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Resumen En los ultimos afios, muchos experimentos cientificos son rea-
lizados por medio de workflows cientificos. Estas tecnologias facilitan la
realizacion de experimentos que son computacionalmente intensivos, y
que muchas veces requieren ser ejecutados en Clouds publicas. Esto hace
que optimizar la ejecuciéon de estas aplicaciones sea un problema desafian-
te debido a que la virtualizacion de recursos en Cloud crea necesidades de
planificacién a la vez de representar incertidumbre en la ejecuciéon. Por
este motivo, se han usado heuristicas y metaheuristicas para este proble-
ma. En particular, se ha intentado resolver el problema usando técnicas
de Aprendizaje por Refuerzo y algoritmos evolutivos. En este trabajo se
presenta un problema markoviano de decisién para resolver este proble-
ma desde el punto de vista de Aprendizaje por Refuerzo. En conjunto
con este modelado, se presenta también una variacién que permite abor-
dar el mismo problema como un algoritmo evolutivo multiobjetivo. Estas
dos estrategias son comparadas usando 4 workflows de referencia de la
literatura, utilizando el simulador CloudSimPlus y méquinas virtuales
presentes en Amazon. Para este analisis se estudia el costo monetario
de ejecucion, el tiempo total de ejecucion (makespan) y la norma L2 de
estas dos métricas.
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Resumen In recent years, many scientific experiments have been per-
formed using scientific workflows. These technologies facilitate the per-
formance of computationally intensive experiments, which often require
to be executed on public Clouds. Optimizing these applications becomes
a challenging problem since resource virtualization demands scheduling
needs to be satisfied, at the same time it has to deal with uncertainties
during execution. For this reason, heuristic and metaheuristic solutions
have been proposed to this problem. Indeed, Reinforcement Learning
and evolutionary algorithms have been used to tackled this problem.
This paper presents a Markovian Decision Problem that can be used
to solve this problem using Reinforcement Learning. Additionally, a va-
riation of this modeling is introduced to solve the same problem using
multi-objective evolutionary algorithms. These two strategies are com-
pared using 4 benchmark workflows using the simulator CloudSimPlus
and virtual machines present on Amazon public clouds. Total monetary
cost of the execution, total execution time (i.e. makespan), and the L2
norm of these two quantities are used for the comparative analysis.

Keywords: Reinforcement Learning, Evolutionary Algorithm, Cloud
Computing, Scientific Workflow

1. Introduccion

Los experimentos cientificos requieren grandes capacidades de computo de-
bido a la complejidad de los problemas que abordan. Frente a esto, los workflows
cientificos han surgido como una alternativa para estructurar estos experimen-
tos. Ademas, las infraestructuras de Cloud Computing han sabido responder a
las necesidades de workflows cientificos. La elasticidad de los servicios de Cloud
Computing permite adaptar dindmicamente los recursos usados por los work-
flows segin las necesidades al momento de la ejecucion (Mell et al., 2011).

Una buena estrategia de asignacion de recursos es aquella que sabe adaptar
estos recursos a las necesidades de ejecucion buscando minimizar una funcién
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objetivo. Por ejemplo, se puede buscar la minimizacién del tiempo de ejecuciéon
o la minimizacién de los costos asociados a la ejecucion. Este aprovisionamiento
de recursos y la posterior asignacién de esos recursos a cada tarea del workflow
buscando minimizar alguna de las cantidades anteriores es un problema conocido
como autoescalado o autoscaling (Mao & Humphrey, 2013; Monge et al., 2017).
Este problema pertenece al conjunto de los problemas NP-duro, por lo que la
bisqueda de soluciones ha sido explorada a través del uso de técnicas heuristicas
y metaheuristicas (Monge et al., 2018).

