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Abstract. En la última década, se ha logrado un progreso significativo
en el desarrollo de computadoras NISQ (Noisy Intermediate-Scale Quan-
tum), aunque se requieren mejoras en el hardware para que los algoritmos
cuánticos a gran escala se ejecuten sin errores. Mientras tanto, los inves-
tigadores continúan enfocándose en el desarrollo de algoritmos efectivos
para el hardware actual, con énfasis en aplicaciones a corto plazo como
la optimización combinatoria. Este estudio presenta un análisis com-
parativo del Algoritmo Cuántico de Optimización Aproximada (QAOA)
aplicado al problema de Reasignación de Puestos de Trabajo (JRP), que
consiste en asignar n trabajadores a m trabajos vacantes para maximizar
la realización de tareas de alta prioridad y la satisfacción de los traba-
jadores con sus asignaciones. El análisis, realizado mediante la simulación
clásica en 105 instancias de JRP, indica un resultado prometedor, con
razones de aproximación notablemente altas que oscilan principalmente
entre 0, 86 y 0, 97. Esto contribuye a tener un incremento medio del 12%
en la productividad organizacional, al mejorar la asignación de tareas de
alta prioridad y la satisfacción de los trabajadores con sus asignaciones.

Keywords: Reasignación de Puestos de Trabajo, QAOA, Aplicación al
Mundo Real, Benchmarking, NISQ
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Abstract. In the past decade, there has been significant progress in
the development of NISQ (Noisy Intermediate-Scale Quantum) comput-
ers, though further hardware improvements are necessary for large-scale
quantum algorithms to execute without errors. In the meantime, re-
searchers continue to focus on developing effective algorithms for current
hardware, with an emphasis on near-term applications like combinato-
rial optimisation. This study presents a benchmarking analysis of the
Quantum Approximate Optimisation Algorithm (QAOA) applied to the
Job Reassignment Problem (JRP), which involves assigning n workers
to m vacant jobs to maximize high-priority task completion and worker
satisfaction. The benchmarking, performed with classical simulation on
105 JRP instances, shows promising results with approximation ratios
ranging from 0.86 to 0.97. This leads to an average improvement of 12%
in the organisational productivity thanks to a better assignment of high-
priority tasks and worker satisfaction.

Keywords: Job Reassignment Problem, QAOA, Real-world Applica-
tion, Benchmarking, NISQ

1 Introduction

The advent of Noisy Intermediate-Scale Quantum (NISQ) computers has sparked
tremendous interest in the field of quantum computing (De Luca, 2022). Al-
though these devices are still in the early stages of development, they hold the
potential to address a wide range of applications with improved space and time
complexity. However, the limitations of current quantum hardware —such as
noise, decoherence, and error rates— pose significant challenges for running
large-scale, fault-tolerant quantum algorithms. As a result, a major focus in
quantum computing research is the design of algorithms that can operate ef-
fectively on smaller quantum processors, often with only a few hundred qubits,
while preparing the ground for future developments in Fault-Tolerant Quantum
Computing (FTQC).
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One of the most promising areas of exploration is combinatorial optimisa-
tion, where quantum computing techniques can offer substantial advantages over
classical methods (Gemeinhardt et al., 2023). The Quantum Approximate Op-
timisation Algorithm (QAOA) (Farhi et al., 2014), along with other quantum
approaches such as Quantum Annealing (Rajak et al., 2022) and the Quantum
Variational Eigensolver (QVE) (Tilly et al., 2022), has emerged as a feasible tool
for solving hard optimisation problems. These algorithms leverage the principles
of quantum mechanics to explore a large solution space efficiently, offering the
potential to find optimal or near-optimal solutions in scenarios where classical
algorithms face exponential time complexity.

Among the numerous combinatorial problems that have been targeted by
quantum algorithms (Abbas et al., 2024), the Job Reassignment Problem (JRP)
stands out as an important real-world application (Delgado et al., 2023). The
JRP involves assigning workers to vacant job positions in such a way that the
overall completion of high-priority tasks is maximised, while also ensuring that
the workers are satisfied with their assignments. While these workers are already
assigned to specific tasks, an optimal configuration could also involve some of
them not being reassigned.

