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Abstract. Advances in artificial intelligence and Multi-Agent Systems
enable coordinated agents to achieve multiple, often conflicting,
objectives—making them ideal for ”flexible factories.” These factories,
driven by technologies merging physical, digital, and biological domains,
are evolving into ”smart factories.” Modeling production processes as
multi-agent systems allows simultaneous optimization of efficiency, waste
reduction, sustainability (economic, social, and environmental), cost
savings, and downtime reduction. However, the flexibility needed in
reconfigurable environments increases the complexity of decentralized
control. Small and medium-sized enterprises (SMEs) are a key example,
as they often produce small batches or customized goods, requiring
constant adaptation. Multi-agent reinforcement learning provides a
viable solution, avoiding impractical centralized control in dynamic
settings. This work explores multi-agent reinforcement learning for
collaborative manufacturing tasks, such as material handling (a non-
value-adding operation where efficiency is critical). A preliminary case
study is presented, using virtual environments to train multiple agents in
coordinated material manipulation across varying complexity scenarios.

Keywords: Process optimization, Intelligent control, Collaborative
manufacturing, Smart factories
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Explorando las posibilidades del Aprendizaje
por Refuerzo Multiagente para resolver tareas

cooperativas coordinadas en Sistemas de
fabricación flexibles

Resumen Los avances en inteligencia artificial y Sistemas Multi-Agente
permiten coordinar agentes para cumplir múltiples objetivos, incluso
contrapuestos, aplicables en ”fábricas flexibles”. Estas, impulsadas por
tecnoloǵıas que integran lo f́ısico, digital y biológico, evolucionan hacia
”fábricas inteligentes”. Modelar un proceso productivo como un sistema
multi-agente permite optimizar simultáneamente la eficiencia, reducción
de desperdicios, sustentabilidad (económica, social y ambiental), ahorro
de costos y reducción de tiempos de inactividad. Sin embargo,
la flexibilidad requerida en entornos reconfigurables incrementa la
complejidad del control descentralizado. Las pequeñas y medianas
empresas (PyMEs) son un caso emblemático, ya que suelen producir
lotes pequeños o bienes personalizados, lo que exige una adaptación
constante. El aprendizaje por refuerzo multi-agente surge como una
solución viable, evitando esquemas centralizados poco prácticos ante
entornos cambiantes. Este trabajo analiza dicho enfoque para tareas
colaborativas en manufactura, como la manipulación de materiales (una
operación sin valor agregado donde la eficiencia es clave). Se presenta un
caso de estudio preliminar que utiliza entornos virtuales para entrenar
múltiples agentes en tareas de manipulación coordinada en escenarios de
diversa complejidad.

Palabras clave: Optimización de procesos, Control inteligente,
Manufactura colaborativa, Fábricas inteligentes

1 Introducción

La creciente demanda de productos personalizados y ciclos de vida más cortos
impulsa la transición hacia sistemas de producción flexibles, un desaf́ıo cŕıtico
para las PyMEs, que deben adaptar rápidamente sus procesos manteniendo
productividad y sustentabilidad (Chen. et al., 2018). Un reto clave es la gestión
coordinada de recursos robóticos (manipuladores, móviles, drones) en tareas
como el transporte de materiales, operaciones esenciales para la eficiencia global,
aunque no agreguen valor directo (Saavedra Sueldo et al., 2024).

Los Sistemas Multi-Agente (SMA) y el Aprendizaje por Refuerzo Multiagente
(MARL, por sus siglas en inglés) ofrecen una solución descentralizada,
permitiendo que agentes autónomos colaboren dinámicamente en entornos
cambiantes (Albrecht et al., 2024). Este trabajo propone una contribución
mediante el diseño y evaluación de un escenario de manufactura colaborativa en
Unity, donde múltiples agentes coordinan la manipulación conjunta de objetos
en entornos con distintos niveles de complejidad. Nuestra propuesta se enfoca
en analizar la emergencia de comportamientos colaborativos en tareas f́ısicas
compartidas, fundamentales para procesos adaptativos y flexibles en PyMEs.
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2 Estado del arte
Los SMA y el Aprendizaje por Refuerzo (RL, por sus siglas en inglés) han
ganado relevancia en entornos industriales, ofreciendo soluciones autónomas
y adaptativas para mejorar la eficiencia productiva. En particular, el RL ha
demostrado ser efectivo en la optimización de procesos en manufactura flexible.
Por ejemplo, Li et al. (2022) emplea RL para planificación automática en
ĺıneas de ensamblaje mediante gemelos digitales, logrando mayor precisión en
operaciones sin colisiones.

