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Resumen. Los KE-tableaux son generalizados a lógica intuicionista
proposicional mediante fórmulas signadas etiquetadas y restricciones en-
tre tales etiquetas, de modo que el sistema resultante imita la cons-
trucción de contramodelos en la semántica relacional. Para hacer más
eficiente la búsqueda de demostraciones, dotamos al sistema de variables
libres y demostramos algunas de las propiedades básicas del mismo: co-
rrectitud, completitud y terminación.
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KE-tableaux for intuitionistic propositional logic

Abstract. KE-tableaux are generalized to intuitionistic propositional
logic by means of labeled signed formulas and constraints between labels,
so that the resulting system closely mimics countermodel construction in
the relational semantics. To improve on proof-search, we further endow
the system with free-variables and show some of its basic properties:
soundness, completeness and termination.
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1. Motivación

Tableaux para lógica intuicionista proposicional han sido ampliamente estudia-
dos. Sin embargo, la mayoŕıa involucran el reuso de fórmulas implicativas con
signo T . Este reuso provoca una alta ineficiencia en la búsqueda de demostra-
ciones. La importancia de desarrollar métodos de demostración eficientes para la
lógica intuicionista se debe a la amplia gama de aplicaciones prácticas y teóricas
de la misma (véase Fellin y Negri, 2025). Por tanto, el problema del reuso se ha
abordado de diferentes maneras. Por ejemplo, (Miglioli et al., 1997) propusieron
tableaux que no requieren reuso, a costo de perder la propiedad de subfórmula.
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No obstante, esos tableaux se basan en métodos de reescritura que se alejan
de tratamientos directos y naturales del significado de los operadores lógicos
intuicionistas. En cambio, por ejemplo, (Galmiche y Méry, 2003) propusieron
tableaux que limitan el reuso de fórmulas y conservan dicha propiedad. Su pro-
puesta fue diseñada para seguir de cerca la construcción de contramodelos en
la semántica relacional de la lógica y, según sabemos, es la más cercana a los
tableaux estilo KE aqúı introducidos.

En la lógica clásica, se conocen demostraciones en los KE-tableaux que son
exponencialmente más cortas que en los tableaux estándar respecto a clases de
fórmulas (D’Agostino y Mondadori, 1994). El sello de los sistemas KE es la
reducción al mı́nimo de las ramificaciones, haciendo que todas las ramas de las
respectivas derivaciones sean mutuamente excluyentes. Las reglas de ramificación
no involucran operadores lógicos e implementan (generalizaciones de) el principio
de bivalencia. Aunque estas reglas pueden en principio introducir fórmulas ar-
bitrarias, también pueden restringirse para cumplir la propiedad de subfórmula.
El resto de las reglas son operacionales y tienen un formato lineal. La aplicación
controlada de las reglas de ramificación de KE es lo que evita las ramificaciones
redundantes intŕınsecamente presentes en los tableaux estándar. Sin embargo,
la búsqueda de demostraciones cortas puede resultar dif́ıcil. En este trabajo,
introducimos KE-tableaux para la lógica intuicionista que se corresponden es-
trechamente con la construcción de contramodelos en la semántica relacional y
combinan tres herramientas para mejorar la eficiencia general: (1) utilizan el
poder expresivo de etiquetas que importan nociones semánticas al lenguaje ob-
jeto; (2) generalizan los KE-tableaux clásicos que producen demostraciones más
cortas que los estándar; y (3) utilizan variables libres que explotan el significado
de la negación para reducir el espacio de búsqueda de demostraciones.

