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Abstract. Quantitative Structure-Activity Relationship (QSAR) model-
ing is key in drug discovery, but classical methods face limitations when
handling high-dimensional data and capturing complex molecular in-
teractions. This research proposes enhancing QSAR techniques through
Quantum Support Vector Machines (QSVMs), which leverage quantum
computing principles to process information in Hilbert spaces. By us-
ing quantum data encoding and quantum kernel functions, we aim to
develop more accurate and efficient predictive models.
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1 Introduction

QSAR models aim to establish relationships between the physicochemical prop-
erties of compounds and their molecular structures. Hansch and Fujita (1964)
These mathematical models serve as valuable tools in pharmacological studies
by providing an in silico methodology to test and classify new compounds with
desired properties, diminish the need for laboratory experimentation Natara-
jan, Natarajan, and Basak (2025). QSAR models are used, for example, to predict
pharmacokinetic processes such as absorption, distribution, metabolism, and ex-
cretion, ADME, which refers to the processes that describe how a drug or chemical
substance moves through and is processed by the body.

In other fields, (QSAR) plays an important role; for example, in silico toxicity
studies have become fundamental in drug development. A prevalent way in which
QSAR is used is in this context of prediction, which helps us understand how we
can link toxicity outcomes to the structural properties of specific compounds.

Many models show decent performance throughout their implementations,
as they rely on a pipeline that is optimizable and improvable, whereas machine
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learning methods will always involve a tradeoff between accuracy and inter-
pretability.

1.1 Evolution of QSAR Modeling Approaches

Traditionally, QSAR relied on linear regression models, but these were quickly
replaced by more sophisticated approaches. Bayesian neural networks emerged
as a powerful alternative, demonstrating the ability to distinguish between drug-
like and non-drug-like molecules with high accuracy Ajay, Walters, and Murcko
(1998). These models showed excellent generalization capabilities, correctly clas-
sifying more than 90% of the compounds in the database while maintaining low
false positive rates.

Random forest algorithms have also proven to be effective tools for QSAR
modeling Svetnik et al. (2003). This ensemble method, which combines multiple
decision trees, has shown superior performance in predicting biological activity
based on molecular structure descriptors. Its advantages include built-in per-
formance evaluation, descriptor importance measures, and compound similarity
computations weighted by the relative importance of descriptors.

In general, the process involves three main stages: obtaining a training dataset
with measured properties of known compounds, encoding information about the
compounds’ structure, and building a model to predict properties from the en-
coded structural data, followed by training the model. (1.) Preprocessing and
extraction of molecular descriptors. (2.) Encoding of classical data into quan-
tum states using a feature map. (8.) Classification using support vector machines
(SVM) with classical and quantum kernels.

1.2 General Pipeline

1. Compound Collection and Curation: The process begins with the col-
lection of candidate compounds, either from experimental or theoretical sources.
These compounds are curated to ensure suitability for the selected biological
target. This step may involve filtering based on physicochemical properties or
prior biological knowledge.

2. Data Preprocessing and Descriptor Calculation: Regardless of the
target, all data undergoes preprocessing to normalize and standardize values.
Molecular descriptors (features) are computed for each compound. These may in-
clude physicochemical properties (e.g., molecular weight, hydrogen bond donors
/acceptors, rotatable bonds) and structural fingerprints (e.g., MACCs, ECFP).
Given the constraints of current quantum hardware, dimensionality reduction is
often necessary. Techniques such as Principal Component Analysis (PCA) are
applied to retain the most informative components while reducing the number of
features, thus minimizing the required number of qubits for quantum encoding.

3. Dataset Balancing and Partitioning: In this study, the dataset is
inherently imbalanced and relatively small. Although advanced balancing tech-
niques (e.g., SMOTE, RandomUndersampling) were not applied, the dataset
serves as a practical testbed for rapid experimentation and for evaluating the
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methodology across different data volumes. For future work, balancing strategies
could be incorporated to assess their impact on model performance.

4. Classical-to-Quantum Data Mapping: Once the dataset is enriched
and preprocessed, classical features are mapped to quantum states using a fea-
ture map (e.g., ZZFeatureMap). The number of qubits required is determined
by the dimensionality of the reduced feature set. This mapping is a critical step,
as it enables the exploitation of quantum space. Schuld and Killoran (2018)

5. Model Training and Evaluation: The enriched dataset is used to train
both classical and quantum models. For quantum models, the support vector
machine (SVM) leverages quantum kernels Li et al. (2019), with training and
inference performed either on quantum simulators or real quantum processing
units (QPUs). The choice of platform and the number of qubits used are dictated
by the final feature dimensionality and hardware availability.

