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Resumen Se propone un esquema hibrido cuéntico-clasico para generar
embeddings en grafos de conocimiento mediante algoritmos variacionales
(VQAs). El modelo optimiza representaciones cuanticas de entidades
y relaciones a través de circuitos parametrizados, combinando proce-
samiento cuantico (preparacion de estados y medicién) con optimizacion
clasica. Se analizan diversas arquitecturas de circuitos cuanticos, estable-
ciendo un marco unificado.

Palabras claves: Grafos de concimiento, Embeddings, Algoritmos cuén-
ticos variacionales

Knowledge graph embeddings based on
variational quantum algorithms

Abstract A hybrid quantum-—classical framework is proposed to gen-
erate embeddings in knowledge graphs using variational quantum algo-
rithms (VQASs). The model optimizes quantum representations of entities
and relations via parameterized circuits, combining quantum processing
(state preparation and measurement) with classical optimization. Var-
ious quantum circuit architectures are analyzed, establishing a unified
framework.

Keywords: Knowledge graphs, Embeddings, Variational quantum al-
gorithms

1 Introduccion

Los Knowledge Graphs (KGs) (Hogan et al., [2021) cobran relevancia cuando
las conexiones entre datos son tan importantes como sus valores intrinsecos,
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encontrando aplicaciones desde redes sociales (Fan, 2012) hasta Web Semaéantica
(Arenas and Pérez, 2011) y procedencia de datos (Anand et al., [2010)).

Matematicamente, un KG es un multigrafo dirigido y etiquetado, KG =
(E,R, F), donde F es el conjunto de nodos (entidades), R el conjunto de etique-
tas (relaciones) y ' C E x R X E el conjunto de hechos (o tripletas) (h,r,t), que
indican que la entidad origen (cabeza) h € E se relaciona con la entidad destino
(cola) t € E mediante la relacion r € R.

Sobre estos grafos se aplican procesos de inferencia como data completion
(Rossi et al., 2021)), clustering (Saeedi et al., [2018)) o link prediction (Kumar et
al., 2020), abordados mediante técnicas de embeddings (Dai et al., [2020; Ge et
al.,|2024). Estas técnicas representan cada entidad e € E y relacion r € R en un
espacio vectorial de baja dimensién, buscando que embeddings similares reflejen
semanticas estructurales comunes. La validez de una tripleta (h,r,t) se estima
con una funcién de score dpqt : E X R X E — R, optimizando los embeddings
sobre un conjunto de entrenamiento D = {(h, 7, t), yp,+ } —donde yp,+ indica si la
tripleta pertenece al KG— usando una funcion de pérdida L£(dprt, Ynre; ©), con
O los parametros del modelo. Ejemplos de este enfoque son RESCAL (Nickel
et al., 2011), TransE (Asmara et al., [2023) y RotatE (Sun et al.,[2019).

En el ambito cuantico, los modelos operan sobre vectores en espacios de
Hilbert. Recientemente, se propusieron VQAs para calcular embeddings (Kurokawa
et al., 2022, Ma et al., 2019)), aunque con scores dependientes de la arquitectura
del circuito. En este contexto, presentamos qCUERO (Quantum Classical Uni-
versal Embeddings for Relations and Objects), un esquema general y adaptable
para embeddings de KGs mediante VQAs.

2 qCUERO: Modelos Cuanticos de Embeddings

El esquema qCUERO define embeddings cuanticos para entidades en un espacio
de Hilbert de dimension 2" (con n qubits) tal que Ve € E, |e¢) = V(6,)H®"|0)®",
donde H®" denota compuertas Hadamard aplicadas en paralelo y V(G_'e) es un
ansatz parametrizado con 9_; € R%. Para cada relacion r € R, se define una
unitaria U(G_;) con f, € R%. Tanto el nimero de qubits 7 como las dimen-
siones de los vectores de pardmetros d. y d,- son hiperparametros del modelo. La
consistencia para una tripleta (h,r,t) € E se impone mediante U(6,)|h) ~ |t).

