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Abstract. Advances in artificial intelligence and Multi-Agent Systems
enable coordinated agents to achieve multiple, often conflicting,
objectives—making them ideal for ”flexible factories.” These factories,
driven by technologies merging physical, digital, and biological domains,
are evolving into ”"smart factories.” Modeling production processes as
multi-agent systems allows simultaneous optimization of efficiency, waste
reduction, sustainability (economic, social, and environmental), cost
savings, and downtime reduction. However, the flexibility needed in
reconfigurable environments increases the complexity of decentralized
control. Small and medium-sized enterprises (SMEs) are a key example,
as they often produce small batches or customized goods, requiring
constant adaptation. Multi-agent reinforcement learning provides a
viable solution, avoiding impractical centralized control in dynamic
settings. This work explores multi-agent reinforcement learning for
collaborative manufacturing tasks, such as material handling (a non-
value-adding operation where efficiency is critical). A preliminary case
study is presented, using virtual environments to train multiple agents in
coordinated material manipulation across varying complexity scenarios.

Keywords: Process optimization, Intelligent control, Collaborative
manufacturing, Smart factories
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Explorando las posibilidades del Aprendizaje
por Refuerzo Multiagente para resolver tareas
cooperativas coordinadas en Sistemas de
fabricacion flexibles

Resumen Los avances en inteligencia artificial y Sistemas Multi-Agente
permiten coordinar agentes para cumplir multiples objetivos, incluso
contrapuestos, aplicables en ”fébricas flexibles”. Estas, impulsadas por
tecnologias que integran lo fisico, digital y biolégico, evolucionan hacia
”fabricas inteligentes”. Modelar un proceso productivo como un sistema
multi-agente permite optimizar simultdneamente la eficiencia, reduccién
de desperdicios, sustentabilidad (econdémica, social y ambiental), ahorro
de costos y reduccién de tiempos de inactividad. Sin embargo,
la flexibilidad requerida en entornos reconfigurables incrementa la
complejidad del control descentralizado. Las pequefias y medianas
empresas (PyMEs) son un caso emblemdtico, ya que suelen producir
lotes pequenos o bienes personalizados, lo que exige una adaptacién
constante. El aprendizaje por refuerzo multi-agente surge como una
solucién viable, evitando esquemas centralizados poco practicos ante
entornos cambiantes. Este trabajo analiza dicho enfoque para tareas
colaborativas en manufactura, como la manipulacién de materiales (una
operacién sin valor agregado donde la eficiencia es clave). Se presenta un
caso de estudio preliminar que utiliza entornos virtuales para entrenar
miultiples agentes en tareas de manipulacién coordinada en escenarios de
diversa complejidad.

Palabras clave: Optimizacion de procesos, Control inteligente,
Manufactura colaborativa, Fabricas inteligentes

1 Introduccién

La creciente demanda de productos personalizados y ciclos de vida méas cortos
impulsa la transicién hacia sistemas de produccion flexibles, un desafio critico
para las PyMEs, que deben adaptar rapidamente sus procesos manteniendo
productividad y sustentabilidad (Chen. et al., 2018). Un reto clave es la gestién
coordinada de recursos robéticos (manipuladores, méviles, drones) en tareas
como el transporte de materiales, operaciones esenciales para la eficiencia global,
aunque no agreguen valor directo (Saavedra Sueldo et al., 2024).

Los Sistemas Multi-Agente (SMA) y el Aprendizaje por Refuerzo Multiagente
(MARL, por sus siglas en inglés) ofrecen una solucién descentralizada,
permitiendo que agentes auténomos colaboren dindmicamente en entornos
cambiantes (Albrecht et al., 2024). Este trabajo propone una contribucién
mediante el diseno y evaluaciéon de un escenario de manufactura colaborativa en
Unity, donde multiples agentes coordinan la manipulacién conjunta de objetos
en entornos con distintos niveles de complejidad. Nuestra propuesta se enfoca
en analizar la emergencia de comportamientos colaborativos en tareas fisicas
compartidas, fundamentales para procesos adaptativos y flexibles en PyMEs.
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2 Estado del arte

Los SMA y el Aprendizaje por Refuerzo (RL, por sus siglas en inglés) han
ganado relevancia en entornos industriales, ofreciendo soluciones auténomas
y adaptativas para mejorar la eficiencia productiva. En particular, el RL ha
demostrado ser efectivo en la optimizacién de procesos en manufactura flexible.
Por ejemplo, Li et al. (2022) emplea RL para planificacién automética en
lineas de ensamblaje mediante gemelos digitales, logrando mayor precisiéon en
operaciones sin colisiones.

