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Resumen Predecir con precisién los tiempos de llegada de los autobu-
ses es fundamental para mejorar la movilidad urbana y optimizar los
servicios de transporte ptublico. Las demoras y la incertidumbre en los
horarios generan frustracién en los pasajeros y dificultan la planificacién
eficiente de los viajes. En este contexto, contar con estimaciones confia-
bles y en tiempo real sobre los tiempos de llegada puede ayudar a los
usuarios a reducir la espera y tomar decisiones informadas. Este trabajo
analiza distintos enfoques predictivos, incluyendo Regresién Lineal, ARI-
MA, redes LSTM (Long Short-Term Memory) y GRU (Gated Recurrent
Units), para estimar los tiempos de llegada a partir de datos reales de
GPS de autobuses en la ciudad de Tandil (Buenos Aires, Argentina).
Los resultados experimentales mostraron que los modelos de aprendizaje
profundo, en particular LSTM, superan significativamente a los enfoques
tradicionales, lo que resalta su potencial para optimizar los sistemas de
transporte publico. Ademas del desarrollo y evaluacién de los modelos
predictivos, se diseno e implementé una aplicacién mévil que integra es-
tas predicciones y ofrece a los usuarios informacion en tiempo real sobre
los horarios estimados de llegada y posibles demoras.

Keywords: Transporte piublico, Redes neuronales, Movilidad urbana

How Much Longer? Estimating Bus Arrival
Times with Predictive Models

Abstract. Predicting bus arrival times accurately is essential for im-
proving urban mobility and enhancing public transportation services.
Delays and uncertainty in bus schedules can lead to passenger frustra-
tion and inefficient travel planning. In this context, providing real-time,
reliable arrival time estimates can help commuters reduce waiting times
and make informed decisions. This work explores different predictive ap-
proaches, including Linear Regression, ARIMA, Long Short-Term Mem-
ory (LSTM), and gated recurrent units (GRU), to estimate bus arrival
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times based on real-world bus GPS data from the city of Tandil (Buenos
Aires, Argentina). Experimental results demonstrate that deep learning
models, particularly LSTM, can significantly outperform traditional ap-
proaches, highlighting their potential to optimize public transportation
systems. In addition to developing predictive models, we provide a mobile
application that integrates the prediction models, offering users real-time
information on bus arrival times.

Keywords: Public Transportation, Deep Learning, Urban Mobility

1 Introduccion

El transporte constituye un componente esencial en la vida cotidiana de las
personas y representa un eje central en la planificacion y el desarrollo urbano,
especialmente ante el crecimiento poblacional y el aumento sostenido del transito
vehicular (Hassannayebi et al., 2023). En este contexto, el disefio de sistemas de
transporte publico eficientes resulta clave para garantizar una movilidad urbana
equitativa y sostenible (M. Chen et al., 2004; Hassannayebi et al., 2023). Es-
ta necesidad es particularmente evidente en ciudades intermedias como Tandil
(Buenos Aires, Argentina), donde el transporte publico constituye el principal
medio de desplazamiento para una gran parte de la poblacién, al tratarse de un
servicio accesible, econémico y de uso extendido.

No obstante, uno de los principales desafios que enfrentan los usuarios de
estos sistemas es la incertidumbre respecto a los tiempos de llegada de los auto-
buses. La falta de informacion confiable genera frustracion, pérdida de tiempo y
una percepcion negativa del servicio (Chowdhury & Ceder, 2016; Hassannayebi
et al., 2023; Singh & Kumar, 2022). Esta problematica se ve agravada por la al-
ta variabilidad en los tiempos de viaje, atribuible a factores como la congestién
vehicular, la distribucién de pasajeros y las condiciones meteorolégicas. Dichas
variaciones no solo disminuyen la calidad del servicio ofrecido, sino que también
desincentivan su uso (M. Chen et al., 2004).

