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Resumen Se propone un esquema híbrido cuántico-clásico para generar
embeddings en grafos de conocimiento mediante algoritmos variacionales
(VQAs). El modelo optimiza representaciones cuánticas de entidades
y relaciones a través de circuitos parametrizados, combinando proce-
samiento cuántico (preparación de estados y medición) con optimización
clásica. Se analizan diversas arquitecturas de circuitos cuánticos, estable-
ciendo un marco unificado.

Palabras claves: Grafos de concimiento, Embeddings, Algoritmos cuán-
ticos variacionales

Knowledge graph embeddings based on
variational quantum algorithms

Abstract A hybrid quantum–classical framework is proposed to gen-
erate embeddings in knowledge graphs using variational quantum algo-
rithms (VQAs). The model optimizes quantum representations of entities
and relations via parameterized circuits, combining quantum processing
(state preparation and measurement) with classical optimization. Var-
ious quantum circuit architectures are analyzed, establishing a unified
framework.

Keywords: Knowledge graphs, Embeddings, Variational quantum al-
gorithms

1 Introducción

Los Knowledge Graphs (KGs) (Hogan et al., 2021) cobran relevancia cuando
las conexiones entre datos son tan importantes como sus valores intrínsecos,
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encontrando aplicaciones desde redes sociales (Fan, 2012) hasta Web Semántica
(Arenas and Pérez, 2011) y procedencia de datos (Anand et al., 2010).

Matemáticamente, un KG es un multigrafo dirigido y etiquetado, KG =
(E,R, F ), donde E es el conjunto de nodos (entidades), R el conjunto de etique-
tas (relaciones) y F ⊆ E×R×E el conjunto de hechos (o tripletas) (h, r, t), que
indican que la entidad origen (cabeza) h ∈ E se relaciona con la entidad destino
(cola) t ∈ E mediante la relación r ∈ R.

Sobre estos grafos se aplican procesos de inferencia como data completion
(Rossi et al., 2021), clustering (Saeedi et al., 2018) o link prediction (Kumar et
al., 2020), abordados mediante técnicas de embeddings (Dai et al., 2020; Ge et
al., 2024). Estas técnicas representan cada entidad e ∈ E y relación r ∈ R en un
espacio vectorial de baja dimensión, buscando que embeddings similares reflejen
semánticas estructurales comunes. La validez de una tripleta (h, r, t) se estima
con una función de score δhrt : E × R × E → R, optimizando los embeddings
sobre un conjunto de entrenamiento D = {(h, r, t), yhrt} —donde yhrt indica si la
tripleta pertenece al KG— usando una función de pérdida L(δhrt, yhrt;Θ), con
Θ los parámetros del modelo. Ejemplos de este enfoque son RESCAL (Nickel
et al., 2011), TransE (Asmara et al., 2023) y RotatE (Sun et al., 2019).

En el ámbito cuántico, los modelos operan sobre vectores en espacios de
Hilbert. Recientemente, se propusieron VQAs para calcular embeddings (Kurokawa
et al., 2022; Ma et al., 2019), aunque con scores dependientes de la arquitectura
del circuito. En este contexto, presentamos qCUERO (Quantum Classical Uni-
versal Embeddings for Relations and Objects), un esquema general y adaptable
para embeddings de KGs mediante VQAs.

2 qCUERO: Modelos Cuánticos de Embeddings

El esquema qCUERO define embeddings cuánticos para entidades en un espacio
de Hilbert de dimensión 2n (con n qubits) tal que ∀e ∈ E, |e⟩ = V (θ⃗e)H

⊗n|0⟩⊗n,
donde H⊗n denota compuertas Hadamard aplicadas en paralelo y V (θ⃗e) es un
ansatz parametrizado con θ⃗e ∈ Rde . Para cada relación r ∈ R, se define una
unitaria U(θ⃗r) con θ⃗r ∈ Rdr . Tanto el número de qubits n como las dimen-
siones de los vectores de parámetros de y dr son hiperparámetros del modelo. La
consistencia para una tripleta (h, r, t) ∈ E se impone mediante U(θ⃗r)|h⟩ ≈ |t⟩.

