
Visualización de Radar: Implementación en Software y 
Aceleración por Hardware 

Jordan D. Carranza Benitez4 Cristian A. Silva4 Juan R. U. Machado4 Diego M. 
Martínez2 Christian L. Galasso1,2,3 Nicolás A. Fernández Pavesi2 Luis E. Gomed2 

1 Universidad de la Defensa Nacional – FADARA – ESOA, Punta Alta, Argentina 
2 Servicio de Análisis Operativos, Armas y Guerra Electrónica de la Armada, Punta Alta, 

Argentina 
3 Universidad Tecnológica Nacional – FRBB, Bahía Blanca, Argentina 

4 Universidad Nacional del Sur, Bahía Blanca, Argentina 
jordancarranza045@gmail.com, sivacristian29@gmail.com, 

jrumachado@gmail.com, dmmartinez7@gmail.com, 
clgalasso@frbb.utn.edu.ar,nicopavesi@hotmail.com, 

gomedluis@hotmail.com  

Abstract. Este trabajo presenta un sistema integrado para la visualización de 
información radar codificada bajo el protocolo ASTERIX CAT240 de 
Eurocontrol[1], que utiliza un convertidor analógico-digital de 14 bits para la 
captura y procesamiento de la señal de Video Crudo Radar. El sistema 
implementado proporciona una solución completa cuyo alcance abarca desde la 
captura de datos radar hasta su representación visual en tiempo real, utilizando 
tecnologías modernas como C++ y OpenGL [2]. 
La arquitectura del software, desarrollada bajo el paradigma de programación 
orientada a objetos, permite la traducción eficiente de tramas ASTERIX 
CAT240 a través de un módulo decodificador dedicado en un hilo de CPU. El 
decodificador extrae información relevante de las tramas de video radar, 
procesando parámetros de azimut, rango y niveles de intensidad. 
Adicionalmente, se implementa un algoritmo especializado para la detección y 
manejo de datos históricos, abordando la problemática del corrimiento 
inherente al funcionamiento del radar que no cubre todos los grados en cada 
giro. 
El componente central de visualización implementa diversos algoritmos de 
procesamiento de imágenes que operan directamente en la GPU, permitiendo 
ajustes en tiempo real de brillo, contraste y umbrales. La implementación utiliza 
shaders GLSL para aplicar transformaciones avanzadas a los datos de 
intensidad, incluyendo corrección gamma, mapeo logarítmico, funciones 
sigmoidales y técnicas de histograma adaptativo para la mejora de contraste. El 
renderizador desarrollado optimiza la representación de grandes volúmenes de 
datos radar mediante estructuras eficientes de OpenGL como Vertex Buffer 
Objects.  

Keywords: ASTERIX CAT240, Radar, OpenGL, Procesamiento de imágenes, 
Conversor analógico-digital, GPU, Shaders, Tiempo real. 

SAIC, Simposio Argentino de Ingeniería en Computación 2025

Memorias de las 54 JAIIO - SAIC - ISSN: 2451-7496 - Página 1



1​ Introducción 

A 26 km de Bahía Blanca se encuentra el puerto militar más importante de la 
república Argentina, la Base Naval Puerto Belgrano. Dicho puerto es el lugar de 
asiento de la Flota de Mar, que cuenta con una gran cantidad y variedad de barcos 
destinados a la custodia del mar argentino y a la salvaguarda de la vida en el mar. Los 
mismos están dotados de diversos sistemas electrónicos, eléctricos, informáticos, y 
mecánicos; para la navegación y vigilancia. Un grupo de estas unidades tiene radares 
de vigilancia de tecnología de los años 70, y si bien tienen más de 40 años de servicio, 
los mismos siguen en capacidad de mantenerse operativos varios años más. Ahora 
bien, dado el avance de la tecnología de redes digitales de datos, y de representación 
de la información, es deseable desarrollar una nueva visualización digital de la 
información provista por dichos radares. Además que la digitalización puede permitir 
la distribución de las imágenes radar en tiempo real a muchos lugares dentro del barco 
y a una gran variedad de dispositivos (PC, TV, Tablets, otros).  

