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Abstract. We apply a procedure based on the quantum imaginary time evolution
method to solve the unit-disk maximum independent set problem. A numerical
simulation is performed for a 6-qubit graph using a set of linear domains. We
find that the failure probability of the procedure is relatively small and rapidly
decreases with the number of shots.
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Evolucion Temporal Imaginaria Cuantica y el problema
de UD-MIS

Resumen Aplicamos un procedimiento basado en el método de evolucién tem-
poral imaginaria cudntica para encontrar el conjunto maximo independiente de
grafos de disco unitario. Se realizé una simulacién numérica de un grafo de 6
ctbits utilizando un conjunto de dominios lineales. Observamos que la probabi-
lidad de fallo del procedimiento es relativamente baja y disminuye rapidamente
con el nimero de mediciones.
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1. Introduccion

El cdlculo del estado fundamental de un sistema cudntico es crucial en diversas dreas
de la fisica y la optimizacién. La computacién cudntica emerge como una herramienta
prometedora para calcular estos estados, tarea que resulta intratable para las compu-
tadoras cldsicas para sistemas de muchos ctbits. Algunos de los algoritmos cudnticos
propuestos para abordar esta tarea incluyen el algoritmo de optimizacién adiabatica
(Das y Chakrabarti, 2008; Farhi et al., 2001), el algoritmo de optimizacidn aproximada
cudntica (QAOA) (Farhi et al., 2014; Herrman et al., 2022; Medvidovi¢ y Carleo, 2021;
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Ostrowski et al., 2020; Shaydulin et al., 2021; Zhou et al., 2020; Zhu et al., 2022). Un
método alternativo, denominado evolucién temporal imaginaria cuédntica (QITE) fue
propuesto recientemente (Motta et al., 2019). Este enfoque emula la evolucién temporal
imaginaria usando evoluciones unitarias asistidas por mediciones. Algunas aplicaciones
del algoritmo QITE incluyen la quimica cudntica en hardware cuantico ruidoso de esca-
la intermedia (NISQ), (Barison et al., 2022; Tsuchimochi et al., 2023; Yeter-Aydeniz et
al., 2020), en simulacion de sistemas cuanticos abiertos (Kamakari et al., 2022), obser-
vables termodinamicos (Gacon et al., 2024; Getelina et al., 2023) y mads recientemente
en problemas de optimizaciéon como Max-Cut y optimizacién binaria polinémica no
restringida (PUBO) (Alam et al., 2023; Bauer et al., 2024). En un trabajo previo (Penas
et al., 2025) aplicamos un método basado en QITE para encontrar el madximo conjunto
independiente de un grafo de disco unitario (problema de UD-MIS). Este problema es
un ejemplo de optimizacién combinatoria que pertenece a la clase de problemas NP-
hard. En este trabajo continuamos dicha investigacién, considerando un grafo de disco
unitario de 6 cubits y usando un conjunto de dominios lineales. Estudiamos la fidelidad
del estado final con respecto al estado esperado y la probabilidad de fallo del método a
medida que aumentan las iteraciones.

2. El problema del maximo conjunto independiente en disco
unitario

Sea G = (V,E) un grafo con un conjunto de vértices V y un conjunto de aristas
E, y sea N el niimero total de vértices. Un conjunto independiente de G es un conjun-
to de vértices mutuamente no conectados. Sea S = (sy,...,sy) una cadena de bits de
longitud N (s; € {0,1}), y sea By el conjunto de todas las posibles cadenas de bits
de longitud N. El problema del maximo conjunto independiente (MIS) consiste en el
siguiente problema de maximizacién: méaxge g, ):?’:1 s; tal que S = (s1,...,sN) corres-
ponde a un conjunto independiente, es decir, para todo par de vértices (i,i') tenemos que
s;i=sy =1 = (i,i") ¢ E. El problema de UD-MIS es el problema de MIS restringido
a grafos de disco unitario. Un grafo es de disco unitario si a cada vértice se le puede
asociar una posicion en el plano bidimensional de modo que dos vértices compartan
una arista si y sélo si su distancia es menor que la unidad. Este problema de optimiza-
ci6én puede ser reformulado como un problema de optimizacién cudntica. Consiste en
encontrar el estado fundamental de un Hamiltoniano de la forma:

H=—-Y Ai+u Y Ay, (D)

i€V (i,i")€E
con Ai; = (I — Z;)/2 y Z; 1a matriz de Pauli en la direccién z actuando en el cibit i, y
u un pardmetro cuyo valor puede ajustarse. La idea es asociar cada cadena de bits § =
(81,...,5x) con un estado cdantico |sy,...,sy). Fijar u > 1 garantiza que el fundamental

de H represente al midximo conjunto independiente.

3. Método de optimizacion basado en QITE

La idea del algoritmo QITE consiste en obtener el estado fundamental del Ha-
miltoniano de un sistema cudntico como el limite a tiempos largos de la ecuacién de
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Schrodinger en tiempo imaginario. Se aproxima la accién no unitaria e ~"# por una se-

cuencia de evoluciones unitarias asociadas a cada paso de una descomposicién de Trot-
ter de H. Mas precisamente, H =Y ; h; donde h; actia en una cierta cantidad de cubits y
cada paso de Trotter contiene una exponencial no unitaria asociada a h; a tiempo T =t/n
(n cantidad de iteraciones de Trotter). Cada unitaria utilizada para aproximar la expo-
nencial no unitaria e " actiia sobre una cierta cantidad de cibits (dominio) alrededor
del soporte de h;. Iterando este proceso, se construye el operador de QITE Qg (7,1, 2)
(Motta et al., 2019). Aqui, Z contiene la informacién de todos los dominios. Vamos
a llamar a un conjunto de dominios Z lineal si cada evolucién unitaria actda sobre un
solo cubit.