En este escenario, contar con modelos capaces de predecir con precisiéon los
tiempos de arribo de los autobuses a sus puntos de parada o estaciones se vuelve
fundamental para mejorar tanto la experiencia de los usuarios como la eficiencia
operativa del sistema. La provisién de informacion actualizada en tiempo real
puede mitigar los efectos negativos de las irregularidades en las frecuencias, opti-
mizar la planificacién de recorridos y facilitar la recuperacién ante interrupciones
del servicio (M. Chen et al., 2004). Sin embargo, la efectividad de estos modelos
depende en gran medida de la calidad y confiabilidad de los datos empleados.
Aspectos como la cobertura del GPS, la frecuencia de actualizacién y la presen-
cia de datos incompletos o erréneos pueden comprometer seriamente la precisién
de las predicciones. Por ello, garantizar la fiabilidad de los datos constituye un
requisito indispensable en el desarrollo de soluciones predictivas robustas.

En este trabajo se propone la evaluacion de distintos enfoques de prediccién
aplicados a la estimacion de los tiempos de llegada de autobuses en la ciudad de
Tandil, utilizando datos reales recolectados mediante dispositivos GPS instala-
dos en las unidades. El objetivo principal es el anélisis comparativo de diversos
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enfoques de modelado que permitan generar estimaciones confiables en tiempo
real, contribuyendo a una mejor planificacion de viajes, la reduccién de los tiem-
pos de espera y, en ultima instancia, a una mayor satisfaccién de los usuarios
del sistema. Como complemento, se desarrollé una aplicacién mévil® que permite
visualizar las predicciones generadas, facilitando el acceso a esta informacién por
parte de la ciudadania.

2 Trabajos relacionados

La prediccién de los tiempos de llegada en sistemas de transporte publico ha
sido ampliamente estudiada debido a su relevancia para mejorar la eficiencia, la
confiabilidad y la experiencia del usuario (Ge et al., 2024; Zhao et al., 2018). Los
enfoques abarcan desde modelos estadisticos tradicionales hasta arquitecturas
avanzadas de redes neuronales, dependiendo su eleccién de factores como la
calidad de los datos, el contexto del sistema y los recursos disponibles (Ma et al.,
2015). A continuacién, se presentan trabajos relevantes que emplean las técnicas
mas comunes para estimar tiempos de traslado y llegada.

Uno de los enfoques més tradicionales de prediccién es la regresién lineal, que
modela la relacién entre variables independientes y una variable dependiente.
Cardona et al., 2015, por ejemplo, usaron este modelo para estimar los tiempos
de llegada en Pereira (Colombia), basdandose en distancia, velocidad y condicio-
nes simuladas de trafico. Si bien obtuvo buenos resultados en tramos simples (por
ejemplo, sectores del recorrido sin paradas ni intersecciones semaforizadas), el
modelo no pudo generalizar a contextos més dindmicos, debido al incumplimien-
to de supuestos claves del modelo lineal como normalidad, homocedasticidad e
independencia de errores.

Otro enfoque clésico es el modelo ARIMA (modelos autorregresivos inte-
grados de media mévil), apropiado para series temporales univariadas (aquellas
que representan la serie de tiempo mediante una dnica variable) estacionarias.
Suwardo et al., 2010 utilizaron este modelo para predecir los tiempos de viaje
entre dos ciudades de Malasia utilizando informacién sobre estaciones/paradas,
frecuencia del servicio y velocidades de los autobuses. Aunque los resultados
fueron prometedores, la falta de comparaciéon con otros modelos limita la eva-
luacion de su efectividad. Por su parte, Rashidi y Ranjitkar, 2015 destacaron su
precision y simplicidad frente a modelos alternativos. Sin embargo, estos mode-
los usualmente suponen que los factores externos se mantienen constantes o se
integran directamente en el modelo (Kumar et al., 2025), lo que puede limitar
su aplicabilidad cuando las condiciones del trafico varian a lo largo del dia.

Ademés de los enfoques estadisticos y secuenciales, diversos modelos de cla-
sificacion han sido utilizados. Por ejemplo, Li, 2017 utiliz6 Random Forest para
predecir los tiempos de llegada en Beijing, utilizando variables como ntimero de
intersecciones, distancia, tipo de dia, precipitaciéon y visibilidad. Los resultados
superaron a modelos cldsicos y de redes neuronales, aunque con riesgo de fil-
tracién por la particion de datos. De forma similar, Liu et al., 2021 utilizaron