Otros enfoques combinan RL con sistemas de control tradicionales para
adaptarse rápidamente a cambios en la producción (Schwung et al., 2018).
Estudios recientes indican que el 60% de las aplicaciones de RL en la industria
son experimentales, mientras que el resto se distribuye en celdas de producción
y simulaciones (Velastegui et al., 2023), reflejando su potencial en manufactura
avanzada.

Desde el control inteligente, los modelos holónicos y multiagente han
mejorado la autonomı́a y cooperación en sistemas dinámicos (Boggino, 2005;
Quintero Henao, 2009). Además, la integración de Inteligencia artificial (IA) en
Manufacturing Execution Systems (MES) permite optimizar procesos y reducir
la intervención humana (Durão et al., 2022; Mantravadi et al., 2019).

Para entrenamiento y evaluación, plataformas como Unity ML-Agents
(Juliani et al., 2018) destacan por su flexibilidad, gráficos realistas y soporte
para algoritmos como PPO (Proximal Policy Optimization) y SAC (Soft Actor-
Critic) (Ilosvay & Iaccarino, 2024). Sin embargo, persisten desaf́ıos en estrategias
colaborativas para manufactura flexible.

Si bien los estudios mencionados han demostrado la aplicabilidad del RL
en entornos industriales y simulaciones avanzadas, aún existen desaf́ıos en la
implementación de estrategias colaborativas en manufactura flexible. En este
trabajo, proponemos un enfoque basado en múltiples agentes que trabajan de
manera cooperativa para completar tareas en un entorno simulado utilizando
Unity ML-Agents. A diferencia de estudios previos, nuestra investigación se
centra en la interacción entre agentes y en la capacidad de adaptación a
escenarios dinámicos, buscando evaluar la emergencia de comportamientos
colaborativos en entornos de manufactura flexible.

3 Antecedentes metodológicos
Esta sección presenta los fundamentos teóricos del trabajo, organizados en tres
ejes: 1) los SMA y su aplicación industrial mediante el paradigma holónico; 2)
el marco del RL y su extensión MARL, incluyendo modelos como los MDPs
(Markov Decision Processes, ) y los Dec-POMDPs (Decentralized Partially
Observable Markov Decision Processes, ); y 3) el rol de la simulación en
MARL, comparando plataformas como Unity y Gazebo para sistemas robóticos
colaborativos.

3.1 Sistemas Multiagente

Los SMA son un paradigma de la IA distribuida donde múltiples
agentes autónomos interactúan para resolver problemas complejos. En
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manufactura flexible, los SMA permiten gestionar sistemas descentralizados con
adaptabilidad, escalabilidad y tolerancia a fallos.

Un agente es una entidad computacional que percibe su entorno mediante
sensores, procesa información y actúa mediante actuadores para cumplir
tareas espećıficas. Según Russell & Norvig (2010), los agentes en SMA se
caracterizan por cuatro propiedades clave: autonomı́a (operan sin intervención
humana), reactividad (responden a cambios en tiempo real), proactividad
(toman iniciativas para alcanzar objetivos) y habilidad social (comunicación y
cooperación con otros agentes). En manufactura, los agentes pueden representar
recursos f́ısicos (robots, máquinas) o lógicos (sistemas de planificación),
modelando fábricas como redes colaborativas.

El paradigma holónico (Van Brussel et al., 1998) integra los SMA con la
estructura jerárquica de los sistemas de producción. Cada holón actúa como un
agente que combina una entidad f́ısica (como un robot) con su correspondiente
control lógico, organizándose en jerarqúıas recursivas que van desde el nivel
de máquina hasta el de fábrica completa. La toma de decisiones se realiza de
forma distribuida, donde cada holón negocia localmente con otros para optimizar
objetivos globales como la minimización del tiempo de producción.

Matemáticamente, este sistema se representa mediante un grafo G=(V,E),
donde V corresponde al conjunto de holones (agentes) y E define las relaciones
de cooperación entre ellos, incluyendo flujos de materiales y canales de
comunicación.