Otros enfoques combinan RL con sistemas de control tradicionales para
adaptarse rdpidamente a cambios en la produccién (Schwung et al., 2018).
Estudios recientes indican que el 60% de las aplicaciones de RL en la industria
son experimentales, mientras que el resto se distribuye en celdas de produccién
y simulaciones (Velastegui et al., 2023), reflejando su potencial en manufactura
avanzada.

Desde el control inteligente, los modelos holénicos y multiagente han
mejorado la autonomia y cooperacién en sistemas dindmicos (Boggino, 2005;
Quintero Henao, 2009). Ademds, la integracién de Inteligencia artificial (IA) en
Manufacturing Execution Systems (MES) permite optimizar procesos y reducir
la intervencién humana (Durao et al., 2022; Mantravadi et al., 2019).

Para entrenamiento y evaluacién, plataformas como Unity ML-Agents
(Juliani et al., 2018) destacan por su flexibilidad, graficos realistas y soporte
para algoritmos como PPO (Proximal Policy Optimization) y SAC (Soft Actor-
Critic) (Tlosvay & Taccarino, 2024). Sin embargo, persisten desafios en estrategias
colaborativas para manufactura flexible.

Si bien los estudios mencionados han demostrado la aplicabilidad del RL
en entornos industriales y simulaciones avanzadas, ain existen desafios en la
implementacién de estrategias colaborativas en manufactura flexible. En este
trabajo, proponemos un enfoque basado en multiples agentes que trabajan de
manera cooperativa para completar tareas en un entorno simulado utilizando
Unity ML-Agents. A diferencia de estudios previos, nuestra investigacién se
centra en la interaccién entre agentes y en la capacidad de adaptacién a
escenarios dinamicos, buscando evaluar la emergencia de comportamientos
colaborativos en entornos de manufactura flexible.

3 Antecedentes metodologicos

Esta seccién presenta los fundamentos tedricos del trabajo, organizados en tres
ejes: 1) los SMA y su aplicacién industrial mediante el paradigma holénico; 2)
el marco del RL y su extensiéon MARL, incluyendo modelos como los MDPs
(Markov Decision Processes, ) y los Dec-POMDPs (Decentralized Partially
Observable Markov Decision Processes, ); v 3) el rol de la simulacién en
MARL, comparando plataformas como Unity y Gazebo para sistemas robéticos
colaborativos.

3.1 Sistemas Multiagente
Los SMA son un paradigma de la TA distribuida donde multiples
agentes auténomos interactian para resolver problemas complejos. En
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manufactura flexible, los SMA permiten gestionar sistemas descentralizados con
adaptabilidad, escalabilidad y tolerancia a fallos.

Un agente es una entidad computacional que percibe su entorno mediante
sensores, procesa informacion y actia mediante actuadores para cumplir
tareas especificas. Segin Russell & Norvig (2010), los agentes en SMA se
caracterizan por cuatro propiedades clave: autonomia (operan sin intervencién
humana), reactividad (responden a cambios en tiempo real), proactividad
(toman iniciativas para alcanzar objetivos) y habilidad social (comunicacién y
cooperacién con otros agentes). En manufactura, los agentes pueden representar
recursos fisicos (robots, mdquinas) o légicos (sistemas de planificacién),
modelando fébricas como redes colaborativas.

