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Abstract. En este trabajo presentamos la aplicación de un modelo
basado en redes generativas adversariales condicionadas (cGAN) para
la planificación de tratamientos de radioterapia corporal estereotáctica
(SBRT) para cáncer de próstata. Proponemos una arquitectura inspi-
rada en enfoques previos utilizados en la planificación de dosis para otros
tipos de cáncer, adaptada espećıficamente a las caracteŕısticas y requer-
imientos cĺınicos de tratamiento del cáncer de próstata. Evaluamos el
desempeño del modelo utilizando datos de casos reales tratados en un
centro de radioterapia de Córdoba, comparando los planes de dosis gen-
erados con los planes cĺınicos aprobados por especialistas. Los resultados
obtenidos en el conjunto de prueba presentaron en los DVH en promedio
un RMSE del 2,98% sobre el volumen del PTV, 3,56% sobre el volumen
del recto y 2,32% sobre el volumen de la vejiga. Esto sugiere que el uso de
redes generativas adversariales puede ser una herramienta prometedora
para mejorar la eficiencia en la planificación de la SBRT.

Keywords: GAN, cGAN, Redes Generativas Adversariales Condicionales,
Predicción de dosis, SBRT, Cáncer De Próstata, Radioterapia.
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Edgardo Garrigó2 , and Nehuen Gonzalez-Montoro1

1 Facultad de Ciencias Exactas, F́ısicas y Naturales, Universidad Nacional de
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Abstract. In this work we present the application of a model based
on conditional generative adversarial networks (cGAN) for the planning
of stereotactic body radiotherapy (SBRT) treatments for prostate can-
cer. Inspired by previous approaches used in dose planning for other
types of cancer, we propose an architecture adapted to the characteris-
tics and clinical requirements of prostate cancer treatment. We evaluate
the model’s performance using data from real cases treated at a radio-
therapy center in Córdoba, comparing the generated dose plans with the
clinical plans approved by specialists. The results obtained on the test
set show, on average, a RMSE of 2.98% over the PTV volume, 3.56%
over the rectum volume and 2.32% over the bladder volume in the DVHs.
This suggests that the use of generative adversarial networks could be a
promising tool to improve efficiency in SBRT planning.

Keywords: GAN, cGAN, Conditional Generative Adversarial Networks,
Dose prediction, SBRT, Prostate Cancer, Radiotherapy.

1 Introducción

La planificación del tratamiento de radioterapia parte de la utilización de imágenes
médicas, como puede ser una tomograf́ıa copmputarizada (CT por sus siglas en
inglés), para obtener una distribución de dosis planificada. Por lo general, es un
proceso que requiere un gran esfuerzo y habilidades considerables por parte del
f́ısico médico, generando que su desarrollo pueda tomar varios d́ıas.

La planificación basada en conocimiento busca agilizar este proceso de planifi-
cación utilizando datos de tratamientos anteriores para generar o predecir nuevos
tratamientos. En particular, los métodos basados en aprendizaje profundo se
diferencian de los métodos tradicionales en que no requieren la utilización de
caracteŕısticas geométricas definidas a mano ya que son capaces de aprender y
detectar estas caracteŕısticas automáticamente desde los datos crudos (Momin
et al., 2020).
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En este trabajo proponemos un modelo de aprendizaje profundo con el ob-
jetivo de reducir el tiempo necesario para alcanzar una distribución de dosis
estimada en base a la tomograf́ıa computarizada (CT) y la delimitación de los
órganos, tanto objetivos como los de riesgo. Esta estimación se puede utilizar en
los procesos de optimización de planificación de dosis.

El resto del trabajo está organizado de la siguiente manera: en la sección
2 exponemos los antecedentes que sentaron las bases para el desarrollo, en la
sección 3 realizamos una descripción detallada del problema y discutimos el
alcance del trabajo, en la sección 4 revisamos las caracteŕısticas del conjunto de
datos provisto por el centro de radioterapia Dean Funes y de las adecuaciones
que se le realizaron, en la sección 5 describimos la arquitectura propuesta para
la predicción de planificación de dosis, en la sección 6 explicamos el esquema
de entrenamiento utilizado, en la sección 7 mostramos los resultados obtenidos
y, finalmente, en la sección 8 concluimos resaltando los principales aportes de
nuestro trabajo.