La Fig. 1 ilustra el flujo híbrido cuántico-clásico: (i) preparación cuántica de
entidades y relaciones y cálculo del score (en rojo), (ii) cálculo clásico de L1 (en
azul), y (iii) optimización clásica de parámetros. Para obtener ventajas frente
a métodos clásicos, los ansatz deben ser circuitos poco profundos (complejidad
lineal en n), de forma que la complejidad por época sea O(|D|poly(log d)/ϵ2),
donde |D| es el tamaño del conjunto de entrenamiento, d = 2n, y 1/ϵ2 es el
número de mediciones requeridas para alcanzar una precisión ϵ.

El modelo qCUERO tiene la capacidad de expresar relaciones simétricas y
antisimétricas junto con la inversión y composición de relaciones. Entre los
1 Aunque la función de pérdida podría obtenerse cuánticamente si se logra escribir

como el valor medio de algún observable.
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Fig. 1: Flujo híbrido cuántico-clásico para entrenar un modelo de embeddings
cuántico. Etapas cuánticas en color rojo; etapas clásicas en color azul.

embeddings clásicos, RotaE posee una capacidad de expresividad equivalente
(Sun et al., 2019).

Teorema. qCUERO es capaz de modelar relaciones simétricas/antisimétricas,
inversas y compuestas: (i) simetría: U(θ⃗r)U(θ⃗r) = I, (ii) anti-simetría: U(θ⃗r)U(θ⃗r) ̸=
I, (iii) inversión: U(θ⃗r1)U(θ⃗r2) = I, y (iv) composición: U(θr1) = U(θr2)U(θr3),
donde I es la identidad.

Existen dos propuestas recientes de VQAs (Kurokawa et al., 2022; Ma et al.,
2019) que se enmarcan en el esquema de la Fig. 1. La diferencia principal radica
en el score y en la cantidad de qubits empleados.

En (Ma et al., 2019) se introduce el fQCE (Fully Parametrized Quantum Cir-
cuit Embedding), que utiliza n+1 qubits. En n qubits se codifica la acción de la
relación r sobre la cabeza h y la cola t mediante unitarias U1 = U(θ⃗r)U(θ⃗h)H

⊗n

y U2 = U(θ⃗t)H
⊗n, respectivamente (Fig. 2a). La medición del qubit adicional

del switch test gate (Chamorro-Posada and Garcia-Escartin, 2023) se emplea
para obtener el score: δfQCE

hrt = ℜ(⟨t|U(θ⃗r)|h⟩) ∈ [−1, 1].
Por otro lado, (Kurokawa et al., 2022) utiliza un modelo con 2n+ 1 qubits.

En n qubits se codifica la acción de r sobre h mediante U1 = U(θ⃗r)U(θ⃗h)H
⊗n

y en otros n qubits se codifica la cola t como U2 = U(θ⃗t)H
⊗n (Fig. 2b). La

medición del qubit adicional del swap test (Buhrman et al., 2001) se usa para
obtener el score: δkuhrt = |⟨t|U(θr)|h⟩|2 ∈ [0, 1].

En ambos modelos, la complejidad de calcular el del score es O(poly(log d)/ϵ2).
Además, se minimiza la función de pérdida del error cuadrático medio, =
minΘ

1
|D|

∑
hrt(δhrt − yhrt)

2 con Θ = {(θ⃗e, θ⃗r)}. La complejidad total por época
es O(|D|poly(log d)/ϵ2).

3 Comentarios finales

Se presentó el esquema qCUERO para abordar el embedding de KG medi-
ante VQAs, demostrando su capacidad para modelar relaciones simétricas, an-
tisimétricas, inversas y compuestas, con una expresividad comparable a RotaE.
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Fig. 2: Propuestas de VQAs para embedding de KGs. (a) Circuito con Switch
SWAP test. (b) Circuito con SWAP test.

Asimismo, se mostró que las propuestas de (Ma et al., 2019) y (Kurokawa et al.,
2022) se enmarcan en este esquema.

Como líneas futuras se plantea: (i) validar el método en escenarios reales
con diversos grafos de conocimiento; (ii) explorar nuevas arquitecturas cuánticas
para optimizar la eficiencia del embedding; (iii) investigar si el entrenamiento
en superposición cuántica reduce exponencialmente la complejidad (pasando de
|D| a log |D|) ; y (iv) analizar el impacto del ruido cuántico para desarrollar
estrategias de mitigación que permitan su implementación en hardware real.