3 Actualmente, la ciudad de Tandil no dispone de una aplicacién oficial que brinde
estimaciones en tiempo real sobre el transporte publico.
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K-NN para predecir el flujo de trafico urbano en funcién de la latitud, longitud
y flujo en un momento dado, reportando mejores resultados que Random Fo-
rest y ARIMA, aunque sin detallar volumen ni divisién de datos. Finalmente,
Vangeneugden et al., 2024 utilizaron redes bayesianas para predecir retrasos en
trenes en Bélgica, en funcién de los tiempos de llegada y partida a las estaciones,
junto también con los retrasos de otros trenes en la misma estacién. Si bien los
autores evaluaron distintas variantes del modelo incluyendo diversas fuentes de
informacioén, no realizaron una comparacién con otros enfoques, lo que dificulta
evaluar la capacidad de generalizaciéon de los resultados.

El Modelo Oculto de Markov (HMM) permiten inferir variables no observa-
bles (por ejemplo, condiciones de tréfico o patrones de comportamiento vehicu-
lar) a partir de variables como ubicacién o tiempos de llegada previos. Z. Chen
et al., 2016 aplicaron un HMM para predecir tres condiciones de trafico urbano
(fluido, moderado, congestionado) utilizando datos histéricos de flujo vehicular y
velocidad en intersecciones. Comparado con métodos tradicionales como prome-
dios histéricos o modelos autorregresivos, el HMM mostré mejores resultados,
especialmente durante horarios pico y dias laborales. Sin embargo, su rendi-
miento disminuyé ante eventos imprevistos como accidentes, lo que sugiere que
una integraciéon con modelos hibridos o fuentes de datos en tiempo real podria
mejorar su efectividad en entornos altamente dindmicos.

Ante las limitaciones de los modelos estadisticos tradicionales y los enfoques
probabilisticos, las redes neuronales recurrentes, como LSTM (Long Short-Term
Memory) y GRU (Gated Recurrent Unit), se han destacado por capturar patro-
nes complejos en datos secuenciales de mediano a largo plazo. Ge et al., 2024
exploraron variantes del modelo LSTM para la prediccién del tiempo de llegada
de autobuses considerando la cantidad de recorridos completos realizados por
el autobiuis hasta el momento, el tiempo del tltimo recorrido, el tiempo de des-
canso entre recorridos, el tiempo entre distintos autobuses realizando el mismo
recorrido y el tiempo de inicio del recorrido. Si bien los resultados parecieron pro-
metedores, dado que todas las comparaciones realizadas solo incluyeron variantes
de LSTM, no es posible determinar la superioridad del enfoque o la generaliza-
cién de sus observaciones. Por su parte, Zhao et al., 2018 propusieron un modelo
GRU integrando datos de sensores (velocidad y volumen vehicular). Los resul-
tados mostraron una mejora significativamente en la precision en comparacién
con otros modelos de redes neuronales, tanto para situaciones de trafico normal,
como para situaciones anormales como ser lluvia o la presencia de accidentes, lo
que refuerza su aplicabilidad en escenarios reales.

En resumen, los enfoques cldsicos como la regresién lineal destacan por su
relativo bajo costo computacional y facil interpretacién, pero se ven limitados
en entornos variables y relaciones no lineales. ARIMA mejora la prediccién tem-
poral, aunque pierde efectividad ante dindmicas complejas o factores externos
variables. Los modelos de clasificaciéon y probabilisticos, como Random Forest
o HMM, ofrecen mejoras frente a métodos tradicionales, pero su efectividad
depende fuertemente de cémo se representan los datos y de la calidad de las ob-
servaciones disponibles. Finalmente, las redes neuronales recurrentes, ofrecen un
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equilibrio entre precision y adaptabilidad, siendo capaces de capturar patrones
temporales complejos en entornos cambiantes, aunque requieren mayores recur-
sos computacionales y volimenes significativos de datos para su entrenamiento.

3 Prediccién de tiempos de llegada
3.1 Datos Utilizados

La calidad y cantidad de datos son claves en sistemas de prediccion, ya que
inconsistencias, valores faltantes o registros anémalos pueden afectar la preci-
sion de los modelos y, por ende, la experiencia del usuario. En este estudio se
utilizaron cerca de cuatro millones de registros correspondientes a seis lineas de
autobuses urbanos de Tandil (500 a 505). Cada linea cuenta con un promedio de
750 mil registros, los cuales incluyen identificador del vehiculo, marca temporal,
velocidad y coordenadas geograficas (latitud y longitud)*.