Para esto, se realizó un desarrollo en software utilizando el lenguaje de C++ con el 
framework Qt y OpenGl para la representación visual del radar, permitiendo un mejor 
manejo de los recursos y un funcionamiento optimizado. 
La representación visual de radar en una computadora significaba resolver 4 
problemas: 
 

1.​ Decodificar la trama ASTERIX CAT 240. 
2.​ Guardar esa información en memoria para actualizar la imagen. 
3.​ Renderizar la información con OpenGL.  
4.​ Procesar las celdas de video para obtener información útil. 

 
Se buscó resolver la visualización de tres tipos de radares de diferentes alcances y 

velocidades de giro de antena. La unidad de medida utilizada para el rango de los 
radares de DM (Milla de Datos). Una milla de datos es igual a 6000 pies, o 0.987 
millas náuticas [6]. 

Los radares seleccionables se conocen como: 
 
●​ RAD1: De corto alcance, giro rápido 
●​ RAD2: Alcance mediano. 
●​ RAD3: Alcance largo, giro lento. 

 
La consola posee un rango máximo de 256 DM. Esto no significa que los radares 

instalados en la unidad lleguen al rango máximo. Antes de entrar al sistema, los datos 
del radar son digitalizados y codificados bajo el protocolo ASTERIX CAT 240 
versión 1.3 de EuroControl con una profundidad de 14 bits [4]. Una vez codificados 
llegan al sistema a través de una red designada para compartir los datos de radar. 

2​ Protocolo ASTERIX 

El protocolo ASTERIX (All Purpose Structured EUROCONTROL Surveillance 
Information Exchange) es un estándar desarrollado por EUROCONTROL para el 

SAIC, Simposio Argentino de Ingeniería en Computación 2025

Memorias de las 54 JAIIO - SAIC - ISSN: 2451-7496 - Página 2



​  

intercambio de información de vigilancia aérea. Dentro de este estándar, la Categoría 
240 (CAT 240) se utiliza para la transmisión de video de radar rotativo hacia displays 
de mantenimiento locales o remotos. Esta categoría permite la codificación y 
transmisión eficiente de datos de video de radar, facilitando su integración y 
visualización en sistemas de control de tráfico aéreo [1].  

La transmisión de información de video radar se basa en la transmisión de dos 
tipos de mensajes: Resumen de video y Celdas de video. El primer tipo de mensaje es 
metadata, y provee información sobre los mensajes a recibir: su longitud, resolución, 
compresión y volumen de datos. El segundo tipo de mensajes son los datos de 
intensidad de las celdas que transmite el radar. 

El sistema posee un módulo que es capaz de recibir las tramas ASTERIX en UDP 
de la red y decodificarlas en tiempo real para llenar una estructura de datos mantenida 
en memoria. 

2.1​ Interpretación del Protocolo 

ASTERIX Categoría 240 se utiliza para la transmisión de datos de video de radar en 
sistemas de vigilancia aérea. Cada mensaje incluye uno o más Data Items, 
estructurados según el User Application Profile (UAP). Los campos de interés para el 
sistema se detallan a continuación [5]. 

2.1.1 I240/000 – Message Type 

●​ Propósito: Identifica el tipo de mensaje. 
●​ Detalle: Indica si el mensaje es un Video Summary (tipo 001) o un Video 

Message (tipo 002). Facilita el procesamiento del mensaje por parte del 
receptor. 

●​ Formato: 1 octeto. 

2.1.2 I240/020 – Video Record Header 

●​ Propósito: Proporciona un identificador de secuencia. 
●​ Detalle: Contiene un contador cíclico de 32 bits que permite detectar 

mensajes perdidos o fuera de orden. 
●​ Formato: 4 octetos. 
●​ Presente solo en mensajes de video. 