Agradecimientos

GMB reconoce el financiamiento de los proyectos PIBAA-0718 y PIP-0135 del
CONICET (Argentina). MS agradece la Beca de Iniciación en Investigación Cien-
tífica otorgada por la FCEyN-UBA y LambdaClass.

Referencias

Anand, M. K., Bowers, S., & Ludäscher, B. (2010). Techniques for efficiently
querying scientific workflow provenance graphs. EDBT, 10 (2010), 287–
298.

Arenas, M., & Pérez, J. (2011). Querying semantic web data with sparql. Proceed-
ings of the 30th ACM SIGMOD-SIGACT-SIGART Symp. on Principles
of Database Systems, 305–316.

Asmara, S. M., Sahabudin, N. A., Ismail, N. S. N., & Sabri, I. A. A. (2023).
A review of knowledge graph embedding methods of transe, transh and
transr for missing links. 2023 IEEE 8th Int. Conf. On Software Engi-
neering and Computer Systems (ICSECS), 470–475.

Buhrman, H., Cleve, R., Watrous, J., & de Wolf, R. (2001). Quantum finger-
printing. Phys. Rev. Lett., 87, 167902.

Chamorro-Posada, P., & Garcia-Escartin, J. C. (2023). The switch test for dis-
criminating quantum evolutions. Journal of Physics A: Mathematical
and Theoretical, 56 (35), 355301.

ASQC, 1st Argentine Symposium on Quantum Computing 2025

Memorias de las 54 JAIIO - ASQC - ISSN: 2451-7496 - Página 56



Dai, Y., Wang, S., Xiong, N. N., & Guo, W. (2020). A survey on knowledge
graph embedding: Approaches, applications and benchmarks. Electron-
ics, 9 (5), 750.

Fan, W. (2012). Graph pattern matching revised for social network analysis.
Proceedings of the 15th Int. Conf. on Database Theory, 8–21.

Ge, X., Wang, Y. C., Wang, B., Kuo, C.-C. J., et al. (2024). Knowledge graph em-
bedding: An overview. APSIPA Trans. on Signal and Inf. Proc., 13 (1).

Hogan, A., Blomqvist, E., Cochez, M., D’amato, C., Melo, G. D., et al. (2021).
Knowledge graphs. ACM Comput. Surv., 54 (4).

Kumar, A., Singh, S. S., Singh, K., & Biswas, B. (2020). Link prediction tech-
niques, applications, and performance: A survey. Physica A: Statistical
Mechanics and its Applications, 553, 124289.

Kurokawa, M., Giri, P. R., & Saito, K. (2022). Evaluating variational quantum
circuit designs for knowledge graph completion. 2022 IEEE Int. Conf.
on Quantum Computing and Engineering (QCE), 777–778.

Ma, Y., Tresp, V., Zhao, L., & Wang, Y. (2019). Variational quantum circuit
model for knowledge graph embedding. Adv. Quantum Tech., 2 (7-8),
1800078.

Nickel, M., Tresp, V., Kriegel, H.-P., et al. (2011). A three-way model for col-
lective learning on multi-relational data. Icml, 11 (10.5555), 3104482–
3104584.

Rossi, A., Barbosa, D., Firmani, D., Matinata, A., & Merialdo, P. (2021). Knowl-
edge graph embedding for link prediction: A comparative analysis. ACM
Trans. on Knowledge Discovery from Data (TKDD), 15 (2), 1–49.

Saeedi, A., Peukert, E., & Rahm, E. (2018). Using link features for entity clus-
tering in knowledge graphs. European Semantic Web Conf., 576–592.

Sun, Z., Deng, Z.-H., Nie, J.-Y., & Tang, J. (2019). Rotate: Knowledge graph em-
bedding by relational rotation in complex space. Int. Conf. on Learning
Representations.

ASQC, 1st Argentine Symposium on Quantum Computing 2025

Memorias de las 54 JAIIO - ASQC - ISSN: 2451-7496 - Página 57


	Embeddings de grafos de conocimiento basados en algoritmos cuánticos variacionales