Cobertura temporal. La evaluaciéon de la cobertura temporal de los datos es
clave para asegurar que el modelo se adapte a distintos momentos del dia y la
semana. Se analizé la distribucién horaria de los registros (Figura la), observan-
dose mayor concentracion durante las horas pico, en linea con la demanda del
servicio. Sin embargo, se detectaron anomalias en los extremos horarios (alrede-
dor de las 5:00 y 23:00 hs), posiblemente ligadas a variaciones operativas al inicio
o fin de los recorridos. La distribucién semanal (Figura 1b) resulta en general
equilibrada, salvo por un leve aumento de registros los miércoles, posiblemente
por una mayor cantidad de unidades en circulacién. Durante los fines de semana,
la caida en los registros refleja la reduccién habitual en las frecuencias.

Distribucién por linea de autobtis y unidad. La cantidad de registros por
linea (Figura 1c) es relativamente uniforme, destacdndose la de recorrido més
extenso y mayor demanda por su mayor volumen de datos. A nivel de unidad,
se observaron mayores variaciones, atribuibles a diferencias en la frecuencia de
circulacion. Dado que el andlisis se realiza de forma agregada por linea, estas
disparidades no afectan significativamente la representatividad de los datos.

Registros nulos y duplicados. No se detectaron valores nulos, pero si regis-
tros duplicados, definidos como aquellos con igual linea, unidad, marca temporal
y coordenadas. En promedio cerca de 40 mil por linea (alrededor del 5%) eran
duplicados. Estos podrian deberse a errores de transmisién o capturas repetidas
en intervalos breves. Al no aportar informacién adicional fueron eliminados.

Filtrado por recorrido. En el andlisis de las velocidades se identificaron va-
lores atipicos superiores a 120 km/h, incompatibles con el comportamiento de
un autobiis urbano. Al visualizar las ubicaciones asociadas, muchos de estos re-
gistros aparecian fuera del area de cobertura, en zonas rurales o autovias. Esto
evidenci6 la necesidad de un filtrado geografico para eliminar puntos fuera de

4 Los datos fueron recolectados por terceros en octubre y noviembre de 2017 desde una
aplicacion de transporte publica y oficial discontinuada en 2022. Los datos utilizados,
el cédigo de aplicacién y el cédigo para reproducir la evaluacién se encuentran dis-
ponibles publicamente en el repositorio: https://github.com/NicolasMP51 /BusNow.
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(a) Distribucién por hora  (b) Distribucién por dia  (c) Distribucién por linea
Figura 1: Graficos de la cantidad de registros para cada hora del dia, dia de la
semana y linea de autobiis respectivamente.
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Figura 2: Ubicacion de los registros de la linea 500 antes y después del filtrado

los recorridos oficiales. Esta etapa fue clave para asegurar que el conjunto de
datos refleje adecuadamente las condiciones reales del sistema de transporte. La
Figura 2 muestra el antes y después de este proceso para una de las lineas.

3.2 Modelos utilizados

A partir del andlisis de los trabajos relacionados se seleccionaron cuatro modelos
representativos: Regresion Lineal, ARIMA, LSTM y GRU. Esta eleccién respon-
de tanto a la adecuacion de estos enfoques a las caracteristicas del conjunto de
datos como a su potencial para generar estimaciones precisas en un entorno
urbano real. La diversidad metodolégica de los modelos seleccionados permite
comparar el desempefio de distintas aproximaciones bajo condiciones operativas
del sistema de transporte, atendiendo tanto a la complejidad temporal de los
datos como a los requerimientos practicos de implementacion.

Modelo de Regresién Lineal. Se exploraron dos enfoques basados en regre-
sion lineal multiple. El primero consistio en estimar el tiempo de viaje entre pares
de puntos geograficos, considerando como variables independientes la distancia,
la velocidad, la hora del dia y el dia de la semana. Para ello, se agruparon
trayectos por linea y unidad dentro de un mismo dia y en intervalos horarios
especificos. Si bien este enfoque resulté conceptualmente claro, gener6 un creci-
miento significativo en el tamano de los datos, lo que limit6 su aplicabilidad en
escenarios de entrenamiento y prueba realistas. El segundo enfoque propuso la
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prediccién de la velocidad de los autobuses como variable intermedia, modelando
la linea y la unidad como variables explicativas. Esta alternativa buscé reducir la
dimensionalidad y capitalizar la hipétesis de que la velocidad se encuentra mas
asociada al entorno geografico que al recorrido especifico. Este modelo ofrecié
una representacién mas eficiente y flexible de los datos, facilitando su integraciéon
con trayectos de distinta duracién y resolucién temporal.