2.1.3 I240/041 – Video Header Femto 

●​ Propósito: Igual que el anterior, pero con mayor resolución temporal. 
●​ Detalle: Usa femtosegundos como unidad para la duración de la celda. 
●​ Formato: 12 octetos. 
●​ Se usa en lugar de I240/040 si se requiere precisión temporal más alta. 

SAIC, Simposio Argentino de Ingeniería en Computación 2025

Memorias de las 54 JAIIO - SAIC - ISSN: 2451-7496 - Página 3



2.1.4 I240/048 – Video Cells Resolution & Data Compression Indicator 

●​ Propósito: Indica la resolución de cuantificación del video y si se aplicó 
compresión. 

●​ Detalle: Define cuántos bits representan la amplitud de cada celda (de 1 a 32 
bits), y si se usó un algoritmo de compresión. 

●​ Formato: 2 octetos. 
●​ Crucial para la decodificación de los datos de video. 

2.1.5 I240/051 – Video Block Medium Data Volume 

●​ Propósito: Transmite bloques de celdas de tamaño intermedio. 
●​ Detalle: Cada bloque tiene 64 octetos. Permite mayor volumen que 

I240/050, con eficiencia razonable. 
●​ Formato: Variable. 

3​ Representación lógica en memoria 

El sistema de software que permite visualizar el radar debe guardar en memoria 
principal los datos de video contenidos en la trama UDP codificada. Para esto se 
decidió utilizar una matriz de tamaño AZIMUT × RANGE (filas y columnas, 
respectivamente) implementada como un vector de vectores alojado de manera 
secuencial en la memoria al inicio del programa. Cada celda de la matriz alberga un 
número entero no signado de 16 bits, debido a la resolución especificada en el 
protocolo (Very High Resolution). 

El protocolo de transmisión de video establece un valor máximo de 32 bits para el 
RANGE. Por otro lado, los radares utilizados poseen 8192 muestras para azimuth. El 
tamaño total para la supuesta matriz es de: 

​ RANGE_MAX * AZIMUTH_MAX * BYTES_PER_CELL = MAX_SIZE ​ (1) 

​ 232 * 213 * 2 = 70,3 [TB] ​ (2) 

Este tamaño es absurdo, por lo que debemos ajustar el tamaño de memoria a alojar 
según los radares utilizados y las restricciones que posee el sistema. Es posible 
calcular la distancia máxima de cada radar utilizando la cantidad de muestras de 
START RG recibidas antes de volver a 0 y el valor de CELL DUR. Se plantean 
algunos valores típicos para poder presentar un ejemplo de cálculo: 

 
●​ CELL DUR = 6,25 * 10-8 

●​ MAX RANGE = 4336 

Luego, utilizando la fórmula provista por el protocolo: 

​ dmax = CELL_DUR * MAX_RANGE * c / 2​ (3) 

​ dmax = 6,25 * 10-8 * 4336 * 2,99792458 * 108 / 2​ (4) 

SAIC, Simposio Argentino de Ingeniería en Computación 2025

Memorias de las 54 JAIIO - SAIC - ISSN: 2451-7496 - Página 4



​  

Y la distancia máxima para el radar del ejemplo 

​ dmax = 40.621,87 [Metros] 

Este dato nos permite mapear muestras de rango a distancias absolutas. Para este 
caso, sabemos que una muestra de rango de 4336 equivale a 40.621,87 metros, o 
22,209 millas de datos (DM), que es la unidad de medida utilizada por el sistema. 
Ahora, sabiendo que el sistema posee un rango de visualización máximo de 256 DM, 
obtenemos una cota superior a la cantidad de muestras que debemos representar en la 
matriz. 

​ 256 DM = 468.224 metros = 32.688 [muestras]​ (5) 

Vistos los valores obtenidos se proyecta entonces que utilizando una matriz de 
8.192 ×15.580, que convenientemente entre dentro de los límites de OpenGL para la 
creación de texturas [2] se podrán obtener representaciones de distancias razonables. 