La Fig. [I|ilustra el flujo hibrido cuéntico-clasico: (i) preparacion cuantica de
entidades y relaciones y célculo del score (en rojo), (ii) calculo clasico de Lﬂ (en
azul), y (iii) optimizacién clasica de pardmetros. Para obtener ventajas frente
a métodos clasicos, los ansatz deben ser circuitos poco profundos (complejidad
lineal en n), de forma que la complejidad por época sea O(|D|poly(logd)/€?),
donde |D| es el tamaifio del conjunto de entrenamiento, d = 27, y 1/€2 es el
nimero de mediciones requeridas para alcanzar una precision e.

El modelo qCUERO tiene la capacidad de expresar relaciones simétricas y
antisimétricas junto con la inversion y composicion de relaciones. Entre los

1 Aunque la funcién de pérdida podria obtenerse cuanticamente si se logra escribir
como el valor medio de algtin observable.
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Fig. 1: Flujo hibrido cuantico-clasico para entrenar un modelo de embeddings
cuéntico. Etapas cuanticas en color rojo; etapas clésicas en color azul.

embeddings clasicos, RotaE posee una capacidad de expresividad equivalente
(Sun et al., [2019).

Teorema. qCUERO es capaz de modelar relaciones simétricas/antisimétricas,
inversas y compuestas: (i) simetria: U(0,)U(0,) = 1, (ii) anti-simetria: U(6,)U (6,) #
I, (iii) inversion: U(6,,)U(6,,) = I, y (iv) composicion: U(6,,) = U(0,,)U(8,,),
donde I es la identidad.

Existen dos propuestas recientes de VQAs (Kurokawa et al., 2022; Ma et al.,
2019)) que se enmarcan en el esquema de la Fig. |1l La diferencia principal radica
en el score y en la cantidad de qubits empleados.

En (Ma et al.,|2019) se introduce el fQCE (Fully Parametrized Quantum Cir-
cuit Embedding), que utiliza n+ 1 qubits. En n qubits se codifica la accion de la
relacion 7 sobre la cabeza h y la cola t mediante unitarias Uy = U(6,)U (6),) H®™
yUy=U (é;)H ®n  respectivamente (Fig. . La medicién del qubit adicional
del switch test gate (Chamorro-Posada and Garcia-Escartin, 2023)) se emplea
para obtener el score: 879" = R((t|U(6,)|h)) € [-1,1].

Por otro lado, (Kurokawa et al., 2022) utiliza un modelo con 2n + 1 qubits.

En n qubits se codifica la accién de r sobre h mediante Uy = U(6,)U (6, ) H®"
y en otros n qubits se codifica la cola ¢ como Uy = U(6;) H®" (Fig. . La
medicion del qubit adicional del swap test (Buhrman et al., 2001) se usa para
obtener el score: 6%%, = |(t|U(6,)|h)|? € [0,1].

En ambos modelos, la complejidad de calcular el del score es O(poly(log d) /€?).
Ademas, se minimiza la funcién de pérdida del error cuadratico medio, =
mine I%\ > et (Onrt — Ynrt)? con © = {(9_;, é;)} La complejidad total por época

es O(|Dpoly(log d)/e?).

3 Comentarios finales
Se present6 el esquema qCUERQO para abordar el embedding de KG medi-

ante VQAs, demostrando su capacidad para modelar relaciones simétricas, an-
tisimétricas, inversas y compuestas, con una expresividad comparable a RotaE.
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Fig.2: Propuestas de VQAs para embedding de KGs. (a) Circuito con Switch
SWAP test. (b) Circuito con SWAP test.

Asimismo, se mostro que las propuestas de (Ma et al., [2019) y (Kurokawa et al.,
2022) se enmarcan en este esquema.

Como lineas futuras se plantea: (i) validar el método en escenarios reales
con diversos grafos de conocimiento; (ii) explorar nuevas arquitecturas cuanticas
para optimizar la eficiencia del embedding; (iii) investigar si el entrenamiento
en superposicion cuantica reduce exponencialmente la complejidad (pasando de
|D| a log|DJ) ; y (iv) analizar el impacto del ruido cuéntico para desarrollar
estrategias de mitigacion que permitan su implementacién en hardware real.
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