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Resumen En este proyecto abordamos el problema de reconstrucción
de estados cuánticos simétricos utilizando la técnica de estimación de-
nominada Group Invariant Quantum Tomography (GIT), la cual
permite una disminuación de las mediciones necesarias. En este traba-
jo presentamos dos códigos [1] desarrollados en Python, utilizando la
libreŕıa Amazon Braket. El primero realiza la simulación de circuitos
cuánticos y mediciones, considerando el sistema bajo la presencia de rui-
do. El segundo código implementa las tomograf́ıas VQT-GIT basado en
optimización convexa, que reconstruye la matriz densidad del estado a
partir de los datos obtenidos en las mediciones. Estos códigos fueron em-
pleados en el trabajo [2] para evaluar la fidelidad del método tomográfico.
Los resultados muestran que, utilizando un número considerablemente
menor de mediciones en comparación con la tomograf́ıa convencional, es
posible obtener reconstrucciones de alta fidelidad.
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1. Introducción

Una variante del método de estimación de Máxima Entroṕıa (MaxEnt) es la
llamada Variational Quantum state Tomography (VQT) [3]. Consiste en
resolver el siguiente problema de optimización convexo:

mı́n
ρ,∆

(
α
∑
i∈I

∆i + β
∑
i/∈I

tr(Eiρ)− γ log (det(ρ))

)
, (1)

sujeto a |tr(Eiρ)− fi| ≤ ∆ifi i ∈ I,
∆i ≥ 0,

tr(ρ) = 1,

ρ ⪰ 0,
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donde {Ei} es el conjunto de medidas, {fi} las frecuencias medidas (o valores
medios), {∆i} las tolerancias, e I representa el conjunto de ı́ndices de los datos
medidos. La función log(det(ρ)) se denomina función barrera, ya que si se intenta
salir del conjunto ρ > 0, se llega a un punto donde al menos uno de los autovalores
desaparece [4]; los parámetros α, β y γ actúan como factores de escala.

Este método tomográfico puede combinarse con conocimiento previo acerca
de las simetŕıas, dado que, para ciertos grupos de simetŕıa, es posible utilizar
un menor número de parámetros para especificar un estado arbitrario. En di-
cho caso, el método anterior puede ser llamado Group Invariant Quantum
Tomography (GIT) [5]. Como consecuencia, es posible obtener una reducción
considerable del costo computacional del proceso y, a su vez, una reducción en
los costos experimentales. Este método puede aplicarse a simetŕıas arbitrarias y
generaliza los planteamientos anteriores [6].

Con la motivación de estudiar la eficiencia del método GIT se procedió a crear
dos códigos complementarios, estos se encuentran disponibles en el repositorio
de GitHub de la referencia [1]. Los códigos fueron desarrollados en el marco
de la realización de tesis de Licenciatura de Giannina Zerr, bajo supervisión
de Federico Holik como director y Marcelo Losada como co-director. A su vez,
los códigos fueron utilizados en el trabajo de investigación “Group-invariant
estimation of symmetric states generated by noisy quantum computers” realizado
por F. Holik, M. Losada, G. Zerr, L. Rebón y D. Tielas [2].

El objetivo del primer código “Measurements.py” es simular ciertos estados
cuánticos simétricos con ruido y mediciones realizadas sobre estos, para lo cual
se utilizó la libreŕıa Amazon Braket [7] de Python. Las mediciones obtenidas son
guardadas en la carpeta “Measurements” (si no existe, el código la crea en la
primera corrida).

Luego, el segundo código “Tomography.py” lee las mediciones obtenidas para
realizar el método GIT. Las estimaciones de la matriz densidad obtenidas con
GIT son comparadas con el estado original simulado para obtener la eficiencia
del método, en función del número de shots empleados y el nivel de ruido. En
el mismo script se encuentran varios graficadores para visualizar mejor los re-
sultados. Todo el material generado es guardado en la carpeta “Results” (si no
existe, el código la crea en la primera corrida).

En las secciones 2 y 3 se ampliará el detalle de las funciones desarrolladas
para cada código.

Nota: El archivo “2in1 Measurements and Tomography.py” contiene ambos
códigos en caso de querer correrlos conjuntamente.