La coordinación se basa en negociación y teoŕıa de juegos. Un protocolo
común es el Contract Net Protocol (Smith, 1980), donde un agente manager
anuncia una tarea, los contratistas env́ıan ofertas (costo, tiempo) y el manager
asigna la tarea al mejor candidato. En problemas colaborativos (ej: transporte
coordinado), el equilibrio de Nash asegura que ningún agente se desv́ıe de
la estrategia óptima colectiva (Shoham & Leyton-Brown, 2008). Por ejemplo,
dos robots transportando una carga convergen a poĺıticas de movimiento
complementarias.

3.2 Aprendizaje por Refuerzo y MARL

El RL es un enfoque bioinspirado del aprendizaje automático donde un agente
aprende a tomar decisiones óptimas mediante la interacción con un entorno,
recibiendo recompensas o penalizaciones. En manufactura flexible, el RL resulta
útil para optimizar procesos dinámicos en entornos cambiantes.

Un problema de RL se formaliza como un Proceso de Decisión de Markov
(MDP), utilizado para modelar decisiones secuenciales en entornos estocásticos
(Sutton & Barto, 2018). Un MDP se define como ⟨S,A, P (s′|s, a), R(s, a), γ⟩,
donde S y A representan los espacios de estados y acciones; P (s′|s, a) es la
probabilidad de transición; R(s, a) la recompensa inmediata; y γ ∈ [0, 1] el
factor de descuento. El objetivo es hallar una poĺıtica óptima π∗ que maximice
la recompensa acumulada descontada:

V π(s) = E

[ ∞∑
t=0

γtR(st, at) | s0 = s

]
(1)

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 238



La ecuación de Bellman permite calcular la función de valor de forma
recursiva:

V π(s) = R(s, π(s)) + γ
∑
s′

P (s′|s, π(s))V π(s′) (2)

Extensión a Entornos Multiagente. En contextos con múltiples agentes, un MDP
se extiende a un Proceso de Decisión de Markov Parcialmente Observable De-
scentralizado (Dec-POMDP), definido como ⟨I, S, {Ai}, P (s′|s, ā), {Oi}, {Ri}, γ⟩.
Aqúı, I es el conjunto de agentes; S el espacio de estados global; {Ai} las acciones
individuales; P (s′|s, ā) la dinámica del sistema ante acciones conjuntas ā; {Oi}
las observaciones parciales; y {Ri} las recompensas por agente. Cada agente i
observa parcialmente el estado global y actúa según su poĺıtica πi : Oi → Ai

(Oliehoek & Amato, 2016). En problemas cooperativos, donde Ri = R para todo
i, se busca maximizar la recompensa acumulada conjunta.

El desarrollo de algoritmos para RL Multiagente incluye enfoques como
métodos basados en valores, actor-cŕıtico y gradiente de poĺıtica.

Los métodos basados en valores, como Q-Learning y sus variantes
multiagente, estiman directamente la función de valor. QMIX (Rashid et al.,
2018) introduce redes neuronales para combinar funciones de valor individuales
de forma monótona. MADDPG (Multi-Agent Deep Deterministic Policy
Gradients) representa el enfoque actor-cŕıtico, empleando cŕıticos centralizados
durante el entrenamiento con acceso a las poĺıticas de todos los agentes. PPO
(Proximal Policy Optimization) (Schulman et al., 2017), basado en gradiente
de poĺıtica, destaca por su equilibrio entre estabilidad y eficiencia. Finalmente,
COMA (Counterfactual Multi-Agent) (Foerster et al., 2018) aborda la asignación
de crédito mediante un mecanismo contrafactual, facilitando la evaluación de
contribuciones individuales en recompensas colectivas.

3.3 Entornos computacionales y MARL
Los entornos de simulación han sido clave en el desarrollo del MARL, al
permitir la experimentación en escenarios complejos con múltiples agentes en
entornos realistas, evitando los altos costos y tiempos que implicaŕıa el uso de
sistemas f́ısicos. En contextos de manufactura flexible, estos entornos habilitan
la evaluación de estrategias colaborativas para resolver tareas ad-hoc, aportando
mayor adaptabilidad a los sistemas productivos.

Durante la última década surgieron diversas plataformas que se convirtieron
en referencia para investigación en MARL. Unity ML-Agents destaca por su
equilibrio entre realismo visual y simulación f́ısica, facilitando la creación de
entornos 3D personalizados (Juliani et al., 2018). Gazebo, en combinación con
ROS (ROS), resulta más af́ın a la robótica tradicional, con modelado preciso de
sensores y actuadores (Koenig & Howard, 2004). Otras opciones como PyBullet y
NVIDIA Isaac Sim ofrecen simulación acelerada por GPU (Graphics Processing
Unit), lo que permite trabajar con grandes cantidades de agentes (Coumans &
Bai, 2016).

