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Abstract. En este trabajo presentamos la aplicacién de un modelo
basado en redes generativas adversariales condicionadas (cGAN) para
la planificacién de tratamientos de radioterapia corporal estereotdctica
(SBRT) para cdncer de préstata. Proponemos una arquitectura inspi-
rada en enfoques previos utilizados en la planificacién de dosis para otros
tipos de céncer, adaptada especificamente a las caracteristicas y requer-
imientos clinicos de tratamiento del céncer de préstata. Evaluamos el
desempeno del modelo utilizando datos de casos reales tratados en un
centro de radioterapia de Cérdoba, comparando los planes de dosis gen-
erados con los planes clinicos aprobados por especialistas. Los resultados
obtenidos en el conjunto de prueba presentaron en los DVH en promedio
un RMSE del 2,98% sobre el volumen del PTV, 3,56% sobre el volumen
del recto y 2,32% sobre el volumen de la vejiga. Esto sugiere que el uso de
redes generativas adversariales puede ser una herramienta prometedora
para mejorar la eficiencia en la planificacién de la SBRT.

Keywords: GAN, cGAN, Redes Generativas Adversariales Condicionales,
Prediccién de dosis, SBRT, Céncer De Proéstata, Radioterapia.
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Abstract. In this work we present the application of a model based
on conditional generative adversarial networks (cGAN) for the planning
of stereotactic body radiotherapy (SBRT) treatments for prostate can-
cer. Inspired by previous approaches used in dose planning for other
types of cancer, we propose an architecture adapted to the characteris-
tics and clinical requirements of prostate cancer treatment. We evaluate
the model’s performance using data from real cases treated at a radio-
therapy center in Cérdoba, comparing the generated dose plans with the
clinical plans approved by specialists. The results obtained on the test
set show, on average, a RMSE of 2.98% over the PTV volume, 3.56%
over the rectum volume and 2.32% over the bladder volume in the DVHs.
This suggests that the use of generative adversarial networks could be a
promising tool to improve efficiency in SBRT planning.

Keywords: GAN, cGAN, Conditional Generative Adversarial Networks,
Dose prediction, SBRT, Prostate Cancer, Radiotherapy.

1 Introduccién

La planificacion del tratamiento de radioterapia parte de la utilizacién de imagenes
médicas, como puede ser una tomografia copmputarizada (CT por sus siglas en
inglés), para obtener una distribucién de dosis planificada. Por lo general, es un
proceso que requiere un gran esfuerzo y habilidades considerables por parte del
fisico médico, generando que su desarrollo pueda tomar varios dias.

La planificaciéon basada en conocimiento busca agilizar este proceso de planifi-
cacion utilizando datos de tratamientos anteriores para generar o predecir nuevos
tratamientos. En particular, los métodos basados en aprendizaje profundo se
diferencian de los métodos tradicionales en que no requieren la utilizacion de
caracteristicas geométricas definidas a mano ya que son capaces de aprender y
detectar estas caracteristicas autométicamente desde los datos crudos (Momin
et al., 2020).
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En este trabajo proponemos un modelo de aprendizaje profundo con el ob-
jetivo de reducir el tiempo necesario para alcanzar una distribucién de dosis
estimada en base a la tomografia computarizada (CT) y la delimitacién de los
organos, tanto objetivos como los de riesgo. Esta estimacién se puede utilizar en
los procesos de optimizacién de planificacién de dosis.

El resto del trabajo estd organizado de la siguiente manera: en la seccién
2 exponemos los antecedentes que sentaron las bases para el desarrollo, en la
seccién 3 realizamos una descripcién detallada del problema y discutimos el
alcance del trabajo, en la seccion 4 revisamos las caracteristicas del conjunto de
datos provisto por el centro de radioterapia Dean Funes y de las adecuaciones
que se le realizaron, en la seccién 5 describimos la arquitectura propuesta para
la predicciéon de planificacién de dosis, en la seccién 6 explicamos el esquema
de entrenamiento utilizado, en la seccién 7 mostramos los resultados obtenidos
y, finalmente, en la seccién 8 concluimos resaltando los principales aportes de
nuestro trabajo.