2. KE-tableaux

El sistema está formulado en términos de fórmulas signadas etiquetadas, ‘se-
fórmulas’, que son expresiones de una de las siguientes tres formas: TA : ci,
FA : ci, FA : xi, donde A es una fórmula, T y F son signos, y ci y xi son
etiquetas. Interpretamos una etiqueta como la representación del seguimiento
de los estados de información a lo largo de las reducciones de reglas para obte-
ner la fórmula con signo asociada a ella. Formalmente, el lenguaje de etiquetado
consiste en un conjunto numerable de constantes C = {c0, c1, . . . }, un con-
junto numerable de variables libres tomadas como universalmente cuantificadas
V = {x0, x1, . . . }, y un śımbolo de relación binaria ⪯ que denota un orden
parcial sobre C. Intuitivamente, las constantes representan estados particulares,
mientras que las variables representan estados genéricos, los cuales empero de-
ben satisfacer restricciones entre constantes. Denotamos con L = C∪V la unión
de sus conjuntos. Aśı, usamos li para denotar una constante ci o una variable
xi. A su vez, ⪯ representa la relación de accesibilidad a nivel de lenguaje objeto,
y una restricción es una expresión de la forma ci ⪯ cj . De tal manera que el
significado intuitivo de TA : ci (respectivamente, FA : ci) es que A está forzado
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(respectivamente, no forzado) en el estado denotado por la constante ci, mien-
tras que FA : xi intuitivamente significa que, en el estado denotado por ci, A
está no forzado en cada estado cj tal que ci ⪯ cj . Nótese que solo las fórmulas
con signo F están asociadas con etiquetas de variable. Esto se debe a que las
se-fórmulas de la forma FA : xi pretenden capturar el significado de la negación
dentro de la sintaxis, el cual explotamos para mejorar la eficiencia del sistema.
Es decir, si la negación de una fórmula A está forzada en un estado ci, entonces
A está no forzada en todo estado cj tal que ci ⪯ cj (véase Miglioli et al., 1997).
Las variables no son necesarias para fórmulas signadas con T ya que, según la
semántica subyacente, si una fórmula está forzada en el estado ci, también está
forzada en todos los estados cj tal que ci ⪯ cj .

Las reglas de nuestro sistema se muestran en la Tabla 1. La única regla que
introduce variables es T¬. Las variables no son necesarias para la completitud
de nuestro sistema, pero se utilizan para aumentar la eficiencia ya que reducen el
espacio de búsqueda al explotar el significado de la negación. Ellas nos permiten
descartar pasos de expansión innecesarios al posponer algunas de sus instancia-
ciones para cerrar una rama hasta que haya suficiente información disponible.
Una versión sin variables puede obtenerse realizando modificaciones simples.

3. Correctitud, completitud y terminación

Dado que nuestro mecanismo de se-fórmulas simula de manera transparente la
semántica relacional subyacente, la correctitud de nuestro sistema es directa. A
saber, definimos una función de realización que mapea las etiquetas en una rama
de una derivación a estados en un modelo de la semántica, respetando la corres-
pondencia entre signos y ⪯ del sistema con, respectivamente, las relaciones de
satisfacibilidad y orden entre estados. Mostramos aśı que las reglas del sistema
preservan realizibilidad. La completitud del sistema es también directa mediante
la simulación de algún sistema axiomático, pero tal simulación no conserva la
propiedad de subfórmula. Una demostración de completitud más informativa se
obtiene mediante un procedimiento de búsqueda de demostraciones que termina
para una ligera variante del sistema presentado arriba, el cual además satisfa-
ce la propiedad de subfórmula. Primero, imponemos que cada regla se pueda
aplicar como máximo una vez para cada elección particular de se-fórmulas como
premisas. Esta medida garantiza un ancho finito del supuesto contramodelo en la
semántica subyacente. Segundo, imponemos la condición semánticamente correc-
ta de que F →1 sólo es aplicable cuando TA : ch no ocurre para ningún ch ⪯b ci
en la rama b donde se aplicará la regla. Entonces, añadimos la siguiente regla,
también correcta, que permite reusar constantes previamente introducidas:

FA → B : cj
TA : ci
ci ⪯ cj

FB : cj
(F →3)

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 105



FA ∨B : li
FA : li

(F∨)

FB : li

TA ∧B : ci
TA : ci

(T∧)