In this study, we focus on simulating QAOA applied to the JRP in a noiseless
environment. The JRP can be viewed as a special case of the classic Assignment
Problem (Pentico, 2007), which already has efficient classical solvers such as
the Hungarian method and integer programming (Kuhn, 1955; Papadimitriou &
Steiglitz, 1998). Its well-defined structure and known classical behaviour make it
a compelling candidate for benchmarking quantum heuristics, providing a clear
baseline for evaluating performance under NISQ-era constraints.

Our motivation for exploring QAOA in this context is twofold. First, ap-
plying QAOA to archetypal combinatorial tasks such as assignment problems
provides valuable insights into its performance and scaling under the typical
constraints of NISQ devices, including limited qubit count, shallow circuit depth
and a restricted number of optimization iterations. Second, while the classi-
cal formulation of the JRP is tractable, real-world variants often incorporate
soft constraints (Hmer & Mouhoub, 2010; Meseguer et al., 2006), features that
QAOA can naturally encode through its variational structure (Hadfield et al.,
2017), whereas classical exact solvers may struggle to integrate these without
incurring significant computational overhead (Cohen et al., 2004).
Our main contributions are the following:

– We evaluateQAOA on 105 JRP instances under noiseless simulation, ex-
ploring its effectiveness across varying problem sizes and QAOA depths
(p) on solution quality.

– We assess practical utility using a gain improvement metric, showing ben-
efits over non-reassignment scenarios.

– We analyse energy differences, highlighting how instance structure and
hyperparameters influence QAOA performance.

– We discuss the influence of TQA-inspired initialization, showing how it
may guide more effective parameter selection in deeper QAOA circuits.
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This paper is structured as follows. Section 2 presents the Job Reassignment
Problem and its formulation. Section 3 describes the benchmarking process,
including the experiment design and setup. Section 4 reports and discusses the
results. Finally, Section 5 concludes the paper and outlines directions for future
work. A repository with the implementation for this paper is available at https://
github.com/AdrianoLusso/QuantumComputing for JobReassignmentProblem.

2 Job Reassignment Problem

The Job Reassignment Problem (JRP) involves an organisation with J work-
ers, each of whom is assigned a job (Delgado et al., 2023). Due to unforeseen
circumstances, I new high-priority vacant positions are created. The objective
is to identify the workers who are best suited for the I vacant positions and
perform the reassignment. To accomplish this, a total of I · J scores, denoted
Sij , are considered. These scores represent the degree to which worker j is suited
to vacant job i. The optimal configuration is the one that maximises the sum of
the scores Sij .

2.1 Scores Sij definition

Each Sij in the gain function consists of the Priority Gain ∆P
ij and the Affinity

Gain ∆A
ij .

The Priority Gain is defined as ∆P
ij ≡ PV

i − PC
j , where the priority of the

vacant job is PV
i ∈ (0, 1] and the priority of the job currently assigned to the

worker is PC
j ∈ (0, 1]. In the problem domain, the priority value of any job is

defined by its importance for the productivity and efficiency of the organisation.
The Affinity Gain is defined as ∆A

ij ≡ AV
ij −AC

jj , where the personal affinity

of worker j with vacant job i is AV
ij ∈ (0, 1], and the personal affinity of the

worker with the job currently assigned is AC
jj ∈ (0, 1]. In the problem domain,

the affinity value of a worker with a job characterises the motivation and job
satisfaction generated by the worker being assigned to that position. Various
factors, such as distance from home, job difficulty, and salary, can affect this
value.

Finally, Eq. (1) defines the total score Sij for worker j and vacant job i. The
gain coefficients cP and cA are defined as positive constants that quantify the
relative weight of each term.

Sij = cP∆P
ij + cA∆A

ij . (1)

2.2 QUBO Formulation

According to Delgado et al., 2023, the Quadratic Unconstrained Binary Optimi-
sation (QUBO) formulation of the problem is defined in two parts: the core func-
tion H0, which encodes the objective function of the problem, and the penalty
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function HR, which is higher for unfeasible solutions. To facilitate the trans-
lation of the QUBO formulation to the Ising model used in QAOA, JRP will
be formulated as a cost minimisation problem rather than a gain maximisation
problem. H0 will be negated, while HR will penalise by increasing the cost value.

The core function is defined in Eq. (2). Each binary variable xij represents
whether worker j is reassigned to vacant job i. It can be noted that the value of
H0 decreases for higher priority and affinity gains.

