
Puente entre la Lógica Clásica y la Computación
Cuántica a través del Razonamiento

Contradictorio
Abstract

Este artículo ejemplifica el uso de un novedoso marco semántico para la
lógica de primer orden, inspirado en la mecánica cuántica y diseñado para
captar algunas sutilezas de la computación cuántica. Demostramos que,
para procedimientos cuánticos clave —en concreto el algoritmo de Deutsch
y la descomposición de la compuerta Toffoli en compuertas de 2 bits— ex-
isten fórmulas que, a pesar de ser inconsistentes en términos clásicos, de-
scriben parcialmente el comportamiento algorítmico y exhiben caracterís-
ticas únicas de consistencia no clásica. Además, mostramos brevemente
cómo el abordaje ilustrado en este artículo podría ampliarse para abordar
otros algoritmos clave, como el algoritmo de Deutsch–Jozsa y el algoritmo
de Estimación de Fase. Una implicación de nuestros hallazgos es la posi-
bilidad de que aceptar contradicciones pueda ser útil para la innovación
en el diseño de algoritmos cuánticos.

Palabras Clave: Computación Cuántica, Lógica de Primer Orden,
Semántica Cuántica, Lógicas No Clásicas, Tolerancia a la Contradicción

Bridging Classical Logic and Quantum
Computation Through Contradictory Reasoning

Abstract

This paper exemplifies the use of a novel semantic framework for first-order
logic, informed by quantum mechanics and designed to capture some of the
nuances of quantum computation. We demonstrate that, for key quantum
procedures—concretely the Deutsch algorithm and the 2-gate decomposi-
tion of the Toffoli gate—there exist formulas that, despite being inconsis-
tent in classical terms, partially describe algorithmic behaviour and exhibit
unique non-classical consistency features. Moreover, we briefly discuss how
the approach illustrated in this article would need to be elaborated to deal
with other key algorithms such as the Deutsch–Jozsa algorithm and the
Phase Estimation algorithm.
An implication of our findings is the possibility that embracing contradic-
tions might be useful for innovation in quantum algorithm design.

Keywords: Quantum Computation, First-Order Logic, Quantum Se-
mantics, Non-Classical Logics, Contradiction Tolerance

1 Introduction
Quantum computation has transformed our understanding of what can be effi-
ciently computed, revealing new complexity-theoretic landscapes and inspiring
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novel logical frameworks (Deutsch, 1985; Shor, 1997). At the same time, descrip-
tive complexity has shown that many computational problems can be phrased
as first-order (FO) sentences evaluated over finite structures (Libkin, 2004). Yet
classical semantics treats an FO sentence as either true or false, leaving no room
for the probabilistic behaviour that characterises quantum devices. This pa-
per addresses the following question: Can we reinterpret FO sentences so that
their truth values emerge from—and are witnessed by—quantum circuits? Re-
cent surveys further motivate this direction (Bouland and Ozols, 2019; Selinger,
2015).

Building on Deutsch’s two-qubit algorithm, we introduce the notion of a
quasi-consistent sentence: an FO sentence Φ for which the circuit-based evalua-
tion outputs 1 with non-trivial probability 0 < p < 1. Our approach differs from
earlier logical encodings of quantum protocols (Abramsky and Coecke, 2004;
van Benthem, 2014) by providing an explicit gate-level translation of quanti-
fiers, instantiation, and relation checking, and exhibiting concrete circuits. Be-
sides clarifying the logical content of quantum subroutines, the framework lays
groundwork for analysing algorithms such as Simon’s and Grover’s (Simon, 1994;
Grover, 1996) from a proof-theoretic viewpoint.

The remainder of the article is organised as follows. Section 2 presents a
detailed first-order encoding of Deutsch’s problem and derives the sentence Φ.
The next section, Semantic Framework and Circuit Verification, develops the
gate-level semantics, introduces the interpreter tuple (Ins, Rec0,1, Rec+,−, ρ),
and proves the quasi-consistency of Φ. The section titled Two-Gate Decompo-
sition of the Toffoli Gate extends the methodology to the reversible three-qubit
Toffoli operation through its decomposition into 2-gates. Finally, Section 5 sum-
marises the main contributions and outlines future work, including applications
to the Deutsch–Jozsa and Phase-Estimation algorithms.

2 Deutsch’s problem: logical encoding
Deutsch’s algorithm solves what we call the Deutsch Problem: given a Boolean
function defined over a two-element domain, determine—using a single quantum
query—whether the function is constant or balanced (Deutsch, 1985; Deutsch
and Jozsa, 1992). By harnessing interference, the algorithm effectively evaluates
two counterfactual scenarios simultaneously (Nielsen and Chuang, 2010). We
encode the problem—rather than the step-by-step workings of the algorithm—in
a first-order language with a single binary relation R and represent its core via
a four-conjunct first-order sentence

Φ = Φ0 ∧ Φ1 ∧ Φ2 ∧ Φ3.