4​ Algoritmo para la detección y manejo de datos históricos 

El radar genera nueva información a través del movimiento rotatorio (barrido) que 
realiza junto con rápidas sucesiones de transmisión y recepción. Posee señales de 
control para disparar pulsos electromagnéticos y luego detectar los rebotes sobre los 
que calcula posibles puntos de interés en el terreno. Esto presenta una particularidad 
técnica importante: al completar una rotación completa, el siguiente giro no 
necesariamente comienza desde el mismo ángulo, fenómeno que llamaremos 
corrimiento angular. 

En los sistemas radar tradicionales, que utilizaban tubos de rayos catódicos (CRT) 
como medio de visualización, este corrimiento no presentaba mayores inconvenientes. 
En este tipo de visualizadores la persistencia fosfórica de la imagen es corta, lo que 
produce una renovación constante de la imagen. De esta manera, se garantiza 
visualmente una imagen coherente y actualizada en cada instante. 

En los sistemas modernos, el comportamiento es distinto. La visualización de la 
información radar se realiza mediante renderizado digital, línea por línea, a medida 
que se recibe la información proveniente de las tramas ASTERIX. Esto implica que 
los datos visualizados permanecen en pantalla de forma persistente, salvo que se 
sobrescriban con nueva información correspondiente al mismo ángulo o sector. Dado 
el corrimiento angular, no se puede garantizar que cada nueva vuelta del radar emita 
exactamente en los mismos ángulos que la anterior. Como consecuencia, puede 
quedar información antigua en pantalla que no representa el estado actual del espacio 
supervisado. 

Para abordar este problema, se desarrolló un algoritmo específico para la detección 
y gestión de datos históricos. El objetivo principal del algoritmo es identificar y 
eliminar aquellas trazas o líneas antiguas que ya no reflejan información útil del 
entorno. 

SAIC, Simposio Argentino de Ingeniería en Computación 2025

Memorias de las 54 JAIIO - SAIC - ISSN: 2451-7496 - Página 5



 
Fig. 1. Ilustración del algoritmo de detección y manejo de datos históricos 

La solución propuesta utiliza parte de la metadata recibida junto con las 
intensidades de las celdas para sobreescribir la matriz de manera inteligente. Cada vez 
que se escriba sobre una celda particular, se agrega como información adicional a la 
intensidad un número índice (timestamp) que puede ser extraído de la trama 
ASTERIX. Este índice será útil para realizar un chequeo en un barrido posterior y 
verificar si existen celdas sin actualizar que pertenecen a barridos previos. 

Al momento de escribir una celda y luego de incluir el índice actual se realizará un 
chequeo sobre las celdas superiores dentro de la misma columna. Si el timestamp de 
las celdas superiores difieren en un número que coincida con barridos previos, se 
procede a repetir el valor de intensidad de la celda objetivo en las celdas revisadas, 
eliminando intensidades que no pertenezcan al barrido actual. La cantidad de celdas 
superiores a verificar será controlada por un offset que se podrá ajustar y dependerá 
de las frecuencias de las señales de control, la cantidad de muestras asignadas a 
definir los azimuth y la velocidad de giro del radar. 

5​ Interfaz HW-SW 

El conversor analógico digital utilizado posee una profundidad de 14 bits para las 
intensidades de video. La estructura de datos establece 16 bits de datos para cada 
celda, por lo que tendremos 2 bits MSB de padding [3]. En la investigación sobre las 
intensidades se encontró que la información útil correspondiente a video radar se 
encontraba en el rango [0,256] del total, lo que implicaba usar únicamente 8 de los 16 
bits asignados a cada celda. La información restante se atribuyó a ruido y se descartó. 

El overhead que generó este descubrimiento a mitad de la implementación no 
cambió las especificaciones de la estructura de datos utilizada. Se utilizarán los bits 
restantes de cada celda en la matriz para incluir metadata que sea útil para aplicar el 
algoritmo de detección de datos históricos. 