El paradigma holénico (Van Brussel et al., 1998) integra los SMA con la
estructura jerarquica de los sistemas de produccién. Cada holén actia como un
agente que combina una entidad fisica (como un robot) con su correspondiente
control logico, organizdndose en jerarquias recursivas que van desde el nivel
de maquina hasta el de fabrica completa. La toma de decisiones se realiza de
forma distribuida, donde cada holén negocia localmente con otros para optimizar
objetivos globales como la minimizacién del tiempo de produccion.

Matemédticamente, este sistema se representa mediante un grafo G=(V,E),
donde V corresponde al conjunto de holones (agentes) y E define las relaciones
de cooperacion entre ellos, incluyendo flujos de materiales y canales de
comunicacion.

La coordinacién se basa en negociacién y teoria de juegos. Un protocolo
comun es el Contract Net Protocol (Smith, 1980), donde un agente manager
anuncia una tarea, los contratistas envian ofertas (costo, tiempo) y el manager
asigna la tarea al mejor candidato. En problemas colaborativos (ej: transporte
coordinado), el equilibrio de Nash asegura que ningiin agente se desvie de
la estrategia éptima colectiva (Shoham & Leyton-Brown, 2008). Por ejemplo,
dos robots transportando una carga convergen a politicas de movimiento
complementarias.

3.2 Aprendizaje por Refuerzo y MARL

El RL es un enfoque bioinspirado del aprendizaje automatico donde un agente
aprende a tomar decisiones Optimas mediante la interaccién con un entorno,
recibiendo recompensas o penalizaciones. En manufactura flexible, el RL resulta
1til para optimizar procesos dindmicos en entornos cambiantes.

Un problema de RL se formaliza como un Proceso de Decisién de Markov
(MDP), utilizado para modelar decisiones secuenciales en entornos estocasticos
(Sutton & Barto, 2018). Un MDP se define como (S, A, P(s'|s,a), R(s,a),7),
donde S y A representan los espacios de estados y acciones; P(s'|s,a) es la
probabilidad de transicién; R(s,a) la recompensa inmediata; y v € [0,1] el
factor de descuento. El objetivo es hallar una politica éptima 7" que maximice
la recompensa acumulada descontada:

VT(s)=E thR(st,at) | s =s (1)
t=0
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La ecuacién de Bellman permite calcular la funcién de valor de forma
recursiva:

V™ (s) = R(s,m(s)) +7 ) P(s'|s,m(s))V"(s') (2)

Eaxtension a Entornos Multiagente. En contextos con miltiples agentes, un MDP
se extiende a un Proceso de Decision de Markov Parcialmente Observable De-
scentralizado (Dec-POMDP), definido como (I, S,{A4;}, P(s'|s,a),{0;},{R:},)-
Aqui, T es el conjunto de agentes; S el espacio de estados global; { A;} las acciones
individuales; P(s|s, @) la dindmica del sistema ante acciones conjuntas a; {O;}
las observaciones parciales; y {R;} las recompensas por agente. Cada agente i
observa parcialmente el estado global y actiia segiin su politica m; : O; — A;
(Oliehoek & Amato, 2016). En problemas cooperativos, donde R; = R para todo
1, se busca maximizar la recompensa acumulada conjunta.

El desarrollo de algoritmos para RL Multiagente incluye enfoques como
métodos basados en valores, actor-critico y gradiente de politica.

Los métodos basados en valores, como Q-Learning y sus variantes
multiagente, estiman directamente la funcién de valor. QMIX (Rashid et al.,
2018) introduce redes neuronales para combinar funciones de valor individuales
de forma mondétona. MADDPG (Multi-Agent Deep Deterministic Policy
Gradients) representa el enfoque actor-critico, empleando criticos centralizados
durante el entrenamiento con acceso a las politicas de todos los agentes. PPO
(Proximal Policy Optimization) (Schulman et al., 2017), basado en gradiente
de politica, destaca por su equilibrio entre estabilidad y eficiencia. Finalmente,
COMA (Counterfactual Multi-Agent) (Foerster et al., 2018) aborda la asignacién
de crédito mediante un mecanismo contrafactual, facilitando la evaluacién de
contribuciones individuales en recompensas colectivas.