TB : ci

TA ∨B : ci
FA : lj
ci ⪯ cj

TB : ci
(T∨1)

TA ∨B : ci
FB : lj
ci ⪯ cj

TA : ci
(T∨2)

TA ∨B : cj
FA : xi

ci ⪯ cj

TB : cj
(T∨3)

TA ∨B : cj
FB : xi

ci ⪯ cj

TA : cj
(T∨4)

FA ∧B : lj
TA : ci
ci ⪯ cj

FB : lj
(F∧1)

FA ∧B : lj
TB : ci
ci ⪯ cj

FA : lj
(F∧2)

FA ∧B : xi

TA : cj
ci ⪯ cj

FB : xj
(F∧3)

FA ∧B : xi

TB : cj
ci ⪯ cj

FA : xj
(F∧4)

TA → B : ci
TA : cj
ci ⪯ ck y cj ⪯ ck

TB : ck
(T →1)

TA → B : ci
FB : lj
ci ⪯ cj

FA : lj
(T →2)

FA → B : ci
TA : cj

cj nueva

FB : cj
(F →1)

ci ⪯ cj

FA → B : xi

ci ⪯ cj

TA : ck
ck nueva

FB : xi
(F →2)

cj ⪯ ck

T¬A : ci
FA : xi

(T¬)

F¬A : ci
TA : cj

cj nueva

ci ⪯ cj
(F¬1)

F¬A : xi

ci ⪯ cj

TA : ck
ck nueva

cj ⪯ ck
(F¬2)

TA : ci
FA : cj
ci ⪯ cj

×

TA : ci
FA : xj

ci ⪯ ck y cj ⪯ ck

× TA : ci FA : ci

Con un pequeño abuso de notación, escribimos restricciones de la forma ci ⪯ cj como
condiciones laterales en las premisas, pero en realidad permitimos que estén dentro de
la clausura transitiva reflexiva de ⪯ (véase Galmiche y Méry, 2003).

Tabla 1. Reglas estilo KE con variables libres
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La condición sobre F →1 junto con la incorporación de F →3 resultan en
la producción de, a lo más, una nueva constante para cada se-fórmula de la
forma FA → B : ci. Aśı, un procedimiento de decisión que termina, ya sea
con una prueba o con un contramodelo finito, puede definirse. Una prueba se
obtiene cuando todas las ramas de la derivación están cerradas, mientras que
un contramodelo puede extraerse directamente de una rama abierta que ha si-
do terminada. Informalmente, una rama abierta está terminada cuando no hay
aplicación alguna de las reglas que proporcione información semántica adicional,
de tal manera que el conjunto de se-fórmulas en la rama está ‘saturado’ y la
búsqueda de un contramodelo ha tenido éxito. Por tanto, el procedimiento im-
plica la completitud de nuestro sistema y sienta la bases para la implementación
del mismo. En el procedimiento, todas las fórmulas a las que se aplica la regla
de ramifición son subfórmulas de fórmulas que ya ocurŕıan en la rama. Se de-
muestra entonces también la propiedad de subfórmula, ya que el resto de reglas
la cumplen trivialmente.

4. Trabajo en progreso

Estamos trabajando en la implementación de nuestro sistema para compararlo
con los sistemas más eficientes conocidos, los cuales están basados en genera-
lizaciones de resolvedores SAT (e.g. Fiorentini y Ferrari, 2024). Esto no sólo
en eficiencia, sino también en términos de la interactividad entre usuario y
demostrador ya que el pre-procesamiento de ‘clausificación’ generalizado tien-
de a dificultar esta última. Nuestros primeros avances pueden consultarse en
https://github.com/placiana/kems, y el siguiente paso es explorar estrategias
que mejoren la ejecución respecto a familias de benchmarks. Además, estamos
diseñando KE-tableaux para algunas lógicas intuicionistas modales, las cuales
tienen aplicaciones en verificación formal y programación funcional.
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