2. Circuitos y Mediciones

Este código tiene como objetivo simular estados cuánticos mediante circuitos
utilizando el simulador de Amazon Braket, y realizar mediciones sobre dichos
estados en distintas bases. El código permite generar estados tipo GHZ de cual-
quier número de qubits o de Werner de 2 qubits, introducir distintos tipos y
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niveles de ruido, y realizar mediciones sobre distintas bases, incluyendo simetŕıa
completa o permutacional.

2.1. Elección de entradas

El código contiene diversas funciones para automatizar las pruebas a realizar.
En principio, permite seleccionar las siguientes opciones:

Estado: puede ser GHZ de cualquier número de qubits o Werner de 2 qubits
con elección del parámetro p entre 0 y 1, descripto por la ecuación (2) (ver
sección 2.2).

Simetŕıa: puede ser completa o permutacional. En el caso de seleccionar la
simetŕıa completa se generan todos los productos tensoriales posibles entre
estos operadores, incluyendo permutaciones. En el caso de seleccionar si-
metŕıa permutacional se obtienen únicamente combinaciones con reemplazo
que son invariantes bajo permutaciones de los qubits (ver sección 2.3).

Dispositivo: la opción actual por defecto es LocalSimulator(”braket dm”)

Número de shots: la medición de un sistema cuántico es intŕınsecamente
probabiĺıstica, el resultado de una única medición dará la proyección sobre
uno de los posibles estados. Por este motivo es necesario repetir las medicio-
nes varias veces. En la jerga de computación cuántica, a cada repetición se le
dice shot. El código permite repetir el proceso de medición para varios valo-
res de número de shots, por lo que es posible seleccionar los valores deseados
expresados en forma de lista.

Número de mediciones: dado un valor fijo de número de shots, las es-
timaciones de estados deben repetirse una cierta cantidad de veces para,
finalmente, obtener un valor de fidelidad promedio de los experimentos rea-
lizados.

Ruido: los tipos de ruido que incluye el modelo de ruido de nuestro código
son Depolarizing, BitF Flip, Amplitude Damping; puede seleccionarse una
lista ya que el código está automatizado para repetir el proceso para varios
tipos de ruidos. A su vez, deben elegirse los niveles de ruido deseados en
forma de lista (ver sección 2.4).

2.2. Generación de estados

Un estado GHZ de N qubits es de la forma |GHZ⟩ = 1√
2
|0⟩⊗M

+ |1⟩⊗M
.

La implementación en circuito de un GHZ puede verse en la figura 1.
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Figura 1. Implementación del circuito para un estado GHZ de 3 qubits.

Dado p un parámetro real entre 0 y 1, la matriz densidad de un estado de
Werner de dos qubits puede escribirse como

ρp =

(
1− p

4

)
I + p|ψ−⟩⟨ψ−| con |ψ−⟩ = 1√

2
(|01⟩ − |10⟩) (2)

La implementación del circuito de Werner de 2 qubits puede verse en la figu-
ra 2, donde los ángulos θi están definidos por el parámetro p de la ecuación (2). [8]
Dicha relación se encuentra dentro del código entre el array ps=np.linspace(0,1,50)
y el array denominado thetas, donde el valor de p dado en una cierta posición en
el array ps se corresponde con los valores de θ dados en la misma posición del
array thetas.

Figura 2. Implementación del circuito para un estado de Werner de 2 qubits. Los
qubits sobre los que se mide son el q0 y q1. Los valores θ1, θ2 y θ3 dependen del
parámetro p elegido (correspondiente a la ecuación (2)).

2.3. Generación de observables

En la computación cuántica, una medición sobre un qubit será por defecto en
la base computacional, es decir el operador de Pauli σz. Para realizar mediciones
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sobre otras bases se deben aplicar las correspondientes compuertas cuánticas. En
la figura 3 se observan las mediciones sobre las distintas bases de las matrices
de Pauli, X, Y y Z. [9]

En nuestro código hemos definido la función local measurement(N) que gene-
ra los circuitos de medición de las 3 bases para el número de qubits seleccionado.

Para generar la lista de observables sobre la cual se realizará las medicio-
nes, se implementó la función “observables(N, symmetry)”. La misma utiliza la
libreŕıa intertools que permite generar todas las combinaciones posibles del pro-
ducto tensorial de los operadores I, X, Y y Z dependiendo del número de qubits
seleccionado. En el caso de seleccionar “symmetry” como “Complete” se gene-
ran todos los productos tensoriales posibles entre estos operadores, incluyendo
permutaciones. En el caso de seleccionar “Permutational” se obtienen únicamen-
te combinaciones con reemplazo que son invariantes bajo permutaciones de los
qubits. Por ejemplo para 2 qubits, tenemos que la base de medición completa
posee 16 observables: II, IX, IY, IZ, XI, XX, XY, XZ, YI, YX, YY, YZ, ZI,
ZX, ZY, ZZ, pero si consideramos simetŕıa permutacional la base se reduce a 10
observables: II, IX, IY, IZ, XX, XY, XZ, YY, YZ, ZZ.