3.3 Entornos computacionales y MARL
Los entornos de simulacién han sido clave en el desarrollo del MARL, al

permitir la experimentacién en escenarios complejos con multiples agentes en
entornos realistas, evitando los altos costos y tiempos que implicaria el uso de
sistemas fisicos. En contextos de manufactura flexible, estos entornos habilitan
la evaluacion de estrategias colaborativas para resolver tareas ad-hoc, aportando
mayor adaptabilidad a los sistemas productivos.

Durante la iltima década surgieron diversas plataformas que se convirtieron
en referencia para investigacién en MARL. Unity ML-Agents destaca por su
equilibrio entre realismo visual y simulacién fisica, facilitando la creacién de
entornos 3D personalizados (Juliani et al., 2018). Gazebo, en combinacién con
ROS (ROS), resulta més afin a la robética tradicional, con modelado preciso de
sensores y actuadores (Koenig & Howard, 2004). Otras opciones como PyBullet y
NVIDIA Isaac Sim ofrecen simulacién acelerada por GPU (Graphics Processing
Unit), lo que permite trabajar con grandes cantidades de agentes (Coumans &
Bai, 2016).

Estas plataformas ya demostraron su utilidad en manufactura inteligente. En
ensamblaje colaborativo, permiten probar estrategias de coordinacion antes de
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su implementacién, reduciendo tiempos de configuracién en hasta un 60% (Wang
et al., 2021). En logistica interna, la simulacién de flotas de AGVs (Automated
Guided Vehicles) con MARL mejoré la eficiencia entre un 30 y 40% frente a
métodos tradicionales (Chen et al., 2022).

Estos entornos permiten modelar dindmicas fisicas con alta precision,
incluyendo cuerpos rigidos, friccion y restricciones articulares. Esto es crucial
para simular tareas como el transporte cooperativo de cargas, donde errores
minimos en la coordinacién pueden causar inestabilidad (Zhang et al., 2021).
Ademds, la técnica de aleatorizacién de dominios (domain randomization)
mejora la transferencia simulacién-realidad. Al variar pardmetros como masas
o fricciones durante el entrenamiento, se obtienen politicas méds robustas que
toleran diferencias de mds del 20% entre entornos, sin pérdida de desempeno
(Curseu et al., 2020).

La simulacién facilita la evaluacién rapida de distintas configuraciones
productivas, rutas de transporte o estrategias de colaboracién, reduciendo
tiempos y costos asociados al rediseno. Segun estudios recientes, puede acortar
en hasta un 45% la implementacién de nuevos layouts (Zhang et al., 2021).
Integraciones con gemelos digitales ya permiten transferir directamente las
politicas aprendidas a entornos fisicos, cerrando el ciclo entre simulacién y
operacion. Este enfoque, basado en actualizaciones constantes a partir de datos
reales, estd habilitando el desarrollo de fabricas adaptativas y autoorganizadas
(Saavedra Sueldo et al., 2023).

4 Metodologia

En esta seccién se presenta la metodologia empleada para abordar el caso
de estudio propuesto. En primer lugar, se define la problemética a resolver,
vinculada a la manipulacién colaborativa de materiales en espacios reducidos.
Luego, se describe el desarrollo del entorno de simulacién, la arquitectura del
sistema, el diseno de los agentes, los mecanismos de interaccién y el algoritmo
utilizado. Finalmente, se detalla cémo los robots interactiian y aprenden a
coordinarse para manipular y transportar una pieza dentro de un entorno fisico
restringido, representativo de condiciones reales en entornos de manufactura

flexible.

4.1 Definicién del problema
Tal como se menciona en la introduccién, uno de los principales desafios en

entornos productivos modernos es la gestién coordinada de recursos fisicos que
deben colaborar para ejecutar tareas logisticas tales como la manipulacion y el
transporte de materiales (Saavedra Sueldo et al., 2024). Estas tareas, aunque
no agregan valor directo al producto final, impactan de forma directa sobre el
rendimiento global del sistema, afectando la eficiencia del flujo de produccién,
el uso del espacio fisico y la seguridad operativa.