H0 = −
∑
ij

Sijxij = −cP
∑
ij

(
∆P

ijxij

)
− cA

∑
ij

(
∆A

ijxij

)
. (2)

On the other hand, Eq. (3) defines the total penalty function, which is the sum
of two terms. Its first term is presented in Eq. (4). This ensures, for a sufficiently
large λR

1 > 0, that each vacant job i can be taken by at most one worker. Its
second term is presented in Eq. (5). It ensures, for a sufficiently large λR

2 > 0,
that each worker j can be reassigned to at most one vacant job.

HR = HR
1 +HR

2 . (3)

HR
1 = λR

1

∑
i

∑
j

xij − 0.5

2

. (4)

HR
2 = λR

2

∑
j

(∑
i

xij − 0.5

)2

. (5)

The constants λR
1 and λR

2 are the penalty coefficients and indicate the degree
of penalisation in case the equivalent constraints are not satisfied. The value
must be configured heuristically by the user, and while a small value may not
penalise sufficiently, an excessively large value may bias the objective function
when using an optimiser.

Combining Eqs. (2), (4) and (5), the QUBO formulation of JRP can be
defined as indicated in Eq. (6).

H =−
∑
ij

[
cP
(
PV
i − PC

j

)
+ cA

(
AV

ij −AC
jj

)]
xij

+ λR
1

∑
i

∑
j

xij − 0.5

2

+ λR
2

∑
j

(∑
i

xij − 0.5

)2

.

(6)

3 The benchmarking process

3.1 The Four-layer Design

The benchmarking process follows a four-layer design. A sample is generated
given a set of configurations, where each individual in the sample corresponds
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to a set of JRP instances implemented in QAOA under a specific configuration.
The proposed design is illustrated in Fig. 1, while the details of each layer are
provided in Appendix A.1.

Each layer introduces an additional level of abstraction to the procedures
involved in the benchmarking process. The configuration sampling layer is
responsible for generating each individual in the output sample, ensuring that
each one corresponds to a distinct input configuration. Each individual can be
considered a sub-sample itself, as it encompasses the complete analysis of QAOA
for five JRP instances. The generation of individuals for these sub-samples is
managed by the instance sampling layer, where each individual represents
the resolution of one of the five JRP instances. The structure of these layers is
illustrated in the appendix at Fig. 8 and Fig. 9.

The third layer of abstraction, named the algorithmic performance anal-
yser, is responsible for solving a JRP instance, processing the results and com-
puting the algorithmic performance metrics. These metrics, along with other
implementation data, are then stored in a subsample and used for further analy-
sis. The layer design is illustrated in Fig. 10. Finally, the QAOA solver and the
brute-force solver are introduced. The former implements the core aspects of
QAOA, including its configuration and execution, while the latter employs a con-
ventional brute-force approach to identify the optimal solution to the problem.
The design of the QAOA Solver is shown in Fig. 11.

Configuration sampling

Instance sampling

Algorithmic performance

analyser

QAOA Solver
Brute-force

Solver

Configurations Sample

Fig. 1. 4-layer design for benchmarking QAOA on JRP.

3.2 Procedures Setup

A total of 21 configurations are defined as the input for the benchmarking pro-
cess. Most of the hyperparameters are fixed to ensure a reliable sample size,
considering hardware limitations, while only a subset of the hyperparameters
has been selected for benchmarking.
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All configurations use gain coefficients set to 1, ensuring equal importance is
assigned to both affinity and job priority. The penalty coefficients are configured
as λR

1 = 2.5 and λR
2 = 3. These values were determined based on informal tests

conducted with small 4-qubit and 6-qubit instances. While it is expected that
these values will perform well with larger instances, it cannot be formally proven
that this will hold true.

Regarding the QAOA setup, a Trotterised Quantum Annealing (TQA) ini-
tialisation for variational parameters is used (Sack & Serbyn, 2021). The stan-
dard X-mixer is configured as the Mixer Hamiltonian. In each optimisation step,
10000 ansatz measurements are taken to calculate the expectation value, while
only 20 measurements are performed during the evaluation step. This evaluation
step determines the number of candidate solutions that will be found by QAOA
after the optimisation. It is important to note that these candidates must pass
the best candidate filter, as outlined in Fig. 11, in order to identify the best
solution. The Powell optimiser (Powell, 1964) is used, with a maximum of 10000
iterations and a tolerance of 0.01. All of these configurations were implemented
using the OpenQAOA SDK (Sharma et al., 2022).