SAIC, Simposio Argentino de Ingeniería en Computación 2025

Memorias de las 54 JAIIO - SAIC - ISSN: 2451-7496 - Página 6



​  

 
Fig. 2. Celda de 16 bits de la matriz en memoria 

6​ Representación visual con OpenGL 

6.1​ Recepción y decodificación de tramas ASTERIX CAT240 

El sistema hace uso de una arquitectura orientada a eventos para la recepción de datos 
radar bajo el protocolo ASTERIX CAT240, transmitido mediante datagramas 
UDP[4]. Esta funcionalidad está centralizada en un componente Decodificador, el 
cual instancia un socket que permanece a la escucha en un puerto predeterminado. Al 
momento de recibir un datagrama, se extrae la información contenida en el paquete y 
la reenvía a la función decodificar(). El procedimiento de decodificación identifica 
primero la categoría del paquete, y si corresponde a CAT 240, se analiza la sección 
FSPEC (Field Specification) para determinar qué campos adicionales están presentes. 
A partir de esta información, se extraen datos tales como: 
 

●​ Cabecera de video (azimut inicial/final, rango inicial, duración de celda) 
●​ Resolución y datos de celdas de video 

 
La información de video se interpreta como una secuencia de intensidades 

(usualmente codificadas en 8 o 16 bits) que representan la reflectividad de cada celda 
radar para un determinado azimut y rango. Estos datos se encapsulan en una 
estructura Paquete, la cual es enviada a la estructura de datos para su almacenamiento 
y posterior visualización. 

6.2​ Construcción y actualización de la matriz de intensidades 

La matriz almacena los datos de video radar, implementando una estructura matricial 
bidimensional organizada en Azimut × Distancia. Cada fila representa una línea de 
barrido a un determinado ángulo, y cada columna una celda a una distancia específica. 

Al recibir un paquete, el sistema genera índices dentro de la matriz a partir de sus 
valores de azimut y distancia, y guarda dentro de ella en el lugar indicado el valor de 
intensidad correspondiente. Adicionalmente, se mantiene una lista de áreas 
modificadas que permite al sistema saber qué fragmentos del espacio de radar han 
sido actualizados. Esta información se utiliza en el renderizador para minimizar la 
transferencia de datos hacia la GPU, optimizando el rendimiento en tiempo real. 

SAIC, Simposio Argentino de Ingeniería en Computación 2025

Memorias de las 54 JAIIO - SAIC - ISSN: 2451-7496 - Página 7



6.3​ Renderización en tiempo real mediante OpenGL 

El módulo Renderizador, es responsable de transformar la matriz de intensidades en 
una representación visual utilizando OpenGL. Esta representación se realiza mediante 
la generación de una textura 2D (GL_TEXTURE_2D), cuyo contenido refleja los 
valores de intensidad almacenados en la matriz. 

Durante la inicialización, se cargan y compilan shaders personalizados que 
permiten aplicar operaciones como brillo, contraste, umbrales y zoom, directamente 
en la GPU. Se define un área de visualización en forma de “quad” que ocupa toda la 
pantalla, sobre la cual se mapea la textura. 

La textura se inicializa, asignando memoria y configurando sus parámetros de 
muestreo. Posteriormente, cada vez que la matriz se actualiza, la función 
actualizarIntensidades() es invocada para subir únicamente los fragmentos 
modificados de la textura mediante glTexSubImage2D(), utilizando los datos de la 
lista de áreas modificadas. Finalmente, el proceso de renderizado ocurre la función de 
pintado de OpenGL, donde se: 

 
1.​ Actualiza la textura en GPU con los nuevos datos. 
2.​ Enlaza los shaders y les pasa los parámetros visuales. 
3.​ Renderiza el quad con la textura que representa el radar. 

 
Una parte crucial para mantener una visualización clara, informativa y ajustada a 

las condiciones del entorno es el conjunto de controles visuales disponibles: brillo, 
contraste, umbral mínimo y umbral máximo. Estos parámetros permiten al operador 
adaptar la representación visual de los ecos radar en función del contenido y la 
necesidad de visualización. 