En este contexto, la irrupcién de robots moéviles con patas, tanto
bipedos como cuadripedos, equipados con mecanismos de manipulacién (como
grippers) representa una oportunidad para transformar los entornos productivos
actuales. Estas tecnologias permiten concebir layouts dinamicos, en los que las
estaciones de trabajo puedan reconfigurarse de manera continua en funcién de
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requerimientos variables, como cambios en la demanda o personalizacion de
productos. Este nivel de flexibilidad exige el desarrollo de nuevas estrategias
de colaboracién y coordinacién entre agentes auténomos capaces de levantar,
mover, rotar y posicionar materiales en escenarios dindmicos y no estructurados.

4.2 Entorno simulado
Se diseié un entorno tridimensional de 20 x 20 x 10 unidades de longitud (ul)

que representa una habitacién industrial, donde dos agentes deben cooperar para
transportar una pieza rigida a través de una abertura estrecha. Esta situacién
simula tareas reales en espacios reducidos, como pasillos o zonas de transferencia.
Los agentes, modelados como capsulas méviles de 1 x 1 x 0.8 ul, deben
trasladar una tabla de 15 x 1 ul y 0.1 unidades de masa (um). La abertura
tiene 10 x 10 ul, por lo que es necesario coordinar movimientos y orientacién
para evitar colisiones o caidas.
4.3 Arquitectura del sistema
El sistema se estructura de forma modular en dos componentes principales:
GameController, que gestiona el estado general de la simulacién, y la clase
Robot, que implementa la légica de cada agente. La Figura 1 muestra su diseno
en UML (Unified Modeling Language).

«abstracts»
Agent

+ Initialize (): void

+ OnEpisodeBegin(): void

+ CollectObservations(VectorSensor): void
+ OnActionReceived(ActionBuffers): void
+ AddReward(float): void

+ EndEpisode(): void

GameController Robot
- tabla: GameObject
- salida: Transform - tabla: GameObject
- agentel: CapsulasAgent - salidaTarget: GameObject
- agente2: CapsulasAgent - capsulaRigidbody: Rigidbody
- tablaRb: Rigidbody - posicioninicialCapsula: Vector3
- tablalnicialPos: Vector3 - rotacionlnicialCapsula: Quaternion
- tablalnicialRot: Quaternion Relacién 1a 2 (1 *-2) - fuerzaMovimiento: float
- salidalnicialPos: Vector3 - velocidadMaxima: float

- gameController: GameController

+ Start(): void

+ Update(): void

+ ResetEnvironment(): void

+ OnAgentFall(CapsulasAgent): void + ResetCapsula (): void

- VerificarSiSalieronPorLaPuerta(): bool + OnCollisionEnter(Collision): void

Fig. 1: Diagrama UML de la arquitectura del sistema.

GameController inicializa episodios, evalia condiciones de éxito o fallo
y administra las recompensas. Cada agente, mediante CollectObservations,
obtiene informacién sobre su velocidad, la posicién y orientacién de la tabla, y
actua aplicando fuerzas en los ejes X y Z desde OnActionReceived.

El reinicio de episodio depende del sistema completo y no de cada agente por
separado, ya que el éxito de la tarea requiere coordinaciéon entre ambos.
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4.4 Diseno de los agentes

Como se mencioné anteriormente, el comportamiento de cada agente se
implementa en la clase Robot, la cual integra percepcion, decision y aprendizaje.
Si bien cada agente opera de forma independiente en cuanto a su légica de
accién, el entorno y la tarea en si los obligan a cooperar de forma implicita.
Esta cooperacién emerge del disefio conjunto de su espacio de observacién, las
acciones disponibles y el esquema de recompensas, el cual incentiva tanto el
cumplimiento de metas individuales como de objetivos comunes.