Finally, the configuration parameters explored during the benchmarking pro-
cess are defined. These include the number of workers, the number of vacant jobs,
and the QAOA hyperparameter p. In Table 1, these distinct parameters are pre-
sented across 21 configurations, each identified by a tuple (workers, vacantJobs, p).
Given the number of configurations, with each producing a subsample of five JRP
instances analysed under QAOA, the total number of JRP instances analysed in
the benchmarking process is 21× 5 = 105.

ID workers vacantJobs p

(5,3,3) 5 3 3
(5,3,4) 5 3 4
(5,3,5) 5 3 5
(3,5,3) 3 5 3
(3,5,4) 3 5 4
(3,5,5) 3 5 5
(6,3,3) 6 3 3
(6,3,4) 6 3 4
(6,3,5) 6 3 5
(3,6,3) 3 6 3
(3,6,4) 3 6 4

ID workers vacantJobs p

(3,6,5) 3 6 5
(5,4,3) 5 4 3
(5,4,4) 5 4 4
(5,4,5) 5 4 5
(4,5,3) 4 5 3
(4,5,4) 4 5 4
(4,5,5) 4 5 5
(4,4,3) 4 4 3
(4,4,4) 4 4 4
(4,4,5) 4 4 5

Table 1. Tables with the 21 input configurations for the benchmarking. Only the
benchmarked parameters are outlined here, while the prefixed ones are mentioned in
Section 3.2.

The selection of circuit depths p ∈ {3, 4, 5} for the benchmarking is justified
by established findings regarding algorithm performance and hardware capabili-
ties. Crucially, layerwise QAOA training is known to saturate at a depth p∗ = n,
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meaning that further increasing depth beyond the number of qubits n yields no
additional improvement in overlap with the target state (Campos et al., 2021).
A JRP instance has a circuit width of workers × vacantJobs = n, resulting
in these saturation points to be around p∗ ∈ {15, 16, 18, 20} for the established
configuration parameters. Therefore, choosing depths p ∈ {3, 4, 5} allows for the
observation of significant performance improvements without encountering the
saturation limitations. Furthermore, these depths are directly supported by ex-
isting benchmarkings. Numerical optimizations for QAOA have been conducted
for systems up to N = 20 qubits, confirming the relevance of studying perfor-
mance at these scales (Niu et al., 2019). Most notably, a recent comprehensive
cross-platform QPU benchmarking study using the Linear Ramp QAOA (LR-
QAOA) protocol included 56-qubit and 28-qubit instances with depths as low as
p = 3, considering them informative and relevant for evaluating QPU coherence
and comparing different hardware vendors (Montanez-Barrera et al., 2025).

3.3 Algorithmic Performance Metrics

The first metric is the approximation ratio, a 0-to-1 value that expresses how
approximate is a solution obtained with respect to the optimal one. The closer
the value is to 1, the better the approximation. This has been widely used in
research on approximate algorithms for optimisation problems (Choi & Kim,
2019). It will help to quantify the quality of the obtained solutions.

Then, the Ising difference is defined in Eq. (7) as the difference between the
ansatz expectation value evaluated with optimal variational parameters ⟨H⟩θopt
and the one evaluated with TQA-initialised variational parameters ⟨H⟩θTQA .
Since it is not normalised through absolute value, the difference is given with a
sign. In that way, given an Ising difference of ±a, the larger the value of a, the
bigger the difference between the evaluated Ising costs, while the sign − or +
indicates whether there is a decreasing or increasing difference. Ising differences
shall result in values with negative sign in order to show that the algorithm is
theoretically working well.

Ising difference = ±a = ⟨H⟩θopt − ⟨H⟩θTQA
(7)

The last defined metric is the gain improvement, which will allow to quan-
tify how do QAOA’s results improve the current productivity of an industry or
organisation when it comes to solve JRP. It is defined in Eq. (8) as a percentage
improvement between the gain of the JRP equation in its standard formulation
(as a maximization problem with constraints) evaluated with a given solution
GQAOA and the gain with the solution that applies no reassignments Gbaseline.
While it may seem to provide the same information as the approximation ratio, it
does not. Finding highly approximate solutions to an optimisation problem does
not necessarily lead to a significant increase in an organisation’s productivity. In
some cases, applying the method to solve the problem may not be worthwhile,
even if it achieves approximate solutions.