Los servicios de Cloud publicos! ofrecen a sus usuarios méaquinas virtuales
(MV) que pueden ser adquiridas segin sus necesidades. Esto se logra a partir de
estrategias de virtualizaciéon de los recursos, lo cual genera una incertidumbre en
el rendimiento de la infraestructura contratada de un 20 % (Ericson et al., 2017;
Pu et al., 2010; Schad et al., 2010). Anteriormente, el Aprendizaje por Refuerzo
(AR) (Sutton & Barto, 2018) fue utilizado en el problema del autoescalado (Gari
et al., 2022, 2024) dado que permite trabajar en entornos con alta incertidumbre.

En Chellapilla y Fogel (2001) se propone la bisqueda de agentes por medio
de algoritmos evolutivos (AE). En este sentido, se busca que los AE encuentren
funciones aproximadoras que permitan identificar las mejores acciones de un
agente para un estado del sistema. Cabe senalar que este modelado de agentes
es similar a AR y podria usarse en problemas de autoescalado.

El objetivo del presente trabajo consiste en utilizar AE usando las ideas de
Chellapilla y Fogel (2001) para crear agentes de autoescalado de ejecuciones
de workflows cientificos en Cloud. El resto del trabajo esta estructurado de la
siguiente manera. En la seccion , se describe el contexto del problema que motiva
al presente trabajo. Alli también se introducen las técnicas a comparar. En la
seccion 3, se describe el modelado de las politicas de autoescalado a encontrar
por métodos evolutivos. En la secciéon 4, se discuten los resultados obtenidos, y
para poder analizar la calidad de los nuevos resultados obtenidos, se los compara
con los resultados de (Gari et al., 2022). Finalmente, en la seccién 5 presentan
las conclusiones y se discuten los trabajos futuros.

2. Contexto del Problema

Desde casi el inicio de la computacion y hasta hoy, el aumento de la poten-
cia computacional disponible ha permitido lograr ejecutar eficientemente gran
cantidad de aplicaciones. En este contexto, los workflows cientificos se han es-
tablecido como una importante abstracciéon para el procesamiento de datos y
la ejecucion de grandes y complejos experimentos (Liu et al., 2016; Meade &
Fluke, 2018; Vandenbrouck et al., 2019). Las tecnologias de workflows han per-
mitido acelerar el desarrollo de aplicaciones cientificas porque desacoplan los
saberes disciplinares del experimento del know-how especifico de ciencias de la
computacion.

IPor ejemplo, Amazon EC2 https://aws.amazon.com/ec2, Microsoft Azure https:
/ /azure.microsoft.com/en-us/, Google Cloud Platform https://cloud.google.com/
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En general, un workflow define un objetivo complejo que es alcanzado me-
diante la realizacién de un conjunto de tareas que poseen dependencias entre
si. Ademas, las caracteristicas de las tareas y las dependencias determinan una
carga de trabajo variable durante la ejecucion. Es decir, en diferentes momentos
de la ejecucion, multiples tareas pueden ser ejecutadas en paralelo, mientras que
en otros momentos las tareas deben ser ejecutadas de forma secuencial. Ademas,
cada tarea del workflow requerira distintos tipos de recursos computacionales,
como por ejemplo, poder de procesamiento, ancho de banda o memoria.

El paradigma Cloud Computing ha sido aplicado a workflows cientificos prin-
cipalmente por su elasticidad a la demanda. Cloud permite un acceso ubicuo,
conveniente y bajo demanda a través de la red a un conjunto compartido de
recursos configurables que pueden ser aprovisionados o liberados rapidamente
con un minimo esfuerzo de gestion o interaccion del proveedor de servicios (Mell
et al., 2011).Un usuario puede decidir aumentar o disminuir el ntimero de CPUs
a utilizar, o la cantidad de instancias segtin la necesidad de la aplicaciéon. Para
poder ofrecer a los usuarios distintos tipos de recursos, Cloud utiliza tecnolo-
gias de virtualizacién. Luego, las M'Vs estan disponibles para ser adquiridas por
medio de un esquema de pago por su uso.