2 Antecedentes

En los últimos años ha habido una enorme proliferación de trabajos que buscan
aplicar técnicas de aprendizaje automático e inteligencia artificial para mejorar
o simplificar los procesos de tratamiento para diferentes tipos de cáncer. En
(Kourou et al., 2015) y (Kourou et al., 2021) se puede encontrar una revisión de
los trabajos más relevantes que aplican estas técnicas. Es posible clasificar los
trabajos en tres ramas: diagnóstico, pronóstico y tratamiento. En el primer caso,
existen muchos trabajos en los que se busca mejorar la capacidad de detección
y clasificación de cáncer en base a imágenes y antecedentes del paciente. En
(Sharma et al., 2024) y (Hu et al., 2018) pueden encontrar una revisión actu-
alizada de los principales trabajos en la aplicación de aprendizaje automático y
aprendizaje profundo al diagnóstico de cáncer. En (Kourou et al., 2015),(Kourou
et al., 2021) y (Tran et al., 2021), los autores realizaron una revisión de traba-
jos que incluyen el uso de aprendizaje profundo en el pronóstico de cáncer de
pacientes y para el tratamiento.

Nuestro trabajo se enmarca en el uso de técnicas de aprendizaje profundo
para el tratamiento del cáncer. Más espećıficamente para la predicción de dosis
para el tratamiento de cáncer con radioterapia. En (Momin et al., 2020) se de-
tallan los diferentes métodos que utilizan conocimiento previo para la predicción
de distribuciones de dosis. En (Ma et al., 2019), los autores se preguntaron ac-
erca de la factibilidad de utilizar aprendizaje automático para la predicción de
dosis. En los últimos cinco años se han publicado múltiples trabajos que aplican
este enfoque, por mencionar los que consideramos más relevantes: (J. Liu et al.,
2024),(Kim et al., 2024),(Y. Liu et al., 2024) y (Babier et al., 2020).

En nuestro trabajo decidimos utilizar redes de tipo GAN siguiendo el trabajo
realizado por diferentes autores en: (Bakx et al., 2021), (Nguyen et al., 2019),
(Gu et al., 2023), (Zhan et al., 2022), (Xie et al., 2024), (Y. Liu et al., 2024).
Más espećıficamente, utilizamos un enfoque similar al abordado en (Babier et
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4 Ortman S. and Vera Poliche M. et al.

al., 2020), en el que emplean una red GAN condicionada para la predicción de
distribución de dosis para tratamiento por radioterapia de cáncer de orofaringe.
Incorporamos también estrategias de frenado temprano del entrenamiento sigu-
iendo las propuestas en (Saad et al., 2024).

3 Descripción del Problema

La radioterapia es un tratamiento contra el cáncer que consiste en irradiar al
paciente con haces de radiación ionizante para destruir las células cancerosas.
Sin embargo, esta radiación también puede afectar y dañar los tejidos sanos. Por
este motivo, el tratamiento debe ser diseñado y planificado minuciosamente para
cada paciente en particular, ya que debe adaptarse a su anatomı́a de manera tal
que la radiación afecte únicamente al tejido tumoral. Este proceso incluye varias
etapas y requiere un tiempo considerable, que puede ir desde algunos d́ıas hasta
una semana inclusive (Targeting Cancer, 2025), (MD Anderson Cancer Center,
2021).

Para el desarrollo del plan de tratamiento en primer lugar se realiza una
simulación, donde se obtiene una tomograf́ıa computarizada (CT) de la zona
de interés del paciente, sobre la cual se demarcan los órganos de riesgo o OAR
(en nuestro caso recto y vejiga) y el volumen objetivo de planificación o PTV
(próstata), tal como se puede apreciar en la Figura 1-izquierda. Luego esta in-
formación es utilizada para generar la distribución de dosis (Figura 1-derecha)
mediante la técnica de planificación inversa, donde se fijan las dosis deseadas y
por un proceso de optimización se llega a la distribución de dosis óptima. Por lo
tanto, dado que es un proceso que depende de cada paciente, ya que depende de
la anatomı́a del mismo, y de las habilidades del profesional, es un proceso que
conlleva un tiempo considerable de varios d́ıas.