Figura 3. Mediciones sobre las bases X, Y y Z.

2.4. Modelo de ruido

Las computadoras cuánticas son susceptibles a efectos del entorno, lo que
produce que el rendimiento de las operaciones no sea el esperado. A su vez,
los qubits pueden sufrir errores que no los hagan cambiar en las cantidades
deseadas. Por estos motivos, el estudio del ruido es crucial en el área de la
computación cuántica, en pos de construir sistemas de procesamiento cuántico
robustos. Algunos de los principales ruidos son

Depolarizing: un qubit es reemplazado por un estado completamente mixto
de la base computacional.

Bitflip: un qubit en estado |0⟩ cambia a un estado |1⟩ (y viceversa).

Amplitude Damping: se basa en la disipación de enerǵıa, donde un qubit
en estado |1⟩ decae a un estado |0⟩ de forma irreversible.

En el presente trabajo se estudió el efecto en los circuitos cuánticos de estos
tres tipos de ruido. Para lo mismo se utilizó el modelo de ruido incluido en la
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libreŕıa de Amazon Braket. El mismo utiliza la modelación a través de la des-
composición de Kraus, la cual es una representación matemática de los canales
cuánticos [10].

En el presente trabajo implementamos la función noise(x) para aplicar el
modelo de ruido presente en Braket aplicado a compuertas cuánticas. El modelo
afecta a las compuertas cuánticas H, CNOT y Ry con tres tipos posibles de
ruido: depolarizing, bit flip y amplitud damping. Al valor de probabilidad p lo
llamaremos “nivel de ruido”, los valores utilizados fueron entre 0 y 0,15 para
compuertas H y Ry, y entre 0 y 0,015 para compuertas CNOT. El motivo por
el cual el nivel de ruido aplicado a compuertas CNOT es menor es debido a que
las compuertas aplicadas a dos qubits generan mayor cantidad de error que las
aplicadas a un solo qubit para un mismo valor de p.

Con el objetivo de estudiar el efecto de cada tipo de ruido por separado,
hemos definido la función noisy(noise type). La misma produce un diccionario
para aplicar los niveles de ruido elegidos al tipo de ruido seleccionado, mientras
que los otros tipos de ruido no son aplicados.

2.5. Mediciones

La función measurements(circuit, L0, noise level, shot, device, target) per-
mite repetir una serie de mediciones variando la base sobre la cual se mide y
el nivel de ruido, para un valor fijo de número de shots. Circuit será el circuito
generado del estado que se desea estudiar, L0 es la lista de observables generada
por la función local measurement(N) (según la simetŕıa seleccionada), shot un
valor fijo de número de shots a aplicar, y device el dispositivo cuántico selec-
cionado. El valor Target corresponde a los qubits sobre los cuales se realiza la
medición (como vimos anteriormente, para GHZ las mediciones deben realizarse
sobre todos los qubits del circuito, pero para Werner sólo sobre los qubits 3 y
4).

Como salida obtenemos el diccionario Tomos Noises, donde las keys serán
los observables medidos, y los valores asociados serán los valores medios de las
mediciones realizadas para cada nivel de ruido. También obtenemos a la salida
DM, que será la matriz densidad del estado generado con aplicación de ruido.

Finalmente, el código aplica esta función measurements en un bucle for para
los distintos tipos de ruidos seleccionados y para distintos valores de shots. Los
resultados obtenidos se guardan en la carpeta Measurements, donde también se
guardan las entradas seleccionadas y la matriz densidad del estado sin ruido
como DM ideal.

3. Tomograf́ıa

Este código tiene como propósito reconstruir estados cuánticos utilizando
técnicas de tomograf́ıa cuántica para obtener la matriz densidad del sistema. En
principio, el mismo está diseñado para aplicar el método sobre las mediciones
obtenidas en las simulaciones anteriores, es decir, la selección de entradas al
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principio del código indicará de qué carpeta hacer la lectura de las mediciones
obtenidas.