Las Cloud publicas permiten modificar de manera dinamica los recursos dis-
ponibles y ajustarlos segun la demanda durante la ejecucion de workflows. Esta
modificaciéon dindmica permite introducir lo que se conoce como el problema del
autoescalado que ha sido abordado en la literatura reciente (Garf et al., 2019,
2022; Monge & Garino, 2014; Monge et al., 2017, 2018, 2020).

Dado un conjunto de tareas a ejecutar, un nimero de recursos de diferentes
tipos, y ciertos objetivos de optimizacién, el autoescalado se define a través de
dos subproblemas de optimizacion interrelacionados:

e Se llama escalado (scaling) al problema de decidir cuantos recursos de cada
tipo se necesitan en cada momento de acuerdo a la demanda de la aplicacion.

e Se llama planificacidn (scheduling) al problema de decidir la asignacion de
las tareas a los recursos especificos para su ejecucion.

Es muy importante senalar que el problema queda definido una vez fijado el
objetivo a optimizar. Por ejemplo, en el contexto de workflows en Cloud, se
puede buscar minimizar el tiempo de ejecucién o el costo de asociado al uso de
diferentes MVs, entre otros.

Se sabe que ambos subproblemas de autoescalado son NP-duros (Mao &
Humphrey, 2013), y en particular, ambos problemas han sido abordados usando
Aprendizaje por Refuerzo (AR) (Gari et al., 2021). Por medio de AR se genera
un agente que aprende un comportamiento adecuado para optimizar un deter-
minado objetivo. Este aprendizaje ocurre mediante la interacciéon del agente con
el entorno. Por cada accion tomada por el agente, se observa su impacto a través
de una senal numérica de recompensa. Al mismo tiempo, las acciones del agente,
pueden modificar el entorno (Sutton & Barto, 2018). Cuando esto ocurre se dice
que el sistema ha pasado de un estado a otro estado. El anélisis estadistico de
estos factores permiten que el agente aprenda a definir qué acciones tomar en
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qué momento. Esta decision esta representada con las politicas que son aprendi-
das durante el entrenamiento. En Gari et al. (2022) se evaluaron de politicas de
autoescalado de workflows cientificos generadas por AR en entornos Cloud.

Cabe senalar que es dificil realizar estos estudios en infraestructuras Cloud
reales ya que los tiempos de entrenamiento serfian del orden de anos. Por este
motivo, se utilizan simuladores como CloudSimPlus (Silva Filho et al., 2017).
Al recurrir a simulaciones, un trabajo que demoraria horas en un servidor real,
transcurre en unos pocos segundos dentro del simulador. De esta manera, se
puede entrenar una politica en unos pocos minutos. Otra ventaja de usar si-
mulaciones, es que los tiempos de entrenamiento son menores y por lo tanto el
consumo de energia es menor. Esto es muy importante, dado que nuevos de-
sarrollos en Machine Learning han dado lugar a mayores preocupaciones en el
impacto ambiental de estos experimentos (Ding & Shi, 2024).

En el presente trabajo se propone utilizar un algoritmo genético para la crea-
cion de estos agentes. Como se dijo anteriormente, la optimizaciéon de autoesca-
lado de workflows es un problema desafiante debido a lo complejo del problema
y a la dindmica del mismo. Por esta razon, las politicas deben ser eficientes y
adaptativas. Gari et al. (2021) senala que AR es una técnica muy usada para
autoescalado, pero también lo es la computaciéon evolutiva. De hecho, los autores
de este trabajo senalan al menos 3 trabajos que combinan ambas técnicas.

La computacion evolutiva tiene muchisima relevancia en la biisqueda de solu-
ciones en grandes espacios de busqueda garantizando gran diversidad y calidad
de las soluciones encontradas. Por otro lado, AR es altamente efectivo en el
aprendizaje adaptativo basado en la interaccién con ambientes dindmicos. Por
lo anterior, resulta interesante comparar los resultados entre algoritmos gené-
ticos y AR para entender sus limitaciones. En la siguiente secciéon se describe
c6émo este problema de decision markoviano fue modificado para crear un agente
que pudiera ser encontrado por métodos evolutivos.