Estas plataformas ya demostraron su utilidad en manufactura inteligente. En
ensamblaje colaborativo, permiten probar estrategias de coordinación antes de
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su implementación, reduciendo tiempos de configuración en hasta un 60% (Wang
et al., 2021). En loǵıstica interna, la simulación de flotas de AGVs (Automated
Guided Vehicles) con MARL mejoró la eficiencia entre un 30 y 40% frente a
métodos tradicionales (Chen et al., 2022).

Estos entornos permiten modelar dinámicas f́ısicas con alta precisión,
incluyendo cuerpos ŕıgidos, fricción y restricciones articulares. Esto es crucial
para simular tareas como el transporte cooperativo de cargas, donde errores
mı́nimos en la coordinación pueden causar inestabilidad (Zhang et al., 2021).
Además, la técnica de aleatorización de dominios (domain randomization)
mejora la transferencia simulación-realidad. Al variar parámetros como masas
o fricciones durante el entrenamiento, se obtienen poĺıticas más robustas que
toleran diferencias de más del 20% entre entornos, sin pérdida de desempeño
(Curşeu et al., 2020).

La simulación facilita la evaluación rápida de distintas configuraciones
productivas, rutas de transporte o estrategias de colaboración, reduciendo
tiempos y costos asociados al rediseño. Según estudios recientes, puede acortar
en hasta un 45% la implementación de nuevos layouts (Zhang et al., 2021).
Integraciones con gemelos digitales ya permiten transferir directamente las
poĺıticas aprendidas a entornos f́ısicos, cerrando el ciclo entre simulación y
operación. Este enfoque, basado en actualizaciones constantes a partir de datos
reales, está habilitando el desarrollo de fábricas adaptativas y autoorganizadas
(Saavedra Sueldo et al., 2023).

4 Metodoloǵıa
En esta sección se presenta la metodoloǵıa empleada para abordar el caso
de estudio propuesto. En primer lugar, se define la problemática a resolver,
vinculada a la manipulación colaborativa de materiales en espacios reducidos.
Luego, se describe el desarrollo del entorno de simulación, la arquitectura del
sistema, el diseño de los agentes, los mecanismos de interacción y el algoritmo
utilizado. Finalmente, se detalla cómo los robots interactúan y aprenden a
coordinarse para manipular y transportar una pieza dentro de un entorno f́ısico
restringido, representativo de condiciones reales en entornos de manufactura
flexible.

4.1 Definición del problema
Tal como se menciona en la introducción, uno de los principales desaf́ıos en
entornos productivos modernos es la gestión coordinada de recursos f́ısicos que
deben colaborar para ejecutar tareas loǵısticas tales como la manipulación y el
transporte de materiales (Saavedra Sueldo et al., 2024). Estas tareas, aunque
no agregan valor directo al producto final, impactan de forma directa sobre el
rendimiento global del sistema, afectando la eficiencia del flujo de producción,
el uso del espacio f́ısico y la seguridad operativa.

En este contexto, la irrupción de robots móviles con patas, tanto
b́ıpedos como cuadrúpedos, equipados con mecanismos de manipulación (como
grippers) representa una oportunidad para transformar los entornos productivos
actuales. Estas tecnoloǵıas permiten concebir layouts dinámicos, en los que las
estaciones de trabajo puedan reconfigurarse de manera continua en función de
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requerimientos variables, como cambios en la demanda o personalización de
productos. Este nivel de flexibilidad exige el desarrollo de nuevas estrategias
de colaboración y coordinación entre agentes autónomos capaces de levantar,
mover, rotar y posicionar materiales en escenarios dinámicos y no estructurados.

4.2 Entorno simulado
Se diseñó un entorno tridimensional de 20 × 20 × 10 unidades de longitud (ul)
que representa una habitación industrial, donde dos agentes deben cooperar para
transportar una pieza ŕıgida a través de una abertura estrecha. Esta situación
simula tareas reales en espacios reducidos, como pasillos o zonas de transferencia.

