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Abstract. We apply a procedure based on the quantum imaginary time evolution
method to solve the unit-disk maximum independent set problem. A numerical
simulation is performed for a 6-qubit graph using a set of linear domains. We
find that the failure probability of the procedure is relatively small and rapidly
decreases with the number of shots.
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Evolución Temporal Imaginaria Cuántica y el problema
de UD-MIS

Resumen Aplicamos un procedimiento basado en el método de evolución tem-
poral imaginaria cuántica para encontrar el conjunto máximo independiente de
grafos de disco unitario. Se realizó una simulación numérica de un grafo de 6
cúbits utilizando un conjunto de dominios lineales. Observamos que la probabi-
lidad de fallo del procedimiento es relativamente baja y disminuye rápidamente
con el número de mediciones.

Palabras clave: algoritmos cuánticos, computación cuántica, optimización cuánti-
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1. Introducción

El cálculo del estado fundamental de un sistema cuántico es crucial en diversas áreas
de la fı́sica y la optimización. La computación cuántica emerge como una herramienta
prometedora para calcular estos estados, tarea que resulta intratable para las compu-
tadoras clásicas para sistemas de muchos cúbits. Algunos de los algoritmos cuánticos
propuestos para abordar esta tarea incluyen el algoritmo de optimización adiabática
(Das y Chakrabarti, 2008; Farhi et al., 2001), el algoritmo de optimización aproximada
cuántica (QAOA) (Farhi et al., 2014; Herrman et al., 2022; Medvidović y Carleo, 2021;
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Ostrowski et al., 2020; Shaydulin et al., 2021; Zhou et al., 2020; Zhu et al., 2022). Un
método alternativo, denominado evolución temporal imaginaria cuántica (QITE) fue
propuesto recientemente (Motta et al., 2019). Este enfoque emula la evolución temporal
imaginaria usando evoluciones unitarias asistidas por mediciones. Algunas aplicaciones
del algoritmo QITE incluyen la quı́mica cuántica en hardware cuántico ruidoso de esca-
la intermedia (NISQ), (Barison et al., 2022; Tsuchimochi et al., 2023; Yeter-Aydeniz et
al., 2020), en simulación de sistemas cuánticos abiertos (Kamakari et al., 2022), obser-
vables termodinámicos (Gacon et al., 2024; Getelina et al., 2023) y más recientemente
en problemas de optimización como Max-Cut y optimización binaria polinómica no
restringida (PUBO) (Alam et al., 2023; Bauer et al., 2024). En un trabajo previo (Penas
et al., 2025) aplicamos un método basado en QITE para encontrar el máximo conjunto
independiente de un grafo de disco unitario (problema de UD-MIS). Este problema es
un ejemplo de optimización combinatoria que pertenece a la clase de problemas NP-
hard. En este trabajo continuamos dicha investigación, considerando un grafo de disco
unitario de 6 cúbits y usando un conjunto de dominios lineales. Estudiamos la fidelidad
del estado final con respecto al estado esperado y la probabilidad de fallo del método a
medida que aumentan las iteraciones.

2. El problema del máximo conjunto independiente en disco
unitario

Sea G = (V,E) un grafo con un conjunto de vértices V y un conjunto de aristas
E, y sea N el número total de vértices. Un conjunto independiente de G es un conjun-
to de vértices mutuamente no conectados. Sea S = (s1, . . . ,sN) una cadena de bits de
longitud N (si ∈ {0,1}), y sea BN el conjunto de todas las posibles cadenas de bits
de longitud N. El problema del máximo conjunto independiente (MIS) consiste en el
siguiente problema de maximización: máxS∈BN ∑

N
i=1 si tal que S = (s1, . . . ,sN) corres-

ponde a un conjunto independiente, es decir, para todo par de vértices (i, i′) tenemos que
si = si′ = 1 =⇒ (i, i′) /∈ E. El problema de UD-MIS es el problema de MIS restringido
a grafos de disco unitario. Un grafo es de disco unitario si a cada vértice se le puede
asociar una posición en el plano bidimensional de modo que dos vértices compartan
una arista si y sólo si su distancia es menor que la unidad. Este problema de optimiza-
ción puede ser reformulado como un problema de optimización cuántica. Consiste en
encontrar el estado fundamental de un Hamiltoniano de la forma:

H =−∑
i∈V

n̂i +u ∑
(i,i′)∈E

n̂in̂i′ , (1)

con n̂i = (I − Zi)/2 y Zi la matriz de Pauli en la dirección z actuando en el cúbit i, y
u un parámetro cuyo valor puede ajustarse. La idea es asociar cada cadena de bits S =
(s1, . . . ,sN) con un estado cúantico |s1, . . . ,sN⟩. Fijar u> 1 garantiza que el fundamental
de H represente al máximo conjunto independiente.

3. Método de optimización basado en QITE

La idea del algoritmo QITE consiste en obtener el estado fundamental del Ha-
miltoniano de un sistema cuántico como el lı́mite a tiempos largos de la ecuación de
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Schrödinger en tiempo imaginario. Se aproxima la acción no unitaria e−tH por una se-
cuencia de evoluciones unitarias asociadas a cada paso de una descomposición de Trot-
ter de H. Más precisamente, H = ∑i hi donde hi actúa en una cierta cantidad de cúbits y
cada paso de Trotter contiene una exponencial no unitaria asociada a hi a tiempo τ = t/n
(n cantidad de iteraciones de Trotter). Cada unitaria utilizada para aproximar la expo-
nencial no unitaria e−tH actúa sobre una cierta cantidad de cúbits (dominio) alrededor
del soporte de hi. Iterando este proceso, se construye el operador de QITE QH(τ,n,D)
(Motta et al., 2019). Aqui, D contiene la información de todos los dominios. Vamos
a llamar a un conjunto de dominios D lineal si cada evolución unitaria actúa sobre un
solo cúbit.