Denotamos Ey, ...,E; 1 los autovalores de H, ordenados de manera no-decreciente.
Los correspondientes autovectores se denotan como |Ep), ..., |E;_1), respectivamente.
Los autovectores de H coinciden con los vectores de la base computacional, en algin
orden. El problema que queremos resolver es (Penas et al., 2025): Encontrar el autova-
lor Ey de H o un autovalor E; tal que E; < Ey+ OE, con E > 0 un error tolerable. Los
estados asociados con estos autovalores son llamados estados aceptables. Los pasos de
la propuesta son los siguientes:

1. Estado incial |yp) = H®V|0...0), con H*N la compuerta de Hadamard en N qubits.
El estado inicial se puede escribir como |yp) = ﬁ Y& E).

qgite

2. Aplicamos Qg (T, ax, Z) hasta el tiempo tyax: |Wo) = |07 °) = Qp (T, imax, )| W),
donde fygx, T, y 2 dependen del problema (yqx = timax/T)-

3. Medimos \¢,‘frfif> M veces (M la cantidad de shots) en la base computacional, con
M << d. Guardamos las M salidas E;, (1 <m < M).

4. En una computadora cldsica, elegimos de las M salidas E;, el de menor energfa.

Al medir en la base computacional, se espera obtener con mds probabilidad los
autoestados con menor energia al crecer 7,,,,. Si consideramos M shots, al aumentar
M, mds chances hay de conseguir un estado tal que E; < Ey + OE.

4. Resultados Numéricos

Los resultados nimericos obtenidos en esta seccion resultaron de simulaciones en
computadoras cldsicas usando librerias conocidas como Qiskit y NumPy en lenguage
Python. Aplicamos el método basado en QITE descrito en la Sec. 3 para encontrar el
conjunto independiente maximo del grafo de disco unitario de 6 ctibits que se muestra
en la Fig. 1. Se utilizé un conjunto de dominios lineales. El Hamiltoniano asociado
a dicho problema se obtiene a partir de este grafo usando (1). El estado fundamental
tiene degeneracion tres, y representa a los tres madximos conjuntos independientes. Estos
conjuntos son: {0,2}, {0,4}, {2,5}. Los pardmetros utilizados son T = 0,01 y tiempo
maximo f,4, = 10, lo que implica una cantidad total de iteraciones nq, = 1000. Se
obtuvo para cada paso de la iteracién la fidelidad entre el estado de QITE, |¢"), y
el estado exacto, |y¢), que resulta de la evolucién temporal imaginaria. La fidelidad
entre dos estados puros |y1) y |y,) se define como F (w1, ) = |(w1|y,)|*. Ademis,
se obtuvo la fidelidad entre |¢/"*) y el estado exacto a tiempo final, [y ), a medida

que crece el ndmero de iteraciones.
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Figura 1. Instancia de grafo asociado al problema de UD-MIS para 6 cuibits.

En las Fig.2a y Fig.2b se muestran los resultados obtenidos, respectivamente.
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Figura 2. Error y fidelidad para el grafo de 6 cubits de Fig. 1.

Se observa que la fidelidad entre |y/*¢) y |¢7") se separa a medida que crece el
ntimero de iteraciones. Esto es razonable, ya que en cada iteracién se va acumulando
error debido a la aproximacion asociada con el dominio elegido. También se observa
que el estado final de QITE no converge al estado exacto de la evolucién temporal
imaginaria. Si bien los estados obtenidos difieren significativamente del estado exacto
|yi¢), veremos que esto no afecta al rendimiento del método.

Dado que el método propuesto es probabilistico, tiene asociada una probabilidad
de fallo. Denominamos P{"“(¢) a la probabilidad de fallo asociada al estado de QITE,
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Figura 3. Probabilidad de fallo. (a) pr’e(t) (linea azul) y Pgim (¢) para 6E = 0. (b) 6E = 0,35.

|§7"¢), y Pi¢(t) a la probabilidad de fallo asociada al estado exacto |y;¢). En (Penas
et al., 2025) se encontraron sus respectivas expresiones. En la Fig. 3 se muestra cémo
evolucionan ambas probabilidades de fallo a medida que crece el nimero de iteracio-
nes. Se eligieron dos tolerancias: 0E = 0y 0E = 0,35. 6E = 0 implica que sélo son
aceptables los estados fundamentales, mientras que 6E = 0,35 implica que también son
aceptables los primeros excitados.

En la Fig. 3, se observa que Pg”e (t) decae al aumentar el ndimero de iteraciones
(para ambos valores de SE). Por lo tanto, a pesar de usar un dominio lineal, y de que la
fidelidad entre | W) y |¢7") no es cercana a 1, el rendimiento del método propuesto
es adecuado.

Para una mejor caracterizacion del rendimiento del método propuesto con un domi-
nio lineal, se requiere un andlisis mas profundo que incluya un mayor nimero de ctibits
y evaluaciones de desempefio en computadoras cudnticas reales.
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