Los agentes, modelados como cápsulas móviles de 1 × 1 × 0.8 ul, deben
trasladar una tabla de 15 × 1 ul y 0.1 unidades de masa (um). La abertura
tiene 10 × 10 ul, por lo que es necesario coordinar movimientos y orientación
para evitar colisiones o cáıdas.

4.3 Arquitectura del sistema
El sistema se estructura de forma modular en dos componentes principales:
GameController, que gestiona el estado general de la simulación, y la clase
Robot, que implementa la lógica de cada agente. La Figura 1 muestra su diseño
en UML (Unified Modeling Language).

Fig. 1: Diagrama UML de la arquitectura del sistema.

GameController inicializa episodios, evalúa condiciones de éxito o fallo
y administra las recompensas. Cada agente, mediante CollectObservations,
obtiene información sobre su velocidad, la posición y orientación de la tabla, y
actúa aplicando fuerzas en los ejes X y Z desde OnActionReceived.

El reinicio de episodio depende del sistema completo y no de cada agente por
separado, ya que el éxito de la tarea requiere coordinación entre ambos.
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4.4 Diseño de los agentes

Como se mencionó anteriormente, el comportamiento de cada agente se
implementa en la clase Robot, la cual integra percepción, decisión y aprendizaje.
Si bien cada agente opera de forma independiente en cuanto a su lógica de
acción, el entorno y la tarea en śı los obligan a cooperar de forma impĺıcita.
Esta cooperación emerge del diseño conjunto de su espacio de observación, las
acciones disponibles y el esquema de recompensas, el cual incentiva tanto el
cumplimiento de metas individuales como de objetivos comunes.

La percepción del entorno se implementa a través del método
CollectObservations, el cual recopila un vector de 12 dimensiones para cada
agente. Este vector incluye información clave del estado del sistema, como
la dirección relativa hacia la salida objetivo, la rotación actual de la tabla
(considerando la componente Y del quaternion), la posición relativa de la tabla
respecto al agente, la velocidad lineal del agente en los ejes X y Z, y la
distancia euclidiana al objetivo. Estas observaciones permiten a los agentes
construir una representación informativa del entorno, lo que les posibilita tomar
decisiones razonadas en función de su situación actual. Para facilitar el proceso
de entrenamiento y mejorar la estabilidad del modelo, todas las observaciones
son normalizadas antes de ser procesadas por la red neuronal.

Espacio de acciones. El espacio de acción de cada agente consiste en valores
continuos en el rango [−1, 1], que representan las fuerzas aplicadas en los ejes
X y Z del plano horizontal. Estas acciones se traducen en movimientos f́ısicos
mediante la aplicación de fuerzas al componente Rigidbody del agente, con una
magnitud proporcional al atributo fuerzaMovimiento (15.0 N). Para garantizar
estabilidad durante el aprendizaje, se impone un ĺımite de velocidad máxima
(5.0 unidades/segundo) que previene comportamientos erráticos.

Función de Recompensa. En este problema, los agentes deben transportar
una pieza a través de un espacio reducido sin que esta se caiga ni se produzcan
colisiones, manteniendo la estabilidad de la tabla que cargan en conjunto. Para
fomentar tanto el progreso individual como la coordinación entre agentes, se
ha diseñado una función de recompensa compuesta por múltiples términos que
capturan distintos aspectos del desempeño.

La recompensa total que recibe cada agente en cada paso de simulación está
dada por:

Rtotal =
1

1 + d
− 0.01 · Iinactivo − Iinestable − 0.5 · Icolisión + 10 · Iéxito (3)

donde d es la distancia euclidiana entre el agente y la salida, Iinactivo vale 1
si la velocidad del agente es menor a 0.1 unidades/segundo, Iinestable vale 1 si
la tabla está inclinada más de 10◦ en los ejes X o Z, Icolisión vale 1 si el agente
colisiona con una pared, y Iéxito vale 1 cuando se completa correctamente la tarea
de transportar la tabla a través del vano de luz. Esta función logra equilibrar
penalizaciones por comportamientos no deseados (como inactividad, colisiones
o inestabilidad) con incentivos por el progreso hacia el objetivo y la finalización
exitosa de la tarea.
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4.5 Implementación del aprendizaje
Se optó por utilizar el algoritmo Proximal Policy Optimization (PPO) para
resolver la tarea, por su eficacia para resolver problemas con espacios de acción
continua y su estabilidad en entornos multiagente (Schulman et al., 2017). La
implementación se realizó mediante RLlib, que facilitó la gestión distribuida del
entrenamiento.