2 Antecedentes

En los dltimos anos ha habido una enorme proliferacién de trabajos que buscan
aplicar técnicas de aprendizaje automatico e inteligencia artificial para mejorar
o simplificar los procesos de tratamiento para diferentes tipos de céncer. En
(Kourou et al., 2015) y (Kourou et al., 2021) se puede encontrar una revisién de
los trabajos maés relevantes que aplican estas técnicas. Es posible clasificar los
trabajos en tres ramas: diagndstico, pronostico y tratamiento. En el primer caso,
existen muchos trabajos en los que se busca mejorar la capacidad de deteccién
y clasificacién de cédncer en base a imdgenes y antecedentes del paciente. En
(Sharma et al., 2024) y (Hu et al., 2018) pueden encontrar una revisién actu-
alizada de los principales trabajos en la aplicaciéon de aprendizaje automatico y
aprendizaje profundo al diagnéstico de cdncer. En (Kourou et al., 2015),(Kourou
et al., 2021) y (Tran et al., 2021), los autores realizaron una revisién de traba-
jos que incluyen el uso de aprendizaje profundo en el prondstico de cédncer de
pacientes y para el tratamiento.

Nuestro trabajo se enmarca en el uso de técnicas de aprendizaje profundo
para el tratamiento del cdncer. Mas especificamente para la prediccién de dosis
para el tratamiento de cdncer con radioterapia. En (Momin et al., 2020) se de-
tallan los diferentes métodos que utilizan conocimiento previo para la prediccién
de distribuciones de dosis. En (Ma et al., 2019), los autores se preguntaron ac-
erca de la factibilidad de utilizar aprendizaje automaético para la prediccién de
dosis. En los ultimos cinco anos se han publicado multiples trabajos que aplican
este enfoque, por mencionar los que consideramos més relevantes: (J. Liu et al.,
2024),(Kim et al., 2024),(Y. Liu et al., 2024) y (Babier et al., 2020).

En nuestro trabajo decidimos utilizar redes de tipo GAN siguiendo el trabajo
realizado por diferentes autores en: (Bakx et al., 2021), (Nguyen et al., 2019),
(Gu et al., 2023), (Zhan et al., 2022), (Xie et al., 2024), (Y. Liu et al., 2024).
M4s especificamente, utilizamos un enfoque similar al abordado en (Babier et
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al., 2020), en el que emplean una red GAN condicionada para la prediccién de
distribucién de dosis para tratamiento por radioterapia de cancer de orofaringe.
Incorporamos también estrategias de frenado temprano del entrenamiento sigu-
iendo las propuestas en (Saad et al., 2024).

3 Descripcion del Problema

La radioterapia es un tratamiento contra el cdncer que consiste en irradiar al
paciente con haces de radiacién ionizante para destruir las células cancerosas.
Sin embargo, esta radiacién también puede afectar y danar los tejidos sanos. Por
este motivo, el tratamiento debe ser disenado y planificado minuciosamente para
cada paciente en particular, ya que debe adaptarse a su anatomia de manera tal
que la radiacion afecte inicamente al tejido tumoral. Este proceso incluye varias
etapas y requiere un tiempo considerable, que puede ir desde algunos dias hasta
una semana inclusive (Targeting Cancer, 2025), (MD Anderson Cancer Center,
2021).

Para el desarrollo del plan de tratamiento en primer lugar se realiza una
simulacién, donde se obtiene una tomografia computarizada (CT) de la zona
de interés del paciente, sobre la cual se demarcan los 6rganos de riesgo o OAR
(en nuestro caso recto y vejiga) y el volumen objetivo de planificacién o PTV
(préstata), tal como se puede apreciar en la Figura l-izquierda. Luego esta in-
formacién es utilizada para generar la distribucién de dosis (Figura 1-derecha)
mediante la técnica de planificacion inversa, donde se fijan las dosis deseadas y
por un proceso de optimizacion se llega a la distribucién de dosis 6ptima. Por lo
tanto, dado que es un proceso que depende de cada paciente, ya que depende de
la anatomia del mismo, y de las habilidades del profesional, es un proceso que
conlleva un tiempo considerable de varios dias.

Figura 1. A la izquierda: corte axial de CT con demarcacién de OAR (vejiga: naranja,
recto: amarillo, cabezas femorales: celeste y violeta) y PTV (rojo) de un paciente
con cancer de prostata. A la derecha: Corte axial de una distribucién de dosis para
paciente con céncer de préstata. Nota: imagen proveniente del centro de radioterapia
Deéan Funes.