Figura 1. A la izquierda: corte axial de CT con demarcación de OAR (vejiga: naranja,
recto: amarillo, cabezas femorales: celeste y violeta) y PTV (rojo) de un paciente
con cáncer de próstata. A la derecha: Corte axial de una distribución de dosis para
paciente con cáncer de próstata. Nota: imagen proveniente del centro de radioterapia
Deán Funes.
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cGAN Application: Dose Prediction For Radiotherapy Treatments 5

Una vez obtenido el plan, es evaluado por el médico radioterapeuta anal-
izando la distribución de dosis corte por corte y el Histograma Dosis Volumen
(DVH). El DVH es una herramienta muy importante ya que permite visualizar
la cantidad de dosis acumulada por volumen de cada estructura, ya sea el PTV o
los OARs, buscando que sea máxima en el PTV y mı́nima en los OARs. A través
de ella, se puede evaluar si la distribución de dosis cumple con los requerimientos
de protocolo para poder ser aprobada y suministrada al paciente. Se observa en
la Figura 2 un ejemplo de un DVH correspondiente a un plan real obtenido en
el centro de radioterapia Deán Funes.

Es en este proceso de planificación donde entra nuestro trabajo ya que busca
aportar una herramienta que permita disminuir los tiempos necesarios para
obtener una distribución de dosis estimada, que será utilizada como insumo
para el proceso de planificación inversa.

Figura 2. Histograma dosis volumen para paciente con cáncer de próstata. Se puede
observar la curva correspondiente al PTV en rojo, recto en amarillo, vejiga en naranja,
cabeza femoral derecha en celeste y cabeza femoral izquierda en violeta. Nota: imagen
proveniente del centro de radioterapia Deán Funes.

4 Acerca del Conjunto de Datos

El conjunto de datos consiste en 142 casos anonimizados provistos por el Centro
de Radioterapia Deán Funes de la provincia de Córdoba. Cada caso cuenta con
una tomograf́ıa (CT) en formato DICOM y un archivo de estructuras de los
órganos, también en formato DICOM. De este segundo archivo extrajimos el
volumen tumoral planificado (PTV) y los órganos de riesgo (OAR): recto y
vejiga, y la distribución de dosis planificada (caso real).

Luego de prepocesamiento, organizamos la información de cada paciente en
2 tensores de 4 dimensiones: [canales, ancho, alto, profundidad]. El primero es
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6 Ortman S. and Vera Poliche M. et al.

un tensor de 3 canales RGB, utilizados para codificar la información según la
Tabla 1.

Tabla 1. Organización de los datos en los canales del tensor de entrada del mod-
elo. En el canal R se encuentran los OAR ponderador con diferentes valores para su
diferenciación, en el canal G el PTV y en el canal B la CT.

Canal Estructura Valor

R
Recto 1
Vejiga 0.75

G PTV 1
B CT [0,1]

El segundo es un tensor monocanal que contiene la distribución de dosis. El
preprocesamiento incluye un acondicionamiento para hacer corresponder espa-
cialmente entre śı a ambos tensores. En la Figura 3 mostramos un ejemplo de
un corte axial de los tensores generadospara para un paciente en particular.

Figura 3. A la izquierda se observa un corte del tensor RGB donde se aprecia las
estructuras (PTV: verde, recto: rojo, vejiga: bordó) y la CT en sus respectivos canales.
A la derecha se observa el tensor monocanal que contiene la distribución de dosis. Nota:
elaboración propia.

5 Arquitectura Propuesta

Para el desarrollo de este trabajo utilizamos una arquitectura similar a la pre-
sentada en (Babier et al., 2020), que es una red Pix-to-Pix (Isola et al., 2017)
implementada mediante una cGAN modificada para trabajar con tensores de
4 dimensiones. Esta arquitectura toma en cuenta todo el volumen del paciente
(Babier et al., 2020) buscando disminuir los errores entre corte y corte.

En la Figura 4 mostramos un diagrama de la arquitectura general de la
red GAN condicionada propuesta. Se dice que está condicionada porque la red
generadora, en lugar de tomar ruido como entrada, toma la CT más los contornos
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cGAN Application: Dose Prediction For Radiotherapy Treatments 7

del órgano objetivo y de los órganos de riesgo. La red generadora se implementó
con una red de tipo U-net (Ronneberger et al., 2015) que es un tipo de red
similar a un encoder, pero que incorpora conexiones entre las capas análogas
del codificador y el decodificador. La utilización de este tipo de redes permite
que el generador utilice mejor la información de los contornos de la CT y de los
órganos.