Gain improvement =
GQAOA −Gbaseline

Gbaseline
× 100% (8)
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4 Result and Discussion

In Fig. 2, the approximation ratios for the 105 JRP instances solved by QAOA
are presented. Each category along the x-axis corresponds to one of the 21 con-
figurations that were set up. Additionally, the approximation ratios are grouped
by problem size and hyperparameter p in Fig. 3. The distributions are repre-
sented using box plots, where each box is defined by the mean (indicated by the
yellow line), the first and third quartiles (represented by the edges of the box),
and the minimum and maximum values (depicted by the whiskers). The white
points represent outliers.

Fig. 2. Approximation ratios for the 105 JRP instances optimised with QAOA.

Fig. 3. The distributions of approximation ratios grouped by problem size on the left
and by hyperparameter p on the right.

It can be easily seen from the plots that QAOA generally performs quite
well in approximating the optimal JRP solutions, as most of the solutions found
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for the instances show approximation ratios in the range [0.86, 0.97], with a mean
value of approximately 0.9. Upon further examination of the grouped distribu-
tions, some underlying patterns emerge. The growth in problem size appears
to correlate with a general decrease in the approximation ratio, which is to be
expected given that the search space expands exponentially with problem size.

In contrast, an increase in the hyperparameter p seems to correspond to
a general improvement in the approximation ratio, aligning with the theoreti-
cally anticipated behaviour and providing further evidence of the algorithm
proper functioning. Moreover, increasing the p value appears to reduce the
variance in the approximation ratios. This suggests that selecting an adequately
large p value may not only improve the approximation quality of the JRP solu-
tions but also enhance the algorithm robustness across multiple samplings
for candidate solutions. For example, in a real-world scenario, the same problem
instance may repeat over a long period of time, and the user may need to rerun
new samplings for candidate solutions with months or even years between them.

In Fig. 4, all the Ising differences are plotted, with the results grouped by
problem size and hyperparameter p in Fig. 5. These findings are consistent
with the previous results, as the Ising differences are all in high negative
values, i.e. negative values far from 0. This also shows that the algorithm is
effectively minimizing the expectation value of the prepared ansatz.

Fig. 4. Ising differences for the 105 JRP instances optimised with QAOA.

When analysing the distributions grouped by problem size, it is observed
that the Ising differences consistently increase in the negative direction with the
increase of problem size. In a first hypothesis, it might be assumed that this
is related to the number of possible reassignments across different instances.
Larger instances are likely to have more vacant jobs, providing more potential
reassignments that reduce the Ising cost of both the optimal solution and its
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Fig. 5. The distributions of Ising differences grouped by problem size on the left and
by hyperparameter p on the right.

approximate solutions. If this is the case, it should not be interpreted as a
significant factor influencing the ability of QAOA to find more approximate
solutions for larger instances. Instead, it reflects the tendency of larger instances
to have optimal solutions with a lower Ising cost, making them farther from the
initial Ising cost.

A second hypothesis states that the exponential growth of the search space
as the problem size increases would cause the TQA initialisation to begin with
worse variational parameters, i.e., starting farther from the optimal ones. This,
in turn, would cause the Ising difference to increase in the negative direction and
likely result in longer optimisation time.

Both the first and second hypothesises mentioned could occur simultaneously.
In any case, a more detailed comparison of the Ising costs contributing to the
Ising differences would be necessary to evaluate these hypotheses.

Another important factor that can affect the success of the method is the
variability in the Ising differences across different problem sizes. It could be seen
that the distribution for the 18-qubit instances is more spread out compared
to the 16-qubit distribution. This could be related to the configuration of the
number of workers and vacant jobs. For the 18-qubit instances, two configura-
tions were set: one with 6 workers and 3 jobs (named (6, 3, p)) and the other as
the inverse (named (3, 6, p)). For the 16-qubit instances, just one configuration
with 4 workers and 4 jobs was set. Switching between configurations (6, 3, p)
and (3, 6, p) is anticipated to lead to different Ising differences, and these cannot
be generalised solely based on problem size. If that is the case, it will impact
the approximation ratios achieved in instances, in a way that instances of one
configuration could result in higher approximation ratios than the other. This
underscores the importance of a comparison per configuration when eval-
uating JRP performance in QAOA, as merely considering the problem size may
lead to inaccurate conclusions, particularly as the number of workers and vacant
jobs becomes more imbalanced.