We argue that, in a sense, this encoding captures both the classical data and
the counterfactual content, analogous to the quantum superposition underlying
the algorithm.
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2.1 Logical Encoding of the Deutsch Problem
We represent the problem by the following subformulas:

Φ0 : ∀x∃y [R(x, y) ∧ ∀y′ (R(x, y′) → y = y′)],

Φ1 : ∃x∃y [x ̸= y ∧ ∀z (z = x ∨ z = y)],

Φ2 : ∃x∃y [x ̸= y ∧ ∃x′ ∃y′ (R(x, x′) ∧R(y, y′) ∧ x′ = y′)],

Φ3 : ∃x∃y [x ̸= y ∧ ∃x′ ∃y′ (R(x, x′) ∧R(y, y′) ∧ x′ ̸= y′)].

Here, Φ0 guarantees that R is a well-defined function (i.e. works as a mapping),
Φ1 restricts the domain to exactly two elements. In conjunction with Φ1, Φ2 and
Φ3 encode, respectively, the property of R being constant or balanced. Although
Φ2 and Φ3 are classically mutually exclusive, their coexistence in Φ reflects
quantum superposition—supporting the possibility that contradictory properties
coexist, as highlighted by the logical models of Rawling and Selesnick (2000).

We now leverage Deutsch’s algorithm and the sentence Φ to showcase the
semantic framework introduced above. The guiding principle is interpretation
via circuits: for any first-order sentence such as Φ we build a quantum circuit
whose acceptance statistics encode its truth value. We call the sentence quasi-
consistent when, under the uniform distribution on inputs, the circuit returns 1
with probability p satisfying 0 < p < 1.

The sentence Φ defined above is indeed quasi-consistent. We describe next
the construction of the circuit for Φ0. Similar designs are used for subformulas
Φ2 and Φ3.

3 Semantic Framework and Circuit Verification
In our game–theoretic reading of first-order semantics there are two implicit
agents: Player I, who assigns values to universally quantified variables, and
Player II, who must supply witnesses for existentially quantified variables. The
partial function ρ introduced below encodes a choice strategy for Player II. The
map Ins (insert) maps classical elements to qubit states„ while the recovery
maps Rec0,1 and Rec+,− (recover) perform the inverse translation by measur-
ing in the computational or Hadamard bases and returning the corresponding
classical symbol.

3.1 Semantic Framework
The circuit for Φ operates within a semantic framework consisting of:

1. A Classical Structure: We work over the domain {a, b, c, d} with binary
relation

R = {(a, b), (b, a), (c, d), (d, c)}.

The elements a, b, c, d are identified with quantum states |a⟩ , |b⟩ , |c⟩ , |d⟩
(assumed to be orthonormal).
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2. Mapping Functions: A tuple of functions connects the classical structure
to quantum states:

(Ins, Rec0,1, Rec+,−, ρ).

Their action is defined by

Ins(a) = |0⟩ , Ins(b) = H |0⟩ , Ins(c) = |1⟩ , Ins(d) = H |1⟩ ,

Rec0,1 |0⟩ = a, Rec0,1 |1⟩ = c,

Rec+,− |0⟩ = b, Rec+,− |1⟩ = d,

ρ is a function capturing the second player strategy to choose witnesses for
existentially quantified variables given values for the previous universally
quantified variables. In this case we define ρ by

ρ(a) = b, ρ(b) = a, ρ(c) = d, ρ(d) = c.

3.2 Circuit Design for Φ0

Circuit–diagram conventions. Time flows from left to right, with steps
marked along the top (0, 1, 2, . . . ) for each circuit or sub-circuit diagram.
Each horizontal line represents a register, labeled on the left. Square brackets
indicate operations: [U ] applies a unitary U , and [[M ]] performs a measurement
M . A solid dot “•” connected to [U ] denotes a control on |1⟩, i.e., U is applied
only if the control qubit is in state |1⟩. For d-dimensional registers, the label
“(a)” indicates that U is applied only when the control register is in the basis
state |a⟩; otherwise, the identity is applied. Dashed rectangles enclose multi-wire
subcircuits, typically used for predicate tests such as R(x, y).

The quantum circuit for Φ0 proceeds in several stages:

1. Initialization: For the universally quantified variable x, a uniform super-
position is created over {a, b, c, d} and a measurement is performed with
respect to the basis {a, b, c, d} (mimicking a random choice). The con-
trolled application of Ins then maps the chosen classical element into its
corresponding quantum state.