Figura 4. Arquitectura del esquema completo de entrenamiento. Nota: elaboración
propia.

La función objetivo de la red GAN condicionada se puede expresar de la
siguiente forma:

(G,D) = Ex,y[logD(x, y)] + Ex[log(1−D(G(x)))] (1)

donde G trata de minimizar el objetivo contra su adversario D que intenta max-
imizarlo. Además, utilizamos regularización L1 siguiendo las recomendaciones
propuestas en (Ronneberger et al., 2015), por lo que el objetivo final queda
expresado como:

G∗ = arg minG maxD L(G,D) + λLL1(G) (2)

Para el discriminador adaptamos el expuesto en (Ronneberger et al., 2015), que
es un discriminador que establece un tamaño de parche de 70x70 que se computa
de forma convolucional por toda la imagen, promediando los resultados para
arrojar la valoración final del discriminador.
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8 Ortman S. and Vera Poliche M. et al.

El proceso de entrenamiento se realiza de forma alternada. En primer lugar se
busca entrenar al discriminador al cual se le pasan distribuciones reales y falsas
con su respectiva etiqueta con el objetivo de que este aprenda a diferenciarlas.
Además, se le ingresa la CT junto a las estructuras con el objetivo de que no
solo aprenda a diferenciar distribuciones reales de falsas para que también pueda
diferenciar si una determinada distribución corresponde o no a una determinada
anatomı́a. En segundo lugar se entrena el generador con el objetivo de engañar
al discriminador intentando generar distribuciones falsas que se asemejen lo más
posible a las caracteŕısticas de las distribuciones reales.

De esta manera, a lo largo de las épocas el discriminador se va especializando
en reconocer distribuciones de dosis reales y falsas, y el generador en producir
distribuciones de dosis lo más parecidas a las reales posibles. Para más detalles
acerca de este esquema de entrenamiento pueden referirse a (Babier et al., 2020)
y (Goodfellow et al., 2020).

Una vez entramado el modelo, al momento de predecir distribuciones de
dosis para nuevos casos se utiliza únicamente la red generadora. En la Figura 5
mostramos el esquema simplificado de predicción.

Figura 5. Arquitectura del esquema de predicción. Nota: elaboración propia.

6 Esquema de Entrenamiento

El esquema de entrenamiento utilizado es equivalente al propuesto en (Babier
et al., 2020) con el agregado de los criterios de parada temprana propuestos
en (Saad et al., 2024). Se dividió el conjunto de 142 casos de forma aleatoria
en un conjunto de entrenamiento de 114 casos y un conjunto de prueba de 28
casos que se reservó hasta el final del proceso. Cada uno de estos casos está
compuesto por un tensor que contiene la imagen CT y las estructuras las cuales
van a condicionar el comportamiento de la red, y otro tensor que contiene la
distribución de dosis que es nuestro objetivo. Ambos fueron redimensionados en
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cGAN Application: Dose Prediction For Radiotherapy Treatments 9

tensores de 128x128x128 con su respectivo número de canales. Utilizamos para
el entrenamiento el optimizador Adam (Kingma and Ba, 2014) con una tasa de
aprendizaje de 0.0002, 1=0.5 y 2=0.999, valores por defecto del optimizador que
probaron ser adecuados.

En cada época se entrenó utilizando el procedimiento propuesto para entre-
namiento de las redes GAN en (Goodfellow et al., 2020) con un esquema de
validación cruzada de cinco partes.

En nuestra implementación se incorporaron los criterios de parada temprana
propuestos en (Saad et al., 2024) para redes GAN en imágenes médicas, que
atienden a tres fenómenos t́ıpicos además del sobreajuste: en primer lugar el
colapso de modo, en donde una pérdida en el generador cercana a cero no permite
aportar suficiente información para mejorar el desempeño, en segundo lugar, la
no convergencia en donde las pérdidas en el discriminador y en el generador
oscilan a lo largo de las épocas sin mejorar el desempeño y en tercer lugar, la
inestabilidad caracterizada por una no mejora apreciable en las pérdidas a lo
largo de las épocas.