3. Modelado del problema

Para la obtenciéon de politicas para el problema de autoescalado se partio
de un problema de decision markoviano conocido (Gari et al., 2022). Sobre este
problema, se plantearon modificaciones para poder transformarlo en un pro-
blema de optimizacion basado en algoritmos evolutivos (AE). En las siguientes
subsecciones se presentan las caracteristicas de estos dos espacios de estados y
acciones. En primer lugar, se presenta el espacio de estados y su discretizacion.
Luego, se describe el espacio de acciones, asi como las limitaciones existentes a
las acciones para cada estado. Tras esto, se introduce esqueméticamente qué es
un AE. Finalmente, se describe el problema de optimizacion presentado y cual
es la codificacion de las politicas usadas como solucién.

3.1. Espacio de estados

En Gari et al. (2022) se propuso un modelo para definir el estado de la
ejecuciéon de un workflow basado en la estructura de dependencias, las tareas en
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ejecucion y las maquinas virtuales (MV) en uso. Esta caracterizacion se basa en
las variables:

= N: Numero de tareas listas para ejecutar en el workflow. Esas tareas son
aquellas tareas para las cuales todas sus dependencias han sido completadas.

= F: Namero de tareas listas para ejecutar que son dependencias de mas de
una tarea. Se usa F' para senalar que son tareas con una estructura tipo fork.
En la figura 3.1 se corresponden con la estructura llamada distribution.

= J: Ndmero de tareas listas para ejecutar que tienen mas de una tarea como
dependencia. Se usa J para sefalar que estas tareas tienen una estructura
tipo join. En la figura 3.1, las estructura tipo join son llamadas aggregation.

= P: Numero de tareas listas para ejecutar que dependen y son dependencia de
una tnica tarea. Se usa P para sefialar que estas tareas tienen una estructura
tipo pipeline. En la figura 3.1 se muestra una estructura pipeline.

= [: Namero de MVs listas para ser usadas durante la ejecuciéon. Se usa I para
hacer referencia a la infraestructura contratada para la ejecucién.

Process Pipeline Distribution Aggregation

Data O Task

Figura 1. Representacion grafica de las tareas en un workflow. Se muestran las es-
tructuras fork, pipeline y join con los nombres distribution, pipeline y aggregation,
respectivamente

A partir de las variables N, F, J, P, I se definen 5 nuevas variables:
{si1>0 % {su;eo 1 (1)

En la ecuacién 1 se observa, i = # solo si el nimero de MVs listas para usar
es mayor a 0. De lo contrario, i = —1. Adicionalmente, m representa que se ha
llegado a la cantidad maxima de MVs disponibles para alquilar. Los workflows
usados tienen 100 tareas a ejecutar. Al elegir 60 MVs como el nimero méxi-
mo de tareas a usar se evita que se seleccione una MV por tarea. Ademéas 60
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MVs representa mas del 50 % de las tareas. Las variables f, 7, p, 4 son variables
continuas; esto lleva a que existan infinitos estados.

Para evitar esto y trabajar con una cantidad discreta de estados en Gari
et al., 2022 se realiz6 una discretizacion de la siguiente forma:

sif=0 None
1
si0< f< — Low
3
f= 1 2 (2)
si — < f < = Medium
3 3
2
si — <i<1 High
3

La discretizacion de la ecuacion 2 aplica también a las variables j y p.
Adicionalmente, la variable i fue discretizada siguiendo la ecuaciéon 3:

sii=—1 None

. si 0 < i <1 Low

i= (3)
sii=1 Medium

sii>1 High

Dado que la variable m ya es discreta (solo toma valores 0 y 1), ahora el
espacio de estados S tiene forma definida por la ecuacién 4:

{None, Low, Medium, High}

{0, 1} (4)