Dado que el entorno de simulación se desarrolló en Unity y el entrenamiento
se ejecutó en Python, se utilizó Ray como puente de comunicación entre
ambas plataformas, permitiendo una correcta integración durante el proceso de
aprendizaje.

Arquitectura e Hiperparámetros. Cada agente utiliza una red neuronal
profunda con dos capas completamente conectadas de 256 neuronas cada una,
empleando la función de activación ReLU para mejorar la representación de
las caracteŕısticas del entorno (Haykin, 2009). Las observaciones se normalizan
automáticamente para estabilizar el aprendizaje y mejorar la convergencia.
Durante la fase de entrenamiento se utilizan los siguientes hiperparámetros
(Schulman et al., 2017): una tasa de aprendizaje α = 0.0003, un factor de
descuento γ = 0.99, una longitud de episodio de T = 3000 pasos, un tamaño
de batch de 4000 muestras, un ratio de clipping de 0.2, y un gradiente máximo
también limitado a 0.2 para evitar explosiones en la magnitud de los ajustes.

Configuración del entrenamiento. Para optimizar la eficiencia del
aprendizaje, el entrenamiento se llevó a cabo con cuatro procesos paralelos,
lo que permitió la recolección simultánea de experiencias y redujo el tiempo
total de simulación. Se estableció un esquema de checkpoints cada 5 iteraciones,
lo que permitió la reanudación del entrenamiento en caso de interrupciones. El
entrenamiento se da por concluido al cumplirse alguno de los siguientes criterios:
i) se alcanzaron 10 millones de pasos simulados; ii) la recompensa media obtenida
por los agentes superó los 10.000 puntos; iii) se completaron 5.000 iteraciones de
entrenamiento.

Estrategia Multi-agente. El comportamiento adoptado fue descentral-
izado, donde cada agente mantuvo su propia poĺıtica de aprendizaje; no obstante,
ambas poĺıticas compartieron la misma arquitectura de red y el mismo conjunto
de hiperparámetros. De esta manera, se logra que el aprendizaje de cada agente
evolucione en función de su interacción con el entorno e independientemente del
otro agente.

5 Experimentos

Esta sección describe la configuración y análisis de los experimentos realizados
para evaluar el desempeño de agentes entrenados con MARL en tareas
colaborativas de transporte. Primero se detallan el entorno de simulación, los
recursos computacionales utilizados y las herramientas empleadas. Luego se
analizan dos escenarios evaluados: uno base y otro con una carga adicional sobre
la tabla, lo que incrementa la complejidad. Finalmente, se estudian métricas
como recompensa media, tiempos de iteración, uso de recursos y trayectorias
seguidas por los agentes.
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Recursos computacionales. Los experimentos se realizaron en un equipo
con procesador AMD Ryzen 7 3700X (8 núcleos, 16 hilos), 32 GB de RAM
DDR4 a 3200 MHz, GPU AMD Radeon RX 6700 XT (12 GB), almacenamiento
de 2 TB SSD + 3 TB HDD, y sistema dual Windows 10 Pro 22H2 y Linux con
soporte ROCm para GPU AMD. Esta configuración permitió ejecutar múltiples
simulaciones en paralelo, acelerando la recolección de experiencias y reduciendo
significativamente los tiempos de entrenamiento.

Configuración de los experimentos. Se definieron dos escenarios con
distinta dificultad. En ambos, los agentes deben cooperar para trasladar una
tabla desde un punto inicial hasta cruzar una abertura. La tarea requiere
aplicación de fuerza simultánea, ya que un solo agente no puede mover la carga.
El entorno incluye f́ısica realista (peso, fricción y colisiones), por lo que la falta
de coordinación puede provocar la cáıda de la tabla. En ese caso, el episodio
finaliza y los agentes reciben una penalización máxima.

Escenario 1: Manipulación de una pieza simple. El primer escenario
consiste en trasladar únicamente la pieza con forma de tabla. Este experimento
implementa el entorno base descrito en la metodoloǵıa, donde dos agentes deben
trasladar una tabla ŕıgida de 15 unidades de largo a través de una salida de
10 unidades de ancho (Figura 2a). La simulación evalúa en tiempo real la
dinámica del sistema, considerando fuerzas y colisiones. Dado que la tabla solo
puede moverse si ambos agentes aplican fuerzas coordinadas, los errores en la
sincronización pueden generar oscilaciones o incluso la cáıda completa de la tabla
(Figura 2b), lo que implica el reinicio del entorno.