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Pagina 286


Alex
Cuadro de texto


ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Una vez obtenido el plan, es evaluado por el médico radioterapeuta anal-
izando la distribucién de dosis corte por corte y el Histograma Dosis Volumen
(DVH). El DVH es una herramienta muy importante ya que permite visualizar
la cantidad de dosis acumulada por volumen de cada estructura, ya sea el PTV o
los OARs, buscando que sea méxima en el PTV y minima en los OARs. A través
de ella, se puede evaluar si la distribucién de dosis cumple con los requerimientos
de protocolo para poder ser aprobada y suministrada al paciente. Se observa en
la Figura 2 un ejemplo de un DVH correspondiente a un plan real obtenido en
el centro de radioterapia Dean Funes.

Es en este proceso de planificacion donde entra nuestro trabajo ya que busca
aportar una herramienta que permita disminuir los tiempos necesarios para
obtener una distribucién de dosis estimada, que sera utilizada como insumo
para el proceso de planificacion inversa.

Dosis 631
3625 725 10875 1450 18125 2175 25375 2900 32625 3625

Figura 2. Histograma dosis volumen para paciente con cédncer de préstata. Se puede
observar la curva correspondiente al PTV en rojo, recto en amarillo, vejiga en naranja,
cabeza femoral derecha en celeste y cabeza femoral izquierda en violeta. Nota: imagen
proveniente del centro de radioterapia Dedn Funes.

4 Acerca del Conjunto de Datos

El conjunto de datos consiste en 142 casos anonimizados provistos por el Centro
de Radioterapia Dean Funes de la provincia de Cérdoba. Cada caso cuenta con
una tomografia (CT) en formato DICOM y un archivo de estructuras de los
organos, también en formato DICOM. De este segundo archivo extrajimos el
volumen tumoral planificado (PTV) y los érganos de riesgo (OAR): recto y
vejiga, v la distribucién de dosis planificada (caso real).

Luego de prepocesamiento, organizamos la informaciéon de cada paciente en
2 tensores de 4 dimensiones: [canales, ancho, alto, profundidad]. El primero es
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un tensor de 3 canales RGB, utilizados para codificar la informacién segun la
Tabla 1.

Tabla 1. Organizaciéon de los datos en los canales del tensor de entrada del mod-
elo. En el canal R se encuentran los OAR ponderador con diferentes valores para su
diferenciacién, en el canal G el PTV y en el canal B la CT.

Canal Estructura Valor

R Recto 1
Vejiga 0.75

G PTV 1

B CcT [0,1]

El segundo es un tensor monocanal que contiene la distribucién de dosis. El
preprocesamiento incluye un acondicionamiento para hacer corresponder espa-
cialmente entre si a ambos tensores. En la Figura 3 mostramos un ejemplo de
un corte axial de los tensores generadospara para un paciente en particular.

Figura 3. A la izquierda se observa un corte del tensor RGB donde se aprecia las
estructuras (PTV: verde, recto: rojo, vejiga: bordd) y la CT en sus respectivos canales.
A la derecha se observa el tensor monocanal que contiene la distribucién de dosis. Nota:
elaboracion propia.

5 Arquitectura Propuesta

Para el desarrollo de este trabajo utilizamos una arquitectura similar a la pre-
sentada en (Babier et al., 2020), que es una red Pix-to-Pix (Isola et al., 2017)
implementada mediante una ¢cGAN modificada para trabajar con tensores de
4 dimensiones. Esta arquitectura toma en cuenta todo el volumen del paciente
(Babier et al., 2020) buscando disminuir los errores entre corte y corte.

En la Figura 4 mostramos un diagrama de la arquitectura general de la
red GAN condicionada propuesta. Se dice que esté condicionada porque la red
generadora, en lugar de tomar ruido como entrada, toma la CT mas los contornos
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del érgano objetivo y de los 6rganos de riesgo. La red generadora se implementé
con una red de tipo U-net (Ronneberger et al., 2015) que es un tipo de red
similar a un encoder, pero que incorpora conexiones entre las capas analogas
del codificador y el decodificador. La utilizacién de este tipo de redes permite
que el generador utilice mejor la informacion de los contornos de la CT y de los
organos.

4—

Generadora

e Entrenamiento fase 1

Tensor 4D Dosis
(CT+PTV+0OAR) predicha

Entrenamiento fase 2

Figura 4. Arquitectura del esquema completo de entrenamiento. Nota: elaboracién
propia.