Como se explicó en la sección 1, el método tomográfico utilizado está dado
por la ecuación (1) junto a sus respectivas restricciones. El mismo consiste en una
optimización convexa, para lo cual se utilizó la libreŕıa CVXPY de Python. Se
definen como variables los coeficientes αi asociados a cada elemento Si de la base
para describir la matriz densidad ρ como combinación lineal de estos, es decir
ρ =

∑r
i=1 αiSi. Como vimos en la sección 1, el número de parámetros necesarios

r para describir la matriz densidad se reduce para determinadas simetŕıas. Luego,
estos coeficientes serán determinados por la optimización realizada.

Las bases ortonormales sobre las que se realiza la reconstrucción tomográfica
están previamente generadas, se encuentran en la carpeta Orthogonal Basis, y
dependen de la simetŕıa (completa o permutacional).

Para la resolución de la optimización, también son definidas como variables
las tolerancias, es decir, el valor ∆i de la ecuación (1).

Una vez reconstruida la matriz densidad, se calcula la fidelidad del método
comparando el estado obtenido por la tomograf́ıa con el estado original genera-
do por la simulación. La fidelidad es calculada utilizando una función auxiliar
SP functions.py, que se halla en el repositorio. Los datos obtenidos son guarda-
dos en la carpeta “Results”.

3.1. Visualización de resultados

El código contiene varios graficadores para visualizar los resultados. Para
cada tipo de ruido se generan los gráficos de fidelidad en función del nivel de
ruido, dentro del mismo bucle for en el que se realiza la tomograf́ıa. Al final del
código se realizan gráficos comparativos de todos los tipos de ruido, de fidelidad
en función del número de shots para un valor de nivel de ruido fijo, y de fidelidad
en función del nivel de ruido para un número fijo de shots. En el segundo caso,
se calcula la fidelidad al comparar: (1) el estado obtenido por tomograf́ıa con
el estado ideal de la simulación, es decir, sin ruido. (2) el estado obtenido por
tomograf́ıa con el estado de la simulación luego de la aplicación del modelo de
ruido.

Es esperable que para el caso (1) el estado obtenido se aleje del estado ideal
sin ruido a medida que se aumenta el nivel de ruido aplicado. Por el contrario, en
el caso (2) se espera que el estado obtenido con el generado sean similares, para
demostrar la efectividad del método. En la figura 4 se observan los gráficos com-
parativos generados, donde se observa esta tendencia. Los resultados obtenidos
de esta investigación, publicados en la referencia [2], demuestran que la tomo-
graf́ıa GIT posee un alto grado de fidelidad tal como sucede con el método VQT
completo, sólo que en el caso de GIT se llega a resultados similares utilizando
menos recursos al utilizar el conocimiento sobre las simetŕıas.
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Figura 4. Fidelidades de los métodos completos de estimación GIT para las estad́ısticas
simuladas de un estado GHZ de tres qubits con respecto al objetivo y al estado real.
Cada tomograf́ıa se repite 30 veces (barra de error).

4. Conclusiones

Este código permite realizar reconstrucciones tomográficas de estados cuánti-
cos simulados bajo distintos tipos de ruido y configuraciones experimentales. Su
diseño modular y uso de optimización convexa lo convierte en una herramienta
útil para estudios de robustez y caracterización de sistemas cuánticos.

Los resultados obtenidos de la implementación de este trabajo se encuentran
publicados en nuestro trabajo de la referencia [2]. La investigación ha demostrado
que la estimación GIT está en buen acuerdo con la estimación VQT completa,
y permite una reducción sustancial de los recursos (tanto experimentales como
computacionales). La GIT puede utilizarse como método rápido y barato para
evaluar si un dispositivo cuántico es capaz de generar estados simétricos. Dado
que el conjunto de estados simétricos con diferentes simetŕıas es muy rico en
recursos cuánticos (entrelazamiento, no localidad y contextualidad, como es el
caso de los estados GHZ), esta metodoloǵıa puede utilizarse para evaluar el
dispositivo cuántico en su conjunto.

Referencias

[1] Giannina Zerr, Federico Holik y Marcelo Losada. Quantum Tomography for
Symmetric States. 2025. url: https://github.com/gianninazerr/Quantum-
Tomography-for-Symmetric-States.

[2] Federico Holik et al. “Group-invariant estimation of symmetric states ge-
nerated by noisy quantum computers”. En: arXiv (August 17 2024).
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