(a) Transporte coordinado. (b) Cáıda de la tabla.

Fig. 2: Escenario 1: transporte de una pieza simple.

Escenario 2: Manipulación de una carga mixta. En este caso, de mayor
complejidad que el anterior, se debe transportar la tabla con una caja encima
(de 1 ul por lado y masa m = 1 kg), como muestra la Figura 3, lo que agrega
un desaf́ıo extra en términos de coordinación de las acciones.
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Fig. 3: Transporte coordinado con carga.

5.1 Análisis de resultados
El desempeño de los agentes en ambos escenarios se evaluó a partir de tres
métricas principales: la recompensa media obtenida por episodio, el tiempo de
iteración y el uso de CPU. Estas métricas permiten analizar tanto la convergencia
del modelo como el impacto computacional de cada entorno.

En la Figura 4, se puede observar una clara tendencia a la convergencia de
las poĺıticas de los agentes. En el escenario sin carga, la estabilización se alcanza
en unos 125 episodios, con un retorno promedio cercano a los 1000 puntos. En
cambio, el escenario con carga requiere cerca de 210 episodios para estabilizarse.

Fig. 4: Recompensa media por episodio.

Respecto al tiempo de iteración, se pudo observar un comportamiento
relativamente estable, entre 60.000 y 61.000 ms por episodio, con ligeras
variaciones atribuibles a la complejidad del entorno. Finalmente, el uso de CPU
se mantuvo entre el 25% y 40%, con un incremento notorio durante la ejecución
del segundo escenario, que exige mayor control y coordinación por parte de los
agentes.

Comportamiento emergente En ambos escenarios, los agentes lograron
desarrollar estrategias colaborativas sin intervención expĺıcita . Esto evidencia
la aparición de comportamiento emergente, entendido como la capacidad de
los agentes para generar dinámicas colectivas complejas a partir de poĺıticas
individuales simples, entrenadas mediante refuerzo.

En el escenario sin carga, los agentes aprenden rápidamente a sincronizar
sus movimientos para mantener la tabla equilibrada, evitando oscilaciones que
llevaŕıan al reinicio del episodio. Este comportamiento no fue predefinido, sino
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que emergió a partir de la retroalimentación del entorno y la necesidad de
maximizar la recompensa.

En el escenario con carga, el comportamiento emergente es más complejo:
además de mantener la sincronización lateral, los agentes ajustan la intensidad
y dirección de la fuerza aplicada para evitar que la caja caiga de la tabla. Este
ajuste de fuerzas, surge como resultado de la experiencia acumulada en múltiples
episodios, donde errores sutiles son penalizados al provocar la cáıda de la carga.

En ambos casos, se observa que los agentes desarrollan una forma
de “comunicación impĺıcita” basada en la respuesta dinámica del objeto
compartido. Es decir, al reaccionar a los cambios en la posición de la tabla
o de la caja, cada agente modula su comportamiento como respuesta al del otro,
sin intercambiar mensajes expĺıcitos. Esta coordinación emergente sugiere que
es posible alcanzar formas de cooperación efectivas en tareas f́ısicas compartidas
mediante MARL, incluso en ausencia de canales de comunicación directa. La
Figura 5 y la Figura 6. ilustran una secuencia t́ıpica del comportamiento
aprendido en el escenario sin carga y con carga, respectivamente.

Fig. 5: Secuencia, transporte coordinado.

Fig. 6: Secuencia, transporte coordinado con carga.

6 Conclusiones

Este trabajo exploró el potencial del MARL para abordar tareas colaborativas
t́ıpicas de entornos de manufactura flexible, en particular aquellas relacionadas
con la manipulación y el transporte de materiales. A través del desarrollo
de un entorno simulado y la implementación de dos escenarios de distinta
complejidad, se demostró que es posible entrenar agentes capaces de coordinar
sus acciones para alcanzar objetivos comunes, incluso bajo restricciones f́ısicas
como el transporte de una carga compartida.