Regarding p, it was expected that the Ising difference would increase in the
negative direction as p increases, with the hope that this would indicate that
QAOA was finding better solutions. However, the observed trend was the op-
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posite. Upon further analysis, an initial hypothesis attributes this behaviour
to the method used to initialise variational parameters. As mentioned above, a
TQA initialisation was employed. Previous work by Sack and Serbyn, 2021 has
mentioned that decomposing the Quantum Annealing algorithm using a TQA
approach over a discrete set of evolution times ti with (i = 1, . . . , p) results in a
unitary circuit equivalent to the depth-p QAOA ansatz. This mapping between
TQA and QAOA, along with the universality of Quantum Annealing for T → ∞,
provides theoretical support for using TQA initialisation in QAOA. Based in the
former, in an idealised scenario where p → ∞, QAOA’s ansatz would require no
optimisation at all because the TQA initialization would correspond to the op-
timal parameters. However, in practical implementations where p is finite, the
further p is from this idealised limit, the farther the initialization will be from
the optimal parameters. This explains the observed trend where for larger p
values, which approach the idealised infinite-depth regime, the Ising differences
are nearer to 0. In other words, the result of the current analysis highlights
the strength of TQA-based initialisation in combination with higher p
values, not only in improving the quality of the solution but also in initializing
parameters closer to the optimal ones.

Finally, Fig. 6 provides an overview of all observed gain improvements, while
Fig. 7 illustrates how these varies with problem size. Taking into account the
industrial context, the QAOA application in JRP yields a general gain improve-
ment ranging between 9% and 15%, with an average improvement of 12%. Also,
as the problem size increases, the gain improvement exhibits a decreasing trend.
This observation aligns with previous analyses comparing problem size with
respect to approximation ratios and Ising differences, further reinforcing the
impact of problem complexity on QAOA performance. Either way, these main
results show the reliability in solving JRP with QAOA and the considerable
improvement with respect to the current job assignments setting.

5 Conclusion and Future Work

We applied QAOA to the Job Reassignment Problem (JRP), evaluating its per-
formance on 105 small instances in a noiseless simulation. The analysis showed
that QAOA effectively approximates optimal JRP solutions, achieving a mean
approximation ratio near 0.9, with most solutions in the range of [0.86, 0.97]. As
expected, the approximation ratio decreased with larger problem sizes. However,
higher values of the QAOA hyperparameter p improved solution quality and ro-
bustness. From an industrial perspective, QAOA resulted in job reassignment
efficiency improvements of 9% to 15%, with an average of 12%, demonstrating
its potential for enhancing job allocation strategies.

The study also examined the Ising differences, showing that QAOA consis-
tently minimises energy expectations as supposed. Interestingly, the variability
in Ising differences was found to depend not only on problem size but also on
the specific configurations of the number of workers and the number of vacant
jobs. This suggests that evaluating JRP performance in QAOA requires more
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Fig. 6. Percentage gain improvement for the 105 JRP instances optimised with QAOA.

Fig. 7. The distributions of percentage gain improvements grouped by problem size.
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than just analysing problem size. It is also needed a finer-grained comparison of
the imbalance between the number of workers and number of vacant jobs.

Moreover, we observed that larger p values resulted in lower Ising differ-
ences, which initially appeared counter-intuitive. However, this trend aligns with
prior work on TQA initialisation, supporting the idea that for sufficiently high
p, QAOA approaches an idealized regime where the initialized variational pa-
rameters accurately approximate the optimal ones. These findings highlight the
potential benefits of leveraging TQA-inspired initialisation in combination with
large p values.

There are two main directions for future work. The first involves leverag-
ing advanced statistical techniques and data mining to extract further relevant
performance insights from the current data. This can includes attempting to
extrapolate performance trends for larger problem instances and estimating the
minimum number of measurements required to ensure a baseline solution quality.

The second direction focuses on exploring hardware support to actually test
larger instances of the problem, ideally on real quantum devices. This would
provide the opportunity not only to evaluate more realistic problem instances
but also to assess the impact of device noise on the results. Additionally, ex-
perimenting with various error mitigation and suppression techniques would be
valuable to identify the most effective approaches in this context. In doing so,
it could be gained insight into the robustness of solutions in the presence of
real-world quantum hardware noise.
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A Appendix

A.1 Layers design
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Fig. 8. Configuration sampling, first component of the 4-layer design.
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Fig. 9. Instance sampling, second component of the 4-layer design.
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Fig. 10. Algorithmic performance analyser, third component of the 4-layer design.
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Fig. 11. QAOA solver, the component which implements the core aspects of QAOA,
including its configuration and execution.
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