Denotamos E0, . . . ,Ed−1 los autovalores de H, ordenados de manera no-decreciente.
Los correspondientes autovectores se denotan como |E0⟩, . . . , |Ed−1⟩, respectivamente.
Los autovectores de H coinciden con los vectores de la base computacional, en algún
orden. El problema que queremos resolver es (Penas et al., 2025): Encontrar el autova-
lor E0 de H o un autovalor Ei tal que Ei ≤ E0+δE, con δE ≥ 0 un error tolerable. Los
estados asociados con estos autovalores son llamados estados aceptables. Los pasos de
la propuesta son los siguientes:

1. Estado incial |ψ0⟩=H⊗N |0 . . .0⟩, con H⊗N la compuerta de Hadamard en N qubits.
El estado inicial se puede escribir como |ψ0⟩= 1√

d ∑
d−1
i=0 |Ei⟩.

2. Aplicamos QH(τ,nmax,D) hasta el tiempo tmax: |ψ0⟩→ |φ qite
tmax ⟩=QH(τ,nmax,D)|ψ0⟩,

donde tmax, τ , y D dependen del problema (nmax = tmax/τ).
3. Medimos |φ qite

tmax ⟩ M veces (M la cantidad de shots) en la base computacional, con
M << d. Guardamos las M salidas Eim (1 ≤ m ≤ M).

4. En una computadora clásica, elegimos de las M salidas Eim el de menor energı́a.

Al medir en la base computacional, se espera obtener con más probabilidad los
autoestados con menor energı́a al crecer nmax. Si consideramos M shots, al aumentar
M, más chances hay de conseguir un estado tal que Ei ≤ E0 +δE.

4. Resultados Numéricos

Los resultados númericos obtenidos en esta sección resultaron de simulaciones en
computadoras clásicas usando librerı́as conocidas como Qiskit y NumPy en lenguage
Python. Aplicamos el método basado en QITE descrito en la Sec. 3 para encontrar el
conjunto independiente máximo del grafo de disco unitario de 6 cúbits que se muestra
en la Fig. 1. Se utilizó un conjunto de dominios lineales. El Hamiltoniano asociado
a dicho problema se obtiene a partir de este grafo usando (1). El estado fundamental
tiene degeneración tres, y representa a los tres máximos conjuntos independientes. Estos
conjuntos son: {0,2}, {0,4}, {2,5}. Los parámetros utilizados son τ = 0,01 y tiempo
máximo tmax = 10, lo que implica una cantidad total de iteraciones nmax = 1000. Se
obtuvo para cada paso de la iteración la fidelidad entre el estado de QITE, |φ qite

t ⟩, y
el estado exacto, |ψ ite

t ⟩, que resulta de la evolución temporal imaginaria. La fidelidad
entre dos estados puros |ψ1⟩ y |ψ2⟩ se define como F(ψ1,ψ2) = |⟨ψ1|ψ2⟩|2. Además,
se obtuvo la fidelidad entre |φ qite

t ⟩ y el estado exacto a tiempo final, |ψ ite
tmax⟩, a medida

que crece el número de iteraciones.
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Figura 1. Instancia de grafo asociado al problema de UD-MIS para 6 cúbits.

En las Fig.2a y Fig.2b se muestran los resultados obtenidos, respectivamente.

Figura 2. Error y fidelidad para el grafo de 6 cúbits de Fig. 1.

Se observa que la fidelidad entre |ψ ite
t ⟩ y |φ qite

t ⟩ se separa a medida que crece el
número de iteraciones. Esto es razonable, ya que en cada iteración se va acumulando
error debido a la aproximación asociada con el dominio elegido. También se observa
que el estado final de QITE no converge al estado exacto de la evolución temporal
imaginaria. Si bien los estados obtenidos difieren significativamente del estado exacto
|ψ ite

t ⟩, veremos que esto no afecta al rendimiento del método.
Dado que el método propuesto es probabilı́stico, tiene asociada una probabilidad

de fallo. Denominamos Pqite
F (t) a la probabilidad de fallo asociada al estado de QITE,
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Figura 3. Probabilidad de fallo. (a) Pite
F (t) (linea azul) y Pqite

F (t) para δE = 0. (b) δE = 0,35.

|φ qite
t ⟩, y Pite

F (t) a la probabilidad de fallo asociada al estado exacto |ψ ite
t ⟩. En (Penas

et al., 2025) se encontraron sus respectivas expresiones. En la Fig. 3 se muestra cómo
evolucionan ambas probabilidades de fallo a medida que crece el número de iteracio-
nes. Se eligieron dos tolerancias: δE = 0 y δE = 0,35. δE = 0 implica que sólo son
aceptables los estados fundamentales, mientras que δE = 0,35 implica que también son
aceptables los primeros excitados.

En la Fig. 3, se observa que Pqite
F (t) decae al aumentar el número de iteraciones

(para ambos valores de δE). Por lo tanto, a pesar de usar un dominio lineal, y de que la
fidelidad entre |ψ ite

t ⟩ y |φ qite
t ⟩ no es cercana a 1, el rendimiento del método propuesto

es adecuado.
Para una mejor caracterización del rendimiento del método propuesto con un domi-

nio lineal, se requiere un análisis más profundo que incluya un mayor número de cúbits
y evaluaciones de desempeño en computadoras cuánticas reales.
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