Los resultados obtenidos, tanto en términos de métricas como de
comportamiento emergente, evidencian que los agentes fueron capaces de
aprender poĺıticas efectivas sin necesidad de un controlador centralizado. Esto
refuerza la idea de que los enfoques MARL constituyen una estrategia viable
para enfrentar la creciente necesidad de flexibilidad, autonomı́a y adaptabilidad
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en sistemas de producción modernos, particularmente en el caso de PyMEs que
deben reconfigurar sus procesos de forma constante.

Si bien los experimentos se realizaron en un entorno virtual y bajo ciertas
simplificaciones, los aprendizajes obtenidos sientan las bases para futuras ĺıneas
de investigación orientadas a trasladar estas estrategias a sistemas f́ısicos reales.
Entre las posibles extensiones del trabajo se destacan la incorporación de más
agentes, el manejo de múltiples objetos con diferentes propiedades f́ısicas, y la
inclusión de mecanismos de comunicación expĺıcita entre agentes, con el fin de
escalar la complejidad de las tareas y aproximarse a escenarios más realistas
propios de la industria 4.0.
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Identified and engaged: A multi-level dynamic model of identification
with the group and performance in collaborative learning. Learning and
Individual Differences, 78.

Durão, L. F. C. S., McMullin, H., Kelly, K., & Zancul, E. (2022). Manufacturing
execution system as an integration backbone for industry 4.0. IFIP
Advances in Information and Communication Technology, 639, 461–473.

Foerster, J. N., Farquhar, G., Afouras, T., Nardelli, N., & Whiteson, S. (2018).
Counterfactual multi-agent policy gradients. 32nd AAAI Conference on
Artificial Intelligence, 2974–2982.

Haykin, S. (2009). Neural networks and learning machines (Third). Pearson.
Ilosvay, V. B., & Iaccarino, E. (2024). Unity ml agents: Wall jump and soccertwos

environment using reinforcement learning (rl) technique.
Juliani, A., Berges, V.-P., Teng, E., Cohen, A., Harper, J., Elion, C., Goy, C.,

Gao, Y., Henry, H., Mattar, M., & Lange, D. (2018). Unity: A general
platform for intelligent agents.

Koenig, N., & Howard, A. (2004). Design and use paradigms for gazebo, an open-
source multi-robot simulator. 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 3, 2149–2154.

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 247



Mantravadi, S., Li, C., & Møller, C. (2019). Multi-agent manufacturing execution
system (mes): Concept, architecture & ml algorithm for a smart factory
case. ICEIS 2019 - Proceedings of the 21st International Conference on
Enterprise Information Systems, 1, 465–470.

Oliehoek, F. A., & Amato, C. (2016). A concise introduction to decentralized
pomdps. Springer.

Quintero Henao, L. F. (2009). Un modelo de control inteligente para sistemas de
manufactura basado en los paradigmas holónico y multi-agente [Doctoral
dissertation, Universidad Nacional de Colombia].

Rashid, A., Danezis, G., Chivers, H., Lupu, E., Martin, A., Lewis, M., &
Peersman, C. (2018). Scoping the cyber security body of knowledge.
IEEE Security & Privacy, 16 (4), 96–102.

Saavedra Sueldo, C., Perez Colo, I., De Paula, M., Villar, S. A., & Acosta,
G. G. (2023). Ros-based architecture for fast digital twin development of
smart manufacturing robotized systems. Annals of Operations Research,
322 (1), 75–99.

Saavedra Sueldo, C., Perez Colo, I., De Paula, M., Villar, S. A., & Acosta,
G. G. (2024). Simulation-based metaheuristic optimization algorithm
for material handling. Journal of Intelligent Manufacturing.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017).
Proximal policy optimization algorithms.

Schwung, D., Reimann, J. N., Schwung, A., & Ding, S. X. (2018). Self learning
in flexible manufacturing units: A reinforcement learning approach. 9th
International Conference on Intelligent Systems 2018: Theory, Research
and Innovation in Applications, 31–38.

Shoham, Y., & Leyton-Brown, K. (2008). Multiagent systems: Algorithmic,
game-theoretic, and logical foundations.

Smith, R. G. (1980). The contract net protocol: High-level communication
and control in a distributed problem solver. IEEE Transactions on
Computers, 29 (12).

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction
(2nd). MIT Press.

Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., & Peeters, P.
(1998). Reference architecture for holonic manufacturing systems: Prosa.
Computers in Industry, 37, 255–274.

Velastegui, R., Poler, R., & Dı́az-Madroñero, M. (2023). Aplicación de algoritmos
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