At x B

GRS
I

De la ecuacion 4 se puede observar que |S| = 512

3.2. Espacio de acciones

En el trabajo presentado en (Gari et al., 2022) se realizo la implementacion
de 3 acciones de dos tipos:

= Acciones de escalado: son acciones donde se alquila una MV adicional para
la ejecucidn, es decir,aumenta la infraestructura disponible para las tareas
que se encuentren listas para ejecutarse. Se consideran dos tipos de MVs:

e T1: Se contrata una MV tipo t2.micro del servicio Amazon EC2. Esta
MYV consta de 1 vCPU, su uso por hora cuesta 0.013 USD y tiene un
poder de computo de 1 ECU. Un ECU es una unidad llamada EC2
Computing Unit (ECU). Esta medida es usada por Amazon para estimar
las caracteristicas de sus MVs en términos de su poder de computo.

e T3: Se contrata una MV tipo c3.2xlarge. Consta de 8 vCPU. su costo
por hora es de 0.42 USD y tiene un poder de computo total de 28 ECU,
es decir 3.5 ECU por vCPU

= Acciones de planificaciéon: son acciones donde se envia a ejecutar las tareas
listas para ejecutar a los recursos que se tienen disponibles en un determinado
momento. En el modelo actual existe una sola acciéon llamada ECU. En esta
accion se eligen M'Vs para cada tarea, priorizando los ECU altos.
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Limitaciones a las acciones Como se dijo anteriormente, existen dos tipos de
acciones, acciones de escalado y acciones de planificaciéon. Conviene senalar que
ambas acciones estan limitadas por el estado en el que se encuentra el sistema.
Es decir, no todas las acciones pueden llevarse a acabo para cada estado.

La limitacion més intuitiva es el caso de la variable m: esta variable informa
si se ha alcanzado o no el nimero maximo de MVs a usar. En estudios anteriores
se observo que cuando este valor es de 60 se obtienen buenos resultados (Gari
et al., 2022). En este sentido, las acciones de escalado quedan excluidas cuando
m = 1, ya que no se dispone de recursos.

La otra limitacion esta asociada a las acciones de planificacién. Cuando no
hay MVs alquiladas, carece de sentido ejecutar una acciéon de planificaciéon. Por
lo tanto, las acciones de planificaciéon quedan excluidas cuando ¢ = None.

Dada la forma en que m e i dependen de la infraestructura contratada, no
existen estados con m = 1 y ¢+ = None. Esto seria equivalente a tener 60 MVs
contratadas (para satisfacer m = 1) al mismo tiempo que no tener contratada
ninguna MV (para satisfacer ¢ = None)

De esta manera, las acciones permitidas quedan representadas en la figura 2.

Usar todas las
acciones.
3 acciones
128 estados

Acciones validas
para un estado

Sélo usar acciones
de planificacion.
1 accion
256 estados

Solo usar acciones
de escalado.
2 acciones
128 estados

Figura 2. Acciones validas para el sistema en funcion de los estados. Existe una tnica
accion de planificacion. Por lo tanto cuando solo se pueden usar acciones de planifica-
cién, existen 256 estados donde el comportamiento es determinista.

3.3. Algoritmos evolutivos

Los algoritmos evolutivos (AE) son un tipo de metaheuristica para proble-
mas de optimizacién que se inspiran los procesos evolutivos por seleccién natural
de las especies. En lineas generales, un algoritmo evolutivo consta de la estruc-
tura senalada en el Algoritmo 1. Existe un proceso de generacion de soluciones
iniciales de manera aleatoria. Luego, se evalia la aptitud de estas soluciones,
es decir, se analiza qué tanto optimiza cada solucion el problema. A partir de
estos valores de aptitud, se eligen soluciones para ser recombinadas. El proceso
de recombinacién consiste en tomar informacion de una o més soluciones padres
para generar nuevas soluciones hijas buscando que tengan lo mejor de las so-
luciones padres. De esta manera, el proceso de recombinacién es un proceso de
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explotaciéon en un esquema de explotacién-exploracién, usa informacioén conoci-
da para mejorar las soluciones. Seguido al proceso de recombinacién, ocurre un
proceso de mutacion, es decir, se modifica una de las variables o genes de manera
aleatoria. Al agregar nueva informacion a la poblacion, se dice que este proceso
de mutacién es un paso de exploracion, en tanto se obtiene nueva informacion
de las posibles soluciones del problema.