Durante la etapa de entrenamiento se ajustaron: el batch size, tomando los
valores de 1 y 2 y el coeficiente lambda de regularización L1 tomando los valores
de 0, 45, 90 y 135, dando lugar a 6 modelos entrenados.

Estos modelos fueron entrenados utilizando una GPU Nvidia A20, perteneciente
al Centro de Cómputo de Alto Desempeño de la Universidad Nacional de Córdoba.

7 Resultados y Discusión

7.1 Métricas

Con el objetivo de evaluar el desempeño de los modelos para generar distribu-
ciones de dosis, utilizamos la ráız cuadrada de la media de los errores cuadráticos
RMSE pixel a pixel con respecto a las distribuciones de dosis de referencia, per-
mitiéndonos tener una métrica de cuánto se asemejan. Aplicamos esta métrica
de manera diferenciada para cada estructura y al volumen total, descartando,
en este último caso, los ṕıxeles que tengan un valor menor al 10% de la dosis
prescrita, ya que las zonas de baja intensidad no aportan información al análisis.

Más allá del análisis directo de las distribuciones de dosis, comparamos los
DVH de las distribuciones generadas con los DVH de las distribuciones de ref-
erencia, utilizando el RMSE por estructura. Esto es, para cada estructura cal-
culamos el RMSE para las curvas discretizadas en 200 puntos equidistantes.

De manera complementaria, utilizamos los criterios cĺınicos establecidos en
(Solanki et al., 2023) para la evaluación de las distribuciones de dosis predicha.
Los cuales evalúan si se cumple una serie de criterios dosimétricos y esto deter-
mina si un plan es aplicable de forma segura a un paciente o no. Cabe aclarar
que la evaluación de estos criterios no es determinante a la hora de evaluar el
desempeño de los modelos, ya que el objetivo del entrenamiento es el de obtener
distribuciones de dosis lo más parecidas a las de referencia y existen casos en los
que estos criterios no son pasados en su totalidad por las mismas. Es por esto
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10 Ortman S. and Vera Poliche M. et al.

que en lugar de evaluar si las distribuciones generadas pasan o no los criterios,
buscamos evaluar en cuántos casos el resultado es equivalente al de referencia.
Para esto aplicamos la métrica de accuracy, que nos indica el porcentaje de los
casos generados que obtuvieron un resultado equivalente al de la referencia, con
respecto a la evaluación realizada con estos criterios cĺınicos.

7.2 Resultados

Tabla 2. Se puede observar el RMSE pixel a pixel sobre las diferentes estructuras
en función de los hiperparámetros. El valor entre paréntesis representa el valor medio
de dosis de referencia de todo el contorno evaluado. Se toma el total de los ṕıxeles,
descartando aquellos que tengan una dosis que esté por debajo del 10% de la dosis
prescrita. Estos valores se encuentran expresados en Gy.

Contorno Tamaño del Batch 0 45 90 135

PTV 1 2,237 (37,31) 0,909 (37,31) 1,132 (37,31) 0,953 (37,31)
2 - 0,834 (37,31) - 0,792 (37,31)

Vejiga 1 4,314 (8.985) 1,878 (8.985) 1,946 (8.985) 1,963 (8.985)
2 - 1,937 (8.985) - 1,892 (8.985)

Recto 1 5,019 (15.468) 2,207 (15.468) 2,281 (15.468) 2,195 (15.468)
2 - 2,278 (15.468) - 2,188 (15.468)

Total* 1 3,092 (10.185) 1,825 (10.185) 1,843 (10.185) 1,785 (10.185)
2 - 1,882 (10.185) - 1,895 (10.185)

Para evaluar el rendimiento se promedian los resultados de cada una de las 5
partes de la validación cruzada realizada en el conjunto de entrenamiento. Estos
son los resultados que se muestran a continuación.

En la Tabla 2 se muestran los resultados del RMSE pixel a pixel calculado
para cada combinación de hiperparámetros utilizada. Como puede observarse
la combinación de hiperparámetros que mejor desempeño presenta es la que
presenta un tamaño del batch de 2 y un coeficiente de regularización L1 de 135.