La funcién objetivo de la red GAN condicionada se puede expresar de la
siguiente forma:

(G, D) = Eq yllog D(z,y)] + Ex[log(1 — D(G(x)))] (1)

donde G trata de minimizar el objetivo contra su adversario D que intenta max-
imizarlo. Ademas, utilizamos regularizaciéon L1 siguiendo las recomendaciones
propuestas en (Ronneberger et al., 2015), por lo que el objetivo final queda
expresado como:

G*=arg ming maxp L(G,D)+ A, (G) (2)

Para el discriminador adaptamos el expuesto en (Ronneberger et al., 2015), que
es un discriminador que establece un tamano de parche de 70x70 que se computa
de forma convolucional por toda la imagen, promediando los resultados para
arrojar la valoracion final del discriminador.
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El proceso de entrenamiento se realiza de forma alternada. En primer lugar se
busca entrenar al discriminador al cual se le pasan distribuciones reales y falsas
con su respectiva etiqueta con el objetivo de que este aprenda a diferenciarlas.
Ademas, se le ingresa la CT junto a las estructuras con el objetivo de que no
solo aprenda a diferenciar distribuciones reales de falsas para que también pueda
diferenciar si una determinada distribucién corresponde o no a una determinada
anatomia. En segundo lugar se entrena el generador con el objetivo de enganar
al discriminador intentando generar distribuciones falsas que se asemejen lo mas
posible a las caracteristicas de las distribuciones reales.

De esta manera, a lo largo de las épocas el discriminador se va especializando
en reconocer distribuciones de dosis reales y falsas, y el generador en producir
distribuciones de dosis lo mas parecidas a las reales posibles. Para mas detalles
acerca de este esquema de entrenamiento pueden referirse a (Babier et al., 2020)
y (Goodfellow et al., 2020).

Una vez entramado el modelo, al momento de predecir distribuciones de
dosis para nuevos casos se utiliza inicamente la red generadora. En la Figura 5
mostramos el esquema simplificado de prediccién.

Red Generadora
entrenada

JeiEri Dosis predicha

(CT+PTV+OAR)

Figura 5. Arquitectura del esquema de prediccién. Nota: elaboracién propia.

6 Esquema de Entrenamiento

El esquema de entrenamiento utilizado es equivalente al propuesto en (Babier
et al., 2020) con el agregado de los criterios de parada temprana propuestos
en (Saad et al., 2024). Se dividi6 el conjunto de 142 casos de forma aleatoria
en un conjunto de entrenamiento de 114 casos y un conjunto de prueba de 28
casos que se reservé hasta el final del proceso. Cada uno de estos casos estd
compuesto por un tensor que contiene la imagen CT y las estructuras las cuales
van a condicionar el comportamiento de la red, y otro tensor que contiene la
distribucién de dosis que es nuestro objetivo. Ambos fueron redimensionados en
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tensores de 128x128x128 con su respectivo nimero de canales. Utilizamos para
el entrenamiento el optimizador Adam (Kingma and Ba, 2014) con una tasa de
aprendizaje de 0.0002, 1=0.5 y 2=0.999, valores por defecto del optimizador que
probaron ser adecuados.

En cada época se entrené utilizando el procedimiento propuesto para entre-
namiento de las redes GAN en (Goodfellow et al., 2020) con un esquema de
validacién cruzada de cinco partes.

En nuestra implementacion se incorporaron los criterios de parada temprana
propuestos en (Saad et al., 2024) para redes GAN en imédgenes médicas, que
atienden a tres fenémenos tipicos ademas del sobreajuste: en primer lugar el
colapso de modo, en donde una pérdida en el generador cercana a cero no permite
aportar suficiente informacién para mejorar el desempeno, en segundo lugar, la
no convergencia en donde las pérdidas en el discriminador y en el generador
oscilan a lo largo de las épocas sin mejorar el desempeno y en tercer lugar, la
inestabilidad caracterizada por una no mejora apreciable en las pérdidas a lo
largo de las épocas.

Durante la etapa de entrenamiento se ajustaron: el batch size, tomando los
valores de 1y 2 y el coeficiente lambda de regularizacién L1 tomando los valores
de 0, 45, 90 y 135, dando lugar a 6 modelos entrenados.

