montage 1.83 1.83 <0.55% 2.06 2.53 -22.82%
SIPHT 80.22 80.39 -0.21% 49.15 33.76 31.31%

métrica agregada L2
AR NSGA-III ganancia

CyberShake 8.41 7.98 5.11%
Inspiral 45.94 46.86 -2.00%
Montage 2.77 3.14 -13.36%
SIPHT 94.08 87.19 7.32%

Tabla 1. Comparación de resultados entre las dos técnicas analizadas. Se reportan
variaciones en makespan, costo y métrica L2 entre los dos algoritmos. Se utilizó el
estimador U de Mann-Whitney para analizar si las diferencias encontradas son signifi-
cativas. En negrita se señalan los valores menores cuando estos son significativos.
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Una vez identificadas las mejores soluciones de ambos algoritmos se utilizaron
las 30 evaluaciones realizadas en cada una de las soluciones. De esta manera, se
compararon los 30 valores de makespan, costo y métrica L2 de cada algoritmo
por medio del test de Mann-Whitney de dos colas con p = 0,01. Estos resultados
se resumen en la tabla 1. Se observa que el makespan de CyberShake y SIPHT no
mejoran con NSGA-III, mientras que sí lo hace para Montage y LIGO’s Inspiral.
Sin embargo, estas diferencias son muy pequeñas (menores en valor absoluto a
1 %) y no significativas. Esto quiere decir que ambos autoescaladores producen
distribuciones estadísticas de makespan muy parecidas, tan parecidas que no se
puede descartar que sean la misma distribución. También se puede ver que para
el costo esta ganancia se invierte. Es decir, ahora CyberShake y SIPHT mejoran,
mientras que Montage y LIGO’s Inspiral empeoran. No obstante, las diferencias
sí son significativas para los 4 workflows.

Para la métrica agregada, se observa que los aumentos siguen la tendencia
observada en el costo: CyberShake y SIPHT mejoran, mientras que Montage y
LIGO’s Inspiral empeoran. Por otro lado, se observa que en CyberShake, SIPHT
y Montage, las diferencias en métrica agregada son significativas, mientras que no
lo es para LIGO’s Inspiral. La tendencia de la métrica agregada es explicable por
dos razones. Por un lado, el costo tiene diferencias significativas mayores al 5 %
en todos los casos donde persiste la significatividad. Es decir, estas diferencias
son lo suficientemente grandes para influir en la métrica agregada. Por el otro
lado, para LIGO’s Inspiral, la pérdida en costo del 3.33 % es muy baja. Esto,
sumado a la similitud de las distribuciones de makespan hace que los valores
de la métrica agregada se parezcan demasiado entre ellos, con lo cual el test de
significancia da negativo.

5. Perspectivas a futuro

Los resultados aquí presentados parecen prometedores. Se han logrado me-
joras con respecto a lo obtenido con otras técnicas. No debe descartarse el uso
de AE para problemas similares a futuro o incluso proponer alternativas al mo-
delado del problema.

En este trabajo, la búsqueda de políticas óptimas ha sido por medio de
AE. Sin embargo, existe la posibilidad de buscar políticas con ideas similares
a las propuestas en Chellapilla y Fogel, 2001. En ese caso, se debe redefinir el
problema de decisión markoviano. Estas modificaciones pueden darse tanto en
el espacio de estados (por ejemplo usando las variables continuas en lugar de la
discretización) como en el espacio de acciones (ya sea agregando nuevas MVs o
agregando acciones de planificación)

Otra posible modificación al problema de decisión markoviano podría consis-
tir en incluir variables de impacto ambiental. Shaw et al. (2022) es un ejemplo
de un trabajo que incluye el consumo de energía entre los objetivos a minimizar
con su función de recompensa. Del mismo modo, la optimización multiobjetivo
usada podría redefinirse para incluir el consumo de energía como otra variable
a optimizar.
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Finalmente, se podrían usar las políticas aprendidas con AEs como valores
iniciales para agentes de AR. Se sabe que las condiciones iniciales de AR son un
problema abierto (Garí et al., 2021).
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