Una vez generadas las nuevas soluciones hijas, se elige cuéles de ellas son
las mejores que reemplazaran a las soluciones de la poblacién original. De esta
manera, se obtiene por analogia un esquema de selecciéon del mas apto en la
version més simplista de la teoria evolutiva. Este proceso es repetido varias veces
como ocurren los cambios de las especies a los largo de varias generaciones.

Algoritmo 1 Evolutive Algorithm

1: procedure EVOLUTIVE(maxGenerations, population):
2: Initialize population
Evaluate population using FitnessFunction
for i < 1 to maxGenerations do
Select best fit parents from population
Recombine parents with CrossoverOperator creating of fsprings
Mutate of fsprings with MutationOperator
Evaluate of fsprings using FitnessFunction
Select fittest of fsprings and population creating new population

A continuacion se presenta como se encuentra codificada la solucién del pro-
blema de optimizaciéon. Los detalles de implementacion del algoritmo se discuten
en la siguiente seccion.

3.4. Problema de optimizacion

El problema de minimizacion multiobjetivo esta dado por: min (makespan, cost)
Donde min hace referencia al operador minimizacién multiobjetivo, que devuelve
un conjunto de soluciones donde mejorar uno de los objetivos empeora otro de
los objetivos. Esto da lugar a conjuntos Pareto dominantes. Esta minimizacion
es llevada a cabo sobre las soluciones al problema de autoescalado. En el con-
texto del problema markoviano de decisién propuesto, se utiliza un simulador
basado en CloudSimPlus para calcular el costo monetario de la ejecucion (cost)
y el tiempo de ejecucion (makespan)

La politica solucién deseada debe ser una politica que para cada estado del
sistema detecte cuél es la mejor accién posible a realizar. Como se menciond
en las subsecciones anteriores, el problema tiene 512 estados y 3 acciones. Sin
embargo, cuando m = 1, solo estéa disponible la acciéon de planificaciéon. De esta
manera, hay 256 estados que tienen solo una tinica accién posible. Dicho de otro
modo, hay 256 estados donde el sistema tiene su evolucion definida, pues solo se
permite una accion.
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Este hecho permite reducir la representacion de las politicas. En lugar de
tener 512 estados con 3 acciones, ahora solo se necesitan 256 estados con 3
acciones, pues en los 256 estados restantes solo es posible una tnica accién. De
esta manera, la politica puede ser representada por un arreglo de enteros de 256
elementos, donde cada elemento es un entero entre 0 y 2 (incluido). Esto da a
lugar a un espacio de bisqueda de 3256 posibles politicas.

Dada la longitud de la solucién y que se utilizan nimeros enteros para este
problema se utilizaron los operadores de recombinacién uniform recombination
y de mutacion (random resetting), que se explican en la figura 3. El operador de
mutacion aplica sobre un elemento del arreglo usado para representar politicas,
es decir, sobre un gen.

Original Solutions Uniform Crossover (Crossover) Random Resetting (Mutation)
eLD ][] elele[le]=[e]-[] e[efe[a]ele]r] - []
eLlelel el [o] ellelel Tee]-[o] eelelel Tee]- [o]

Figura 3. Operadores de recombinacién y de mutacién usados en este trabajo. Uniform
crossover es un tipo de operador que toma dos soluciones y crea dos soluciones nuevas
intercambiando elementos con probabilidad P.. Random Resetting es un operador de
mutacién que cambia un elemento a un nuevo valor con probabilidad P,