Estos modelos fueron entrenados utilizando una GPU Nvidia A20, perteneciente
al Centro de Cémputo de Alto Desempeno de la Universidad Nacional de Cérdoba.

7 Resultados y Discusion

7.1 Meétricas

Con el objetivo de evaluar el desempeno de los modelos para generar distribu-
ciones de dosis, utilizamos la raiz cuadrada de la media de los errores cuadraticos
RMSE pixel a pixel con respecto a las distribuciones de dosis de referencia, per-
mitiéndonos tener una métrica de cudnto se asemejan. Aplicamos esta métrica
de manera diferenciada para cada estructura y al volumen total, descartando,
en este ultimo caso, los pixeles que tengan un valor menor al 10% de la dosis
prescrita, ya que las zonas de baja intensidad no aportan informacién al analisis.
Mas alld del analisis directo de las distribuciones de dosis, comparamos los
DVH de las distribuciones generadas con los DVH de las distribuciones de ref-
erencia, utilizando el RMSE por estructura. Esto es, para cada estructura cal-
culamos el RMSE para las curvas discretizadas en 200 puntos equidistantes.
De manera complementaria, utilizamos los criterios clinicos establecidos en
(Solanki et al., 2023) para la evaluacién de las distribuciones de dosis predicha.
Los cuales evaltan si se cumple una serie de criterios dosimétricos y esto deter-
mina si un plan es aplicable de forma segura a un paciente o no. Cabe aclarar
que la evaluacién de estos criterios no es determinante a la hora de evaluar el
desempeno de los modelos, ya que el objetivo del entrenamiento es el de obtener
distribuciones de dosis lo més parecidas a las de referencia y existen casos en los
que estos criterios no son pasados en su totalidad por las mismas. Es por esto
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que en lugar de evaluar si las distribuciones generadas pasan o no los criterios,
buscamos evaluar en cuantos casos el resultado es equivalente al de referencia.
Para esto aplicamos la métrica de accuracy, que nos indica el porcentaje de los
casos generados que obtuvieron un resultado equivalente al de la referencia, con
respecto a la evaluacion realizada con estos criterios clinicos.

7.2 Resultados

Tabla 2. Se puede observar el RMSE pixel a pixel sobre las diferentes estructuras
en funcién de los hiperparametros. El valor entre paréntesis representa el valor medio
de dosis de referencia de todo el contorno evaluado. Se toma el total de los pixeles,
descartando aquellos que tengan una dosis que esté por debajo del 10% de la dosis
prescrita. Estos valores se encuentran expresados en Gy.

Contorno Tamano del Batch 0 45 90 135
PTV 1 2,237 (37,31) 0,909 (37,31) 1,132 (37,31) 0,953 (37,31
2 - 0,834 (37,31) - 0,792 (37,31
Vejiga 1 4,314 (8.985) 1,878 (8.985) 1,946 (8.985) 1,963 (8.985
2 - 1,937 (8.985) - 1,892 (8.985
Recto 1 5,019 (15.468) 2,207 (15.468) 2,281 (15.468) 2,195 (15.468)
2 - 2,278 (15.468) - 2,188 (15.468)
Total* 1 3,092 (10.185) 1,825 (10.185) 1,843 (10.185) 1,785 (10.185)
2 - 1,882 (10.185) - 1,895 (10.185)

Para evaluar el rendimiento se promedian los resultados de cada una de las 5
partes de la validacién cruzada realizada en el conjunto de entrenamiento. Estos
son los resultados que se muestran a continuacion.

En la Tabla 2 se muestran los resultados del RMSE pixel a pixel calculado
para cada combinacién de hiperparametros utilizada. Como puede observarse
la combinacién de hiperparametros que mejor desempeno presenta es la que
presenta un tamano del batch de 2 y un coeficiente de regularizacion L1 de 135.

En la Tabla 3 se muestran los resultados del RMSE entre los DVH real
y predicho calculado para cada combinacién de hiperparametros utilizada. La
ventaja comparativa vista en la Tabla 2 se replica también en el andlisis de los
DVH.

A su vez, este modelo obtuvo un accuracy del 73,68% en el cumplimiento
de los criterios clinicos, siendo este valor superior en comparacion a las demas
combinaciones de hiperparametros.