En la Tabla 3 se muestran los resultados del RMSE entre los DVH real
y predicho calculado para cada combinación de hiperparametros utilizada. La
ventaja comparativa vista en la Tabla 2 se replica también en el análisis de los
DVH.

A su vez, este modelo obtuvo un accuracy del 73,68% en el cumplimiento
de los criterios cĺınicos, siendo este valor superior en comparación a las demás
combinaciones de hiperparametros.

Con el mejor modelo se realizaron predicciones de dosis sobre el conjunto de
prueba obteniendo valores de RMSE pixel a pixel de 0.68(37.22) Gy para el PTV,
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cGAN Application: Dose Prediction For Radiotherapy Treatments 11

Tabla 3. RMSE entre los DVHs reales y predichos sobre las diferentes estructuras en
función de los hiperparámetros.Estos valores se encuentran expresados en porcentaje
de volumen.

Contorno Tamaño del Batch 0 45 90 135

PTV 1 11,75829 5,914245 7,279838 6,003647
2 - 4,111846 - 4,245568

Vejiga 1 7,587796 3,647507 3,725555 3,908867
2 - 3,507803 - 3,605206

Recto 1 7,321845 3,971309 3,940235 3,902875
2 - 3,554854 - 3,665944

1.58(8.76) Gy para vejiga, 2.04(15.23) Gy para recto y 1.65(9.71) Gy tomando
todos los ṕıxeles con una dosis por encima del 10% de la dosis prescripta.

Por otro lado, los valores de RMSE a nivel de los DVH obtenidos son: 2,98%
para PTV, 3.56% para el recto y 2.32% para vejiga. A continuación podemos
observar dos ejemplos simplemente ilustrativos seleccionados al azar en la Figura
6.

Figura 6. Histogramas Dosis-Volumen de dos casos elegidos al azar. Nota: elaboración
propia.

En cuanto a los criterios cĺınicos nuestro mejor modelo obtuvo un accuracy
del 75%.

En la Figura 7 se presentan las distribuciones de dosis de un corte axial
obtenidas con la planificación real y su comparación con la predicha a modo de
ejemplo.

El tiempo promedio de inferencia para estas distribuciones de dosis es de 1.45
segundos.
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Figura 7. Corte de CT con órganos segmentados, con su correspondientes dosis real y
predicha. Nota: elaboración propia.

8 Conclusiones

En este trabajo, presentamos la aplicación de un esquema de aprendizaje pro-
fundo para planificación basada en conocimiento para tratamientos de SBRT de
próstata. Propusimos la adaptación de un modelo de una red GAN basada en
trabajos previos (Babier et al., 2020) e implementamos técnicas de frenado tem-
prano recientemente introducidas, que han demostrado dar buenos resultados
en este tipo de aplicaciones (Saad et al., 2024). Utilizando datos de casos reales
provistos por el Centro de Radioterapia Deán Funes de la ciudad de Córdoba
(142 casos), entrenamos diferentes modelos variando los hiperparámetros hasta
conseguir uno que dio buenos resultados en validación. Utilizando este modelo se
realizaron predicciones en un conjunto de prueba. Las planificaciones generadas
para el conjunto de prueba presentaron en los DVH en promedio un RMSE del
2,98% sobre el volumen del PTV, 3,56% sobre el volumen del recto y 2,32%
sobre el volumen de la vejiga.

Consideramos que este trabajo demuestra la capacidad de las herramientas
de aprendizaje profundo para disminuir los tiempos de ajuste de las planifica-
ciones de dosis para este tipo de tratamientos, logrando obtener una prediccion
de dosis en 1.45 segundos, lo cual puede contribuir a mejorar la eficiencia de
este proceso. Asimismo, este desarrollo significa un avance en la utilización de
tecnoloǵıas como las aplicadas en (Babier et al., 2020), pero en este caso para
cáncer de próstata, siendo esto un puntapié para nuevas investigaciones e imple-
mentaciones.

Debido a que estos alentadores resultados fueron obtenidos con una cantidad
acotada de muestras para el entrenamiento de los modelos, consideramos que
esto motiva a recopilar mayor cantidad de casos, con el objetivo de mejorar las
capacidades de predicción de este tipo de modelos.
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