2. Witness Generation: Controlled operations employing the strategy ρ
instantiate a witness for the existential variable y. Then a corresponding
quantum state is prepared using Ins.
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3. Verification of R(x, y): The states are measured: x is measured in the
{|0⟩ , |1⟩} basis and y in the {|+⟩ , |−⟩} basis. The functions Rec0,1 and
Rec+,− recover the classical values, and a three-wire gate then verifies if
the pair (x, y) belongs to R.

4. Secondary Check: A similar process of universal instantiation and re-
lation checking is applied for the variable y′ to enforce the uniqueness
condition from Φ0.

5. Truth Value Computation: After designing the modules for the circuit
dealing with quantifiers and basic formulae, the propositional connectors
(like ∧ and →) can be handled using classical gates (implemented in the
quantum circuit).

The output cable of the overall circuit is the one corresponding to the output of
the last propositional connective that was applied (in our case the conjunction).
After completing the circuit and computing the probability Pi that the measured
truth value of Φi will be 1, it can be seen that for P (the analogous probability
for Φ) one has

0 < P =

3∏
i=0

Pi < 1.

Thus, Φ is a proper quasi-consistent sentence: classically inconsistent yet ac-
cepted with strictly positive probability by its witnessing quantum circuit, hint-
ing at a broader landscape of first-order statements whose quantum verifiability
transcends classical satisfiability.

4 Two-Gate Decomposition of the Toffoli Gate
A hallmark of quantum computation is the decomposition of the Toffoli gate into
two-qubit operations (Toffoli, 1980; Barenco et al., 1995). In our approach, the
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possibility of such a decomposition is captured by a single first-order sentence
Ψ =

∧4
i=0 Ψi, where:

Ψ0 :=

4∧
i=0

∀x, y
[
x ̸= y ∧ ∃zx, zy

(
Ri(x, zx) ∧Ri(y, zy)

)
→ zx ̸= zy

]
.

This ensures that for each two-gate operation, distinct inputs produce dis-
tinct outputs, a property necessary for reversibility.

Ψ1 :=

4∧
i=0

∀x
(
x ∈ Dom(Ri) ∨ x ∈ Rang(Ri)

)
.

This guarantees that every element appears in either the domain or the range
of each relation Ri, ensuring complete coverage of the state space.

Ψ2 := ∃x0, . . . , x7 ∀x, y

{(∧
k<j

xk ̸= xj

)
∧
( 7∨
l=0

(x = xl ∨ y = xl)
)

∧
( 4∧
i=0

(
Ri(x, y) → Ri

(
fi(x), fi(y)

)))}
.

This asserts that eight distinct basis states exist and that, if the relation
Ri holds for any pair (x, y) (with at least one element being among these basis
states), then the corresponding transformation fi preserves this relation.

Ψ3 := ∃x0, . . . , x7

[( ∧
k<l<8

xk ̸= xl

)

∧
( 7∧
j=0

f4◦f3◦f2◦f1◦f0(xj) = ToffoliGate(xj)
)]

.

This ensures that the composition of functions f0, . . . , f4 reproduces the action
of the Toffoli gate on the specified basis states.

Ψ4 := ∃x0, . . . , x7

( ∧
k<l<8

xk ̸= xl

)
∧ ∀z

( 6∨
j=0

(z = xj)
) .

This fixes the universe precisely to the set of eight basis states, ensuring that all
elements under consideration are part of the decomposition.

Although one can directly verify via classical methods that the overall sentence
is inconsistent, the techniques described in earlier sections allow us to construct
a verifier quantum circuit that demonstrates the quasi-consistency of Ψ.
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Outlook to Further Algorithms. The gate-level semantics developed for
Deutsch’s problem and the Toffoli decomposition extend naturally to more so-
phisticated routines. In particular, by replacing the two-element domain used
in Section 2 with 2n-element superpositions and introducing modular-arithmetic
predicates, one can craft quasi-consistent sentences whose witnessing circuits co-
incide—up to poly-size overhead—with the Deutsch–Jozsa algorithm for constant-
versus-balanced promises and with the Phase Estimation algorithm that under-
lies order-finding and Shor’s factoring scheme.

5 Conclusions
By translating each syntactic construct of first-order logic into a concrete, depth-
controlled quantum sub-circuit, we have shown that truth in classical semantics
can be relaxed to a measurable acceptance probability that we term quasi-
consistency. This bridge between descriptive complexity and quantum query
computation clarifies the logical content of well-known protocols such as Deutsch’s
algorithm and opens a pathway for analysing richer algorithms through proof-
theoretic lenses. Consequently, classical sentences can be evaluated on quantum
hardware, and their probabilistic outcomes quantify an intermediate notion of
logical satisfiability. We believe this gate-level semantics can become a useful
tool for both quantum program verification and the complexity-theoretic classi-
fication of logical theories.
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