Con el mejor modelo se realizaron predicciones de dosis sobre el conjunto de
prueba obteniendo valores de RMSE pixel a pixel de 0.68(37.22) Gy para el PTV,
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Tabla 3. RMSE entre los DVHs reales y predichos sobre las diferentes estructuras en
funcién de los hiperpardmetros.Estos valores se encuentran expresados en porcentaje
de volumen.

Contorno Tamano del Batch 0 45 90 135
PTV 1 11,75829 5,914245 7,279838 6,003647
2 - 4,111846 - 4,245568
Vejiga 1 7,587796 3,647507 3,725555 3,908867
2 - 3,507803 - 3,605206
Recto 1 7,321845 3,971309 3,940235 3,902875
2 - 3,554854 - 3,665944

1.58(8.76) Gy para vejiga, 2.04(15.23) Gy para recto y 1.65(9.71) Gy tomando
todos los pixeles con una dosis por encima del 10% de la dosis prescripta.

Por otro lado, los valores de RMSE a nivel de los DVH obtenidos son: 2,98%
para PTV, 3.56% para el recto y 2.32% para vejiga. A continuacién podemos
observar dos ejemplos simplemente ilustrativos seleccionados al azar en la Figura
6.

Histograma de Dosis-Volumen Histograma de Dosis-Volumen
100

100

i
—— Dosis_PTV
Dosis_recto
— Dosis_vejiga
== Dosis_PTV (pred)
Dosis_recto (pred)
-- Dosis_vejiga (pred)
i

—— Dosis_PTV
Dosis_recto
— Dosis_vejiga
== Dosis_PTV (pred)
Dosis_recto (pred)
-- Dosis_vejiga (pred)
i

Volumen (%)
Volumen (%)

0 5 10 15 20 5 30 35 40 0 5 10 15 20 25 30 3 40
Dosis (Gy) Dosis (Gy)

Figura 6. Histogramas Dosis-Volumen de dos casos elegidos al azar. Nota: elaboracién
propia.

En cuanto a los criterios clinicos nuestro mejor modelo obtuvo un accuracy
del 75%.

En la Figura 7 se presentan las distribuciones de dosis de un corte axial
obtenidas con la planificacion real y su comparaciéon con la predicha a modo de
ejemplo.

El tiempo promedio de inferencia para estas distribuciones de dosis es de 1.45
segundos.
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Tensor RGB Daosis real Dosis predicha i

Figura 7. Corte de CT con 6rganos segmentados, con su correspondientes dosis real y
predicha. Nota: elaboracién propia.
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8 Conclusiones

En este trabajo, presentamos la aplicacion de un esquema de aprendizaje pro-
fundo para planificacién basada en conocimiento para tratamientos de SBRT de
proéstata. Propusimos la adaptaciéon de un modelo de una red GAN basada en
trabajos previos (Babier et al., 2020) e implementamos técnicas de frenado tem-
prano recientemente introducidas, que han demostrado dar buenos resultados
en este tipo de aplicaciones (Saad et al., 2024). Utilizando datos de casos reales
provistos por el Centro de Radioterapia Dedn Funes de la ciudad de Cdérdoba
(142 casos), entrenamos diferentes modelos variando los hiperpardmetros hasta
conseguir uno que dio buenos resultados en validacién. Utilizando este modelo se
realizaron predicciones en un conjunto de prueba. Las planificaciones generadas
para el conjunto de prueba presentaron en los DVH en promedio un RMSE del
2,98% sobre el volumen del PTV, 3,56% sobre el volumen del recto y 2,32%
sobre el volumen de la vejiga.

Consideramos que este trabajo demuestra la capacidad de las herramientas
de aprendizaje profundo para disminuir los tiempos de ajuste de las planifica-
ciones de dosis para este tipo de tratamientos, logrando obtener una prediccion
de dosis en 1.45 segundos, lo cual puede contribuir a mejorar la eficiencia de
este proceso. Asimismo, este desarrollo significa un avance en la utilizacién de
tecnologias como las aplicadas en (Babier et al., 2020), pero en este caso para
cancer de préstata, siendo esto un puntapié para nuevas investigaciones e imple-
mentaciones.

Debido a que estos alentadores resultados fueron obtenidos con una cantidad
acotada de muestras para el entrenamiento de los modelos, consideramos que
esto motiva a recopilar mayor cantidad de casos, con el objetivo de mejorar las
capacidades de prediccién de este tipo de modelos.
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