La percepcion del entorno se implementa a través del método
CollectObservations, el cual recopila un vector de 12 dimensiones para cada
agente. Este vector incluye informacién clave del estado del sistema, como
la direccion relativa hacia la salida objetivo, la rotacion actual de la tabla
(considerando la componente Y del quaternion), la posicién relativa de la tabla
respecto al agente, la velocidad lineal del agente en los ejes X y Z, y la
distancia euclidiana al objetivo. Estas observaciones permiten a los agentes
construir una representacién informativa del entorno, lo que les posibilita tomar
decisiones razonadas en funcién de su situacién actual. Para facilitar el proceso
de entrenamiento y mejorar la estabilidad del modelo, todas las observaciones
son normalizadas antes de ser procesadas por la red neuronal.

Espacio de acciones. El espacio de accién de cada agente consiste en valores
continuos en el rango [—1, 1], que representan las fuerzas aplicadas en los ejes
X y Z del plano horizontal. Estas acciones se traducen en movimientos fisicos
mediante la aplicacién de fuerzas al componente Rigidbody del agente, con una
magnitud proporcional al atributo fuerzaMovimiento (15.0 N). Para garantizar
estabilidad durante el aprendizaje, se impone un limite de velocidad méaxima
(5.0 unidades/segundo) que previene comportamientos erraticos.

Funcién de Recompensa. En este problema, los agentes deben transportar
una pieza a través de un espacio reducido sin que esta se caiga ni se produzcan
colisiones, manteniendo la estabilidad de la tabla que cargan en conjunto. Para
fomentar tanto el progreso individual como la coordinacién entre agentes, se
ha disenado una funciéon de recompensa compuesta por multiples términos que
capturan distintos aspectos del desempeno.

La recompensa total que recibe cada agente en cada paso de simulacion esta
dada por:

1 .
Riotal = m — 0.01 - Linactivo — Linestable — 0.5 - Icolisien + 10 - Iéxito (3)

donde d es la distancia euclidiana entre el agente y la salida, Tihactivo vale 1
si la velocidad del agente es menor a 0.1 unidades/segundo, Lipestable vale 1 si
la tabla estd inclinada mas de 10° en los ejes X o Z, L.olision vale 1 si el agente
colisiona con una pared, y Isit, vale 1 cuando se completa correctamente la tarea
de transportar la tabla a través del vano de luz. Esta funcién logra equilibrar
penalizaciones por comportamientos no deseados (como inactividad, colisiones
o inestabilidad) con incentivos por el progreso hacia el objetivo y la finalizacién
exitosa de la tarea.
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4.5 Implementacién del aprendizaje

Se opté por utilizar el algoritmo Proximal Policy Optimization (PPO) para
resolver la tarea, por su eficacia para resolver problemas con espacios de accién
continua y su estabilidad en entornos multiagente (Schulman et al., 2017). La
implementacién se realizé mediante RLIib, que facilité la gestién distribuida del
entrenamiento.

Dado que el entorno de simulacion se desarrollé en Unity y el entrenamiento
se ejecuté en Python, se utilizé Ray como puente de comunicaciéon entre
ambas plataformas, permitiendo una correcta integracién durante el proceso de
aprendizaje.

Arquitectura e Hiperparametros. Cada agente utiliza una red neuronal
profunda con dos capas completamente conectadas de 256 neuronas cada una,
empleando la funcién de activacion ReLLU para mejorar la representacién de
las caracteristicas del entorno (Haykin, 2009). Las observaciones se normalizan
automaticamente para estabilizar el aprendizaje y mejorar la convergencia.
Durante la fase de entrenamiento se utilizan los siguientes hiperparametros
(Schulman et al., 2017): una tasa de aprendizaje o = 0.0003, un factor de
descuento v = 0.99, una longitud de episodio de T" = 3000 pasos, un tamano
de batch de 4000 muestras, un ratio de clipping de 0.2, y un gradiente maximo
también limitado a 0.2 para evitar explosiones en la magnitud de los ajustes.

Configuracién del entrenamiento. Para optimizar la eficiencia del
aprendizaje, el entrenamiento se llevé a cabo con cuatro procesos paralelos,
lo que permitié la recoleccién simultanea de experiencias y redujo el tiempo
total de simulacién. Se establecié un esquema de checkpoints cada 5 iteraciones,
lo que permitié la reanudacién del entrenamiento en caso de interrupciones. El
entrenamiento se da por concluido al cumplirse alguno de los siguientes criterios:
i) se alcanzaron 10 millones de pasos simulados; ii) la recompensa media obtenida
por los agentes superé los 10.000 puntos; iii) se completaron 5.000 iteraciones de
entrenamiento.