Experiments are typically partitioned into training and test sets, with per-
formance metrics (e.g., accuracy) computed to compare classical and quantum
approaches.

6. Scalability and Implementation Notes: Current quantum hardware
imposes strict limits on the number of qubits and circuit depth, constraining
the size and complexity of datasets that can be processed. Execution time and
noise are also significant factors, especially when running on real QPUs. These
limitations highlight the importance of dimensionality reduction and motivate
ongoing research into error mitigation and hybrid quantum-classical workflows.

While this work focuses on quantum SVMs, alternative quantum approaches
such as Variational Quantum Circuits (VQCs) could be explored in future studies
to further assess the potential of quantum machine learning in QSAR applica-
tions.

This detailed pipeline description aims to clarify the methodological steps,
justify key design choices, and provide a foundation for reproducibility and future
scalability assessments.

1.3 Dataset, Descriptors, and Features

Each candidate molecule has a series of molecular descriptors or features, such
as the median effective concentration, Lipinski descriptors, which are a type of
molecular fingerprint—specifically a 2D structure fingerprint of 166 bits—used
to represent and compare molecular structures.

These descriptors may include records of experimental results; for example,
the concentration ECs¢ indicates the amount of a compound required to elicit
50% of the maximum biological effect after a specific exposure time. This is
expressed in molar units M: mol/L.

Each dataset requires data processing. In models involving ADME, it is impor-
tant to work with concentration parameters that provide meaningful informa-
tion. Concentrations are usually in the nM range, and a logarithmic transforma-
tion is employed, defining the potential of this concentration as pECsg, denoted
by p = —log;, (EC50 X 10_9), which facilitates its use in quantitative analyses
of biological activity Neubig (2003).
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Fig. 1. High level pipeline from data perspective

To contextualize these models within a study domain, we will use a dataset
where the target is the M2 Muscarinic Acetylcholine receptor, a G protein-
coupled receptor that plays a crucial role in the parasympathetic nervous system,
particularly in regulating cardiac function and smooth muscle activity. It is en-
coded by the CHRM2 gene in humans.

In the pharmacokinetic context, we will use Lipinski’s rule of five, which is
a set of empirical criteria fundamental to drug design. It describes molecular
properties relevant to pharmacokinetics in the human body, including absorp-
tion, distribution, metabolism, and excretion (ADME). This rule helps assess the
likelihood that a chemical compound exhibits adequate pharmacokinetic proper-
ties for oral administration in humans, based on four key molecular properties:
molecular weight (< 500Da), number of hydrogen bond donors (< 5), num-
ber of hydrogen bond acceptors (< 10), and octanol-water partition coefficient
(log P < 5). A compound that meets at least three of these criteria is more likely
to have good oral bioavailability.

It is important to note that, while this rule is useful for predicting phar-
macokinetic properties, it does not predict whether a compound will be phar-
macologically active. Its main utility lies in the early stages of drug discovery,
allowing researchers to filter out compounds with a low probability of success
before conducting costly experiments.

From the structural information of the molecules, various descriptors of inter-
est are extracted, among which the following are highlighted: number of hydrogen
bond donors, ng, representing the number of functional groups that can donate a
hydrogen atom; number of hydrogen bond acceptors, n,, which counts the num-
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ber of sites capable of accepting a hydrogen atom; number of rotatable bonds,
p, indicating molecular flexibility associated with the ability to rotate around
single bonds; molecular weight, w, which defines the mass of the molecule in
atomic mass units.

In this initial study, we consider a limited number of descriptors, which will
depend on the experiments described later, associated with the representational
power of classical data in quantum systems. For practical purposes, these features
were defined as part of a potentially more refined feature engineering process.

1.4 Data Processing for the Model

Regarding data processing, we aim to maintain a consistent scale of values to
enable operations, standardize values, and in some cases compress data. There-
fore, proper preparations will be carried out before training any model. In this
way, the feature vector is given by £ = (ng4, ng, p,w, -+ ). Due to the variability
in numerical scales of these descriptors, normalization is performed using the
minmax method, so that each component [ of the rescaled vector, 2’, is expressed
as z) = (; — min{z;})/(max{x;} — min{z;}), e.g., Vi: z] € [0, 1].