En la implementación, estos controles se enlazan como uniforms al shader de 
fragmentos. El umbral mínimo define el valor por debajo del cual las intensidades son 
descartadas (visualizadas como valores nulos), mientras que el umbral máximo actúa 
como límite superior. La función de contraste ajusta la pendiente de la transformación 
entre niveles bajos y altos de intensidad, y el brillo desplaza el rango de intensidades 
hacia valores más claros u oscuros. Todo esto se realiza en tiempo real, sin necesidad 
de reescalar la matriz ni alterar los datos originales. 

if (distancia_cruda <= RANGO_MAXIMO) { 
color_tex = textura(matrixTexture, coordenadas_polares); 
intensidad = color_tex.r; 
if (intensidad < umbral_min || intensidad > umbral_max) { 
    intensidad = 0.0; 
} else { 
    // Normalización del rango 
    intensidad = (intensidad - umbral_min) / (umbral_max 
- umbral_min); 
    // Realce logarítmico de detalles bajos 
    intensidad = log(1 + intensidad * FACTOR_ESCALA) / 
log(1 + FACTOR_ESCALA); 
    // Corrección gamma 

SAIC, Simposio Argentino de Ingeniería en Computación 2025

Memorias de las 54 JAIIO - SAIC - ISSN: 2451-7496 - Página 8



​  

    intensidad = pow(intensidad, 1.0 / 2.0); 
    // Contraste centrado 
    intensidad = 0.5 + (intensidad - 0.5) * contraste; 
    // Brillo 
    intensidad += brillo; 
} 
FragColor = vec4(intensidad, intensidad, intensidad, 
1.0); 
} else { 
​ ​ FragColor = vec4(0.0, 0.0, 0.0, 1.0); 
} 

 
Fig. 3. Diagrama de componentes del visualizador. 

Este enfoque permite al operador maximizar el detalle visual relevante, 
minimizando el ruido y adaptando la escala de grises a cada situación. Es, por tanto, 
un mecanismo esencial para garantizar que la representación radar sea tanto precisa 
como legible en contextos operativos exigentes. Este orden de operaciones es crítico 

SAIC, Simposio Argentino de Ingeniería en Computación 2025

Memorias de las 54 JAIIO - SAIC - ISSN: 2451-7496 - Página 9



para preservar tanto la fidelidad como la legibilidad visual. La normalización debe 
preceder al mapeo logarítmico para que los valores sean consistentes; la corrección 
gamma suaviza el comportamiento visual en intensidades bajas; el contraste se aplica 
simétricamente respecto del punto medio; y finalmente, el brillo desplaza el resultado 
global. Esta secuencia garantiza una representación adaptativa, útil para distintas 
condiciones ambientales. 

7​ Hardware 

La solución propuesta se implementó en tres computadoras de capacidades diferentes: 
 

1.​ Intel Core I7-7500U, 2.7GHz - 2 núcleos - 8 Gb RAM - Intel HD Graphics 
620 - Windows 

2.​ Intel Core I5-11400H, 2.7GHz - 6 núcleos - 8 Gb RAM - NVIDIA GeForce 
1060 - Windows 

3.​ Intel Core I5-10400, 2.0GHz - 6 núcleos - 8 Gb RAM - Intel UHC Graphics 
630 - Linux 

8​ Conclusiones 

8.1​ Resultados alcanzados 

Los resultados demuestran que el sistema propuesto proporciona una visualización 
radar de alta calidad con tiempos de respuesta reducidos, beneficiándose de la 
aceleración por hardware y el procesamiento paralelo. La arquitectura modular facilita 
la integración con otros sistemas y la adaptación a diferentes configuraciones de 
hardware. Este trabajo contribuye al campo de los sistemas de visualización radar al 
ofrecer una implementación optimizada que aprovecha las capacidades de 
procesamiento gráfico moderno junto con la alta resolución proporcionada por el 
convertidor. 