Estrategia Multi-agente. El comportamiento adoptado fue descentral-
izado, donde cada agente mantuvo su propia politica de aprendizaje; no obstante,
ambas politicas compartieron la misma arquitectura de red y el mismo conjunto
de hiperparametros. De esta manera, se logra que el aprendizaje de cada agente
evolucione en funcién de su interaccién con el entorno e independientemente del
otro agente.

5 Experimentos

Esta seccion describe la configuracion y analisis de los experimentos realizados
para evaluar el desempeno de agentes entrenados con MARL en tareas
colaborativas de transporte. Primero se detallan el entorno de simulaciéon, los
recursos computacionales utilizados y las herramientas empleadas. Luego se
analizan dos escenarios evaluados: uno base y otro con una carga adicional sobre
la tabla, lo que incrementa la complejidad. Finalmente, se estudian métricas
como recompensa media, tiempos de iteracién, uso de recursos y trayectorias
seguidas por los agentes.
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Recursos computacionales. Los experimentos se realizaron en un equipo
con procesador AMD Ryzen 7 3700X (8 nucleos, 16 hilos), 32 GB de RAM
DDR4 a 3200 MHz, GPU AMD Radeon RX 6700 XT (12 GB), almacenamiento
de 2 TB SSD + 3 TB HDD, y sistema dual Windows 10 Pro 22H2 y Linux con
soporte ROCm para GPU AMD. Esta configuracién permitio ejecutar multiples
simulaciones en paralelo, acelerando la recoleccién de experiencias y reduciendo
significativamente los tiempos de entrenamiento.

Configuracion de los experimentos. Se definieron dos escenarios con
distinta dificultad. En ambos, los agentes deben cooperar para trasladar una
tabla desde un punto inicial hasta cruzar una abertura. La tarea requiere
aplicacién de fuerza simultanea, ya que un solo agente no puede mover la carga.
El entorno incluye fisica realista (peso, friccién y colisiones), por lo que la falta
de coordinaciéon puede provocar la caida de la tabla. En ese caso, el episodio
finaliza y los agentes reciben una penalizacién maxima.

Escenario 1: Manipulacién de una pieza simple. El primer escenario
consiste en trasladar inicamente la pieza con forma de tabla. Este experimento
implementa el entorno base descrito en la metodologia, donde dos agentes deben
trasladar una tabla rigida de 15 unidades de largo a través de una salida de
10 unidades de ancho (Figura 2a). La simulacién evalia en tiempo real la
dindmica del sistema, considerando fuerzas y colisiones. Dado que la tabla solo
puede moverse si ambos agentes aplican fuerzas coordinadas, los errores en la
sincronizacion pueden generar oscilaciones o incluso la caida completa de la tabla
(Figura 2b), lo que implica el reinicio del entorno.

-

a) Transporte coordinado. ) Caida de la tabla.

Fig. 2: Escenario 1: transporte de una pieza simple.

Escenario 2: Manipulacién de una carga mixta. En este caso, de mayor
complejidad que el anterior, se debe transportar la tabla con una caja encima
(de 1 ul por lado y masa m = 1 kg), como muestra la Figura 3, lo que agrega
un desafio extra en términos de coordinacion de las acciones.
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Fig. 3: Transporte coordinado con carga.

5.1 Analisis de resultados
El desempeno de los agentes en ambos escenarios se evalué a partir de tres

métricas principales: la recompensa media obtenida por episodio, el tiempo de
iteracién y el uso de CPU. Estas métricas permiten analizar tanto la convergencia
del modelo como el impacto computacional de cada entorno.

En la Figura 4, se puede observar una clara tendencia a la convergencia de
las politicas de los agentes. En el escenario sin carga, la estabilizacion se alcanza
en unos 125 episodios, con un retorno promedio cercano a los 1000 puntos. En
cambio, el escenario con carga requiere cerca de 210 episodios para estabilizarse.