Para para la busqueda de soluciones se utilizd6 una version del Algoritmo
NSGA-IIT (Deb & Jain, 2014) incluido en el framework MOEA. NSGA-III es
un algoritmo de optimizaciéon multiobjetivo que usa frentes de Pareto para la
optimizacion de multiples objetivos. Luego de generar la nueva poblacion de so-
luciones, NSGA-III establece los diferentes niveles de frentes de Pareto y utiliza
estos frentes para crear la proxima poblaciéon. Primero incorpora los diferentes
frentes de mejor a peor hasta antes de exceder el tamano de la poblacion. Si al
agregar el proximo frente de Pareto, la cantidad de soluciones excede el tamano
de la poblacion, se agregan solo la cantidad necesarias para completar el tamano
deseado de la poblaciéon usando técnicas que aseguran la diversidad de las solu-
ciones en la poblacion. En particular, en Deb y Jain (2014) los autores proponen
una eleccién basada en un conjunto de puntos de referencia. Estos puntos de
referencia son elegidos de manera tal que se encuentren amplia y uniformemente
distribuidos en hiperplanos de los objetivos a optimizar. Luego, las soluciones
en el frente de Pareto son comparadas con los puntos de referencia eligiendo las
maés similares.

4. Resultados y discusion
Los experimentos fueron realizados con 4 workflows usados de referencia en la

literatura (Gari et al., 2022): CyberShake, Montage, LIGO’s Inspiral y SIPHT.
Para cada uno de esos workflows se realizaron 100 ejecuciones con una poblacién
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de 1000 individuos usando el algoritmo NSGA-III de MOEA. El operador de
recombinaciéon usado ocurrié con una probabilidad de 100 % mientras que el
operador de mutacién ocurrié con una probabilidad de 90 %.

Los experimentos han sido realizados mediante el uso del simulador Cloud-
SimPlus. Los valores de makespan y costo que guian el paso de seleccién de
NSGA-III son promedios de makespan y costo después 30 ejecuciones de un
mismo workflow. Cada una de las 30 ejecuciones usadas en el promedio, son
ejecuciones en donde se usan técnicas estocésticas para simular la variabilidad
de la duracion de cada tarea del workflow.

Usando de referencia Gari et al., 2022 se decidi6 comparar los resultados de
ese trabajo con los obtenidos por NSGA-III. Para ello, se compar6 el costo, el
makespan y la métrica L2 del trabajo anteriormente citado con los presentados
a continuacion. La métrica L2, consiste en realizar el célculo de la raiz cuadrada
de la suma de los cuadrados de las cantidades de los valores objetivo. Es decir,
es anéloga a la distancia euclidiana. El uso de estd métrica fue justificado en
Gari et al., 2022 dado que el makespan medido en horas y el costo medido en
dolares tenian valores del mismo orden de magnitud.

Para comparar estas dos técnicas se eligié6 en ambas los agentes con la me-
nor métrica agregada L2. Esto se debidé a que una menor métrica agregada se
corresponde a menor makespan y menor costo. En el caso de los resultados con
AE, NSGA-IIT entrega como resultados las soluciones que pertenecen al primer
frente de Pareto. Sobre este primer frente, se elige aquella politica que tiene me-
nor L2. En el caso de los agentes de AR, se elige aquel agente que ha reportado
el menor valor de L2, luego de un 30 ejecuciones de evaluacion. En este sentido
la eleccion de agentes es similar a la realizada para las soluciones evolutivas,
buscando aquellas con menor L2.