2 Classical and Quantum Models

In the context of supervised machine learning, we work with labeled data, partic-
ularly a training dataset of size N, {(z;, y;) }ic1y, where z; is the feature vector
and y; its corresponding label indicating whether it is suitable or not. The goal
is to find a predictor for y from a family of parameterized predictors with a real-
valued parameter vector g, by solving an optimization problem for a function of
q. Specifically, we consider regression and classification models, with predictor
families defined respectively by the following functions f and g:

N

f(qu) = qu¢k(m)a g(m,a, b) = sgn lz azyiK(zlaz) +b
k=1

i=1

where in the second case the parameter vector is ¢ = (a,b). We aim to estimate
whether a given compound is suitable using g, which corresponds to the output
of the respective trained predictors. The functions ¢y (x) are called feature maps,
and they are used to transform the features x to another space—either of lower
dimensionality or one that reveals separability between two given points x,z’.
The function K(z,z’) is called a kernel, and its dependence on (z,z’) arises
through the feature maps (¢(z), ¢(z’)) Huang et al. (2022). Some examples in-
clude the linear kernel ¢(z) - ¢(z'), the polynomial kernel (¢(z) - ¢(z') + ¢)¢, or
the Gaussian kernel exp[—~||¢(z) — ¢ (x')|[?].

Since the data is classical, quantum computing could add value in two parts
of the process: 1. solving the optimization problems underlying the training
phase, and 2. encoding data using quantum kernels. The data is encoded into
quantum states through a feature map implemented by a unitary operator U (z),
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giving the representation |¢(z)) = U(z) |0)*". The similarity between two quan-
tum states is measured using fidelity, and the quantum kernel is defined as
Ky(z,2') = [(¢(z)|o(x')) |?. This kernel naturally incorporates superposition and
entanglement effects, enabling the capture of complex nonlinear relationships in
feature space Huang et al. (2021). Classification is then carried out by train-
ing an SVM where the classical kernel is replaced by the quantum kernel K.
This approach allows us to explore the efficiency and potential of quantum al-
gorithms in QSAR scenarios, comparing them with classical approaches Havlicek
et al. (2019). The underlying optimization problem in both regression and clas-
sification models involves a quadratic problem that can be solved using classical
algorithms like gradient descent, heuristic methods like simulated annealing and
its quantum variant, or by using gate-based quantum computing to implement
algorithms such as VQE or QAOA.
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Fig. 2. ZZFeaturemap as a linear entangled quantum kernel.

3 Results and Discussion

In this section, we present the results obtained from implementing the regres-
sion and classification models. These models can be deployed on either classi-
cal or quantum hardware. In particular, for the quantum setting, this includes
annealing-based computers such as those from DWave, or gate-based universal
quantum computers like those developed by IBM.

To compare the performance across different models, we have chosen the
metric known as accuracy, defined as:

1 n
_ N — oy 1
see = - 2165 = v M)

where n is the number of test samples, and 1[§; = ;] is the indicator function
over the set of correct predictions.
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Fig. 3. ZZFeaturemap as a full entangled quantum kernel.
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Fig. 4. Custom linear entangled quantum kernel.
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A comparison of the different regression (REG) and classification (SVM) models,
based on whether classical or quantum algorithms were used, is summarized in

Table 1.

Table 1. We denote by ¢ and g the classical and quantum terms, respectively, to
qualify the type of model or the kernel as appropriate. The acronyms sim and QPU refer
to execution on quantum simulators and real quantum processors, respectively.

model type acc execution kernel
REG1 c 0.95 CPU —
REG, q 0.97 sim —
SVM; c 0.87 CPU ¢ | linear
SVM, c/q 0.98 sim q | linear - Fig 2
SVM3 c/q 0.83 sim ¢ | nolinear - Fig 3
SVMy c/q 0.40 QPU q |linear Fig 4

4 Conclusions

A pipeline has been developed that integrates traditional QSAR methods with
quantum machine learning techniques. The methodology includes preprocess-
ing and normalization of molecular descriptors, projection of these data into
quantum states via the ZZ-feature map, and classification using SVM with both
classical and quantum kernels. This approach allows for the evaluation of the po-
tential of quantum methods to improve classification in chemico-pharmaceutical
applications, relying on rigorous mathematical foundations and the emerging
capabilities of quantum computing.

The potential advantages of this integration lie in the ability of quantum
kernels to capture complex correlations, even in scenarios with limited data,
which may translate into improvements in performance compared to classical
techniques.
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