I escenario 1 [ Escenario 2

Fig. 4: Recompensa media por episodio.

Respecto al tiempo de iteracién, se pudo observar un comportamiento
relativamente estable, entre 60.000 y 61.000 ms por episodio, con ligeras
variaciones atribuibles a la complejidad del entorno. Finalmente, el uso de CPU
se mantuvo entre el 25% y 40%, con un incremento notorio durante la ejecucién
del segundo escenario, que exige mayor control y coordinacién por parte de los
agentes.

Comportamiento emergente En ambos escenarios, los agentes lograron
desarrollar estrategias colaborativas sin intervencion explicita . Esto evidencia
la aparicién de comportamiento emergente, entendido como la capacidad de
los agentes para generar dindmicas colectivas complejas a partir de politicas
individuales simples, entrenadas mediante refuerzo.

En el escenario sin carga, los agentes aprenden rapidamente a sincronizar
sus movimientos para mantener la tabla equilibrada, evitando oscilaciones que
llevarian al reinicio del episodio. Este comportamiento no fue predefinido, sino
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que emergié a partir de la retroalimentacién del entorno y la necesidad de
maximizar la recompensa.

En el escenario con carga, el comportamiento emergente es mas complejo:
ademadas de mantener la sincronizacién lateral, los agentes ajustan la intensidad
y direccién de la fuerza aplicada para evitar que la caja caiga de la tabla. Este
ajuste de fuerzas, surge como resultado de la experiencia acumulada en multiples
episodios, donde errores sutiles son penalizados al provocar la caida de la carga.

En ambos casos, se observa que los agentes desarrollan una forma
de “comunicacién implicita” basada en la respuesta dindmica del objeto
compartido. Es decir, al reaccionar a los cambios en la posicién de la tabla
o de la caja, cada agente modula su comportamiento como respuesta al del otro,
sin intercambiar mensajes explicitos. Esta coordinacién emergente sugiere que
es posible alcanzar formas de cooperacion efectivas en tareas fisicas compartidas
mediante MARL, incluso en ausencia de canales de comunicacién directa. La
Figura 5 y la Figura 6. ilustran una secuencia tipica del comportamiento
aprendido en el escenario sin carga y con carga, respectivamente.

>

Fig. 5: Secuencia, transporte coordinado.

Fig. 6: Secuencia, transporte coordinado con carga.
6 Conclusiones

Este trabajo exploré el potencial del MARL para abordar tareas colaborativas
tipicas de entornos de manufactura flexible, en particular aquellas relacionadas
con la manipulacién y el transporte de materiales. A través del desarrollo
de un entorno simulado y la implementacién de dos escenarios de distinta
complejidad, se demostré que es posible entrenar agentes capaces de coordinar
sus acciones para alcanzar objetivos comunes, incluso bajo restricciones fisicas
como el transporte de una carga compartida.

Los resultados obtenidos, tanto en términos de métricas como de
comportamiento emergente, evidencian que los agentes fueron capaces de
aprender politicas efectivas sin necesidad de un controlador centralizado. Esto
refuerza la idea de que los enfoques MARL constituyen una estrategia viable
para enfrentar la creciente necesidad de flexibilidad, autonomia y adaptabilidad
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en sistemas de produccion modernos, particularmente en el caso de PyMEs que
deben reconfigurar sus procesos de forma constante.

Si bien los experimentos se realizaron en un entorno virtual y bajo ciertas
simplificaciones, los aprendizajes obtenidos sientan las bases para futuras lineas
de investigacion orientadas a trasladar estas estrategias a sistemas fisicos reales.
Entre las posibles extensiones del trabajo se destacan la incorporacién de mas
agentes, el manejo de multiples objetos con diferentes propiedades fisicas, y la
inclusiéon de mecanismos de comunicacién explicita entre agentes, con el fin de
escalar la complejidad de las tareas y aproximarse a escenarios maéas realistas
propios de la industria 4.0.
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