makespan costo
[horas] [USD]
AR |NSGA-III|ganancia| AR |NSGA-III|ganancia
CyberShake| 5.12 5.14 -0.39% | 6.66 6.09 8.56 %
Inspiral 28.37| 28.33 0.14% |36.13| 37.33 |-3.32%
Montage 1.83 1.83 | <0.55%|2.06 253  |-22.82%
SIPHT 80.22| 80.39 |-0.21% |49.15| 33.76 |31.31%
métrica agregada L2
AR |NSGA-III|ganancia
CyberShake| 8.41| 7.98 5.11%
Inspiral 45.94] 46.86 | -2.00%
Montage 2.77| 314 |-1336%
SIPHT 94.08) 87.19 | 7.32%
Tabla 1. Comparaciéon de resultados entre las dos técnicas analizadas. Se reportan
variaciones en makespan, costo y métrica L2 entre los dos algoritmos. Se utiliz6 el
estimador U de Mann-Whitney para analizar si las diferencias encontradas son signifi-
cativas. En negrita se sefialan los valores menores cuando estos son significativos.
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Una vez identificadas las mejores soluciones de ambos algoritmos se utilizaron
las 30 evaluaciones realizadas en cada una de las soluciones. De esta manera, se
compararon los 30 valores de makespan, costo y métrica L2 de cada algoritmo
por medio del test de Mann-Whitney de dos colas con p = 0,01. Estos resultados
se resumen en la tabla 1. Se observa que el makespan de CyberShake y SIPHT no
mejoran con NSGA-III, mientras que si lo hace para Montage y LIGO’s Inspiral.
Sin embargo, estas diferencias son muy pequenias (menores en valor absoluto a
1%) vy no significativas. Esto quiere decir que ambos autoescaladores producen
distribuciones estadisticas de makespan muy parecidas, tan parecidas que no se
puede descartar que sean la misma distribucién. También se puede ver que para
el costo esta ganancia se invierte. Es decir, ahora CyberShake y SIPHT mejoran,
mientras que Montage y LIGO’s Inspiral empeoran. No obstante, las diferencias
sf son significativas para los 4 workflows.

Para la métrica agregada, se observa que los aumentos siguen la tendencia
observada en el costo: CyberShake y SIPHT mejoran, mientras que Montage y
LIGQ'’s Inspiral empeoran. Por otro lado, se observa que en CyberShake, SIPHT
vy Montage, las diferencias en métrica agregada son significativas, mientras que no
lo es para LIGO’s Inspiral. La tendencia de la métrica agregada es explicable por
dos razones. Por un lado, el costo tiene diferencias significativas mayores al 5%
en todos los casos donde persiste la significatividad. Es decir, estas diferencias
son lo suficientemente grandes para influir en la métrica agregada. Por el otro
lado, para LIGO’s Inspiral, la pérdida en costo del 3.33% es muy baja. Esto,
sumado a la similitud de las distribuciones de makespan hace que los valores
de la métrica agregada se parezcan demasiado entre ellos, con lo cual el test de
significancia da negativo.

5. Perspectivas a futuro

Los resultados aqui presentados parecen prometedores. Se han logrado me-
joras con respecto a lo obtenido con otras técnicas. No debe descartarse el uso
de AE para problemas similares a futuro o incluso proponer alternativas al mo-
delado del problema.

En este trabajo, la busqueda de politicas 6ptimas ha sido por medio de
AE. Sin embargo, existe la posibilidad de buscar politicas con ideas similares
a las propuestas en Chellapilla y Fogel, 2001. En ese caso, se debe redefinir el
problema de decision markoviano. Estas modificaciones pueden darse tanto en
el espacio de estados (por ejemplo usando las variables continuas en lugar de la
discretizacion) como en el espacio de acciones (ya sea agregando nuevas MVs o
agregando acciones de planificacion)

Otra posible modificacion al problema de decision markoviano podria consis-
tir en incluir variables de impacto ambiental. Shaw et al. (2022) es un ejemplo
de un trabajo que incluye el consumo de energia entre los objetivos a minimizar
con su funcién de recompensa. Del mismo modo, la optimizacién multiobjetivo
usada podria redefinirse para incluir el consumo de energia como otra variable
a optimizar.
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Finalmente, se podrian usar las politicas aprendidas con AEs como valores
iniciales para agentes de AR. Se sabe que las condiciones iniciales de AR son un
problema abierto (Gari et al., 2021).
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