En cuanto al rendimiento en los sistemas donde se implementó la solución, se 
encontró un uso moderado de la GPU en torno al 40%, excepto la (2) que aproximó 
apenas un 20%, medido en los sistemas Windows, acompañado de un uso aproximado 
del 40% total de la capacidad de la CPU. Específicamente, el sistema utiliza 
intensivamente (77% aproximadamente) el núcleo donde se aloja el hilo dedicado a la 
decodificación de la trama ASTERIX, lo cual demuestra el alto ancho de banda 
utilizado y la necesidad de un módulo de procesamiento I/O lo suficientemente 
eficiente. En el sistema con Linux, cabe resaltar un leve incremento del iowait del 
sistema. Esto responde a la necesidad del sistema de aprovechar los recursos de disco 
y utilizar hardware competente, como SSD y memorias principales de alto 
rendimiento. 

Por último, la computadora con 2 núcleos mantiene el mismo uso aproximado de 
las otras dos, pero los FPS percibidos al utilizar la aplicación bajan 
considerablemente. No se recomienda por lo tanto instalar en sistemas con menos de 4 
núcleos debido a la necesidad de núcleos dedicados a la decodificación 

SAIC, Simposio Argentino de Ingeniería en Computación 2025

Memorias de las 54 JAIIO - SAIC - ISSN: 2451-7496 - Página 10



​  

 

 
Fig 4. Rendimiento computadora 1 

 

 
Fig 5. Rendimiento computadora 2 

 

SAIC, Simposio Argentino de Ingeniería en Computación 2025

Memorias de las 54 JAIIO - SAIC - ISSN: 2451-7496 - Página 11



 
Fig 5. Rendimiento computadora 3 

8.2​ Trabajo futuro 

Se prevé realizar estudios sobre OpenGL o tecnologías similares para renderizar en 
pantalla radares de mayor alcance, poniendo énfasis en la performance y el uso de la 
memoria disponible en el sistema. Los ensayos realizados sobre el procesamiento de 
la imagen son sólo un acercamiento con gran margen de mejora, siendo posible un 
trabajo de investigación posterior en conjunto con operarios del sistema que definen 
requerimientos específicos de visualización. 

Referencias 

1.​ Página oficial de EUROCONTROL: https://www.eurocontrol.int/asterix. 
2.​ Documentación OpenGL : https://www.opengl.org/Documentation/Documentation.html 
3.​ Diego M. Martínez et al. Sistema embebido para la distribución de video crudo radar. 

Memorias de las 53 JAIIO - SAIC, Simposio Argentino de Ingeniería en Computación. Pp 
93 – 102. 12 al 16 de agosto de 2024. ISSN 2451-7496. 

4.​ Allende, Agustin Emannuel & Miguel Aguirre, Juan José. (2023). “Desarrollo de una red 
de distribución de vídeo RADAR en protocolo ASTERIX CAT240 sobre Ethernet 
Gigabit” 

5.​ Gálvez, Nelida; Valdez Mariano; Cayssials, Ricardo.(2024). Generación de datos 
ASTERIX CAT 240 mediante FPGA. Memorias de las 53 JAIIO - SAIC. 12 al 16 de 
agosto de 2024. ISSN 2451-7496. 

6.​ Explicación del concepto de milla de datos: 
https://scienceworld.wolfram.com/physics/DataMile.html 

 

SAIC, Simposio Argentino de Ingeniería en Computación 2025

Memorias de las 54 JAIIO - SAIC - ISSN: 2451-7496 - Página 12


	2.1.1 I240/000 – Message Type 
	2.1.2 I240/020 – Video Record Header 
	2.1.3 I240/041 – Video Header Femto 
	2.1.4 I240/048 – Video Cells Resolution & Data Compression Indicator 
	2.1.5 I240/051 – Video Block Medium Data Volume 
	7​Hardware 
	8​Conclusiones 
	8.1​Resultados alcanzados 
	8.2​Trabajo futuro 