Modelo ARIMA. Para aplicar ARIMA fue necesario transformar los datos de
entrada a series temporales con intervalos regulares, en este caso, de un minuto.
A partir de esta representacion, se generaron modelos individuales por linea de
autobus utilizando las posiciones geograficas registradas para estimar ubicacio-
nes futuras en una ventana de n minutos. Dado que ARIMA permite estimar
solo una variable a la vez, se ajustaron dos modelos paralelos por serie: uno para
latitud y otro para longitud. También se exploré una variante que predecia la
distancia recorrida entre puntos sucesivos; sin embargo, esta aproximacion in-
trodujo errores significativos al asumir trayectorias rectas, cuando en la practica
los recorridos incluyen curvas y desvios.

Modelo LSTM. En la implementacion inicial, se emplearon capas LSTM pa-
ra modelar las dependencias temporales en los datos de ubicacién, utilizando
secuencias histéricas de posiciones geograficas y tiempos de paso por dichas po-
siciones. En una primera instancia, el modelo se alimenté exclusivamente con
estas secuencias, sin incorporar variables contextuales, con el fin de evaluar su
capacidad para inferir coordenadas futuras a partir de la dindmica del recorrido.
Posteriormente, se amplié la entrada con variables adicionales como la hora del
dia, la velocidad, el tiempo entre registros, el dia de la semana y marcadores
de inicio o fin de recorrido. Un desafio particular surgié al generar predicciones
encadenadas: algunas variables adicionales podian derivarse de manera directa
(como el tiempo entre paradas), pero otras, como la velocidad, tenfan un im-
pacto acumulativo en la trayectoria estimada. Para abordar este problema, se
reestructuré el modelo para que también predijera la velocidad, garantizando asi
una coherencia entre la dindmica del recorrido y las estimaciones espaciales en
funcién de la zona, el dia y el horario.

Modelo GRU. Se implementé como alternativa a LSTM, buscando una ar-
quitectura mas liviana con menor cantidad de pardmetros. Se replicaron las
configuraciones empleadas previamente: se entrenaron modelos con distintos in-
tervalos de muestreo (uno, dos y cinco minutos) y se compararon dos variantes.
La primera consideraba tUnicamente las coordenadas geograficas como entrada,
mientras que la segunda incorporaba variables contextuales adicionales, como ve-
locidad, hora del dia, dia de la semana y tiempos entre registros. Esta evaluacion
permitié analizar el impacto de la reduccién de complejidad arquitecténica sobre
el desempernio predictivo, en escenarios comparables a los del modelo LSTM.

3.3 Aplicaciéon Mévil

Como complemento a los modelos de prediccién, se desarrollé una aplicacién
movil orientada a mejorar la experiencia de viaje en el transporte publico de
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Tandil. La aplicacién cuenta con un mapa interactivo que permite visualizar en
tiempo real las lineas de autobus, sus recorridos, estaciones/paradas y la ubica-
cién actual de las unidades. A partir de estos datos, se estiman los tiempos de
llegada a cada parada utilizando el modelo LSTM entrenado previamente. La
aplicaciéon incluye una funcionalidad de planificaciéon de viajes que permite al
usuario calcular rutas entre dos puntos de la ciudad. También ofrece la posibili-
dad de guardar lugares frecuentes y consultas recientes para facilitar el acceso a
la informacion. La légica de prediccién y gestion de datos se realiza en un servi-
dor central, lo que reduce la carga de procesamiento en los dispositivos méviles
y garantiza la actualizacién constante de la informacion.

La aplicacién fue desarrollada utilizando Android Studio y el lenguaje de
programaciéon Kotlin, mientras que el servidor se implement6é en Python. Para
el manejo de datos en tiempo real, se integré Firebase Realtime Database, 1o
que permite actualizar constantemente la ubicacién de los autobuses. Ademés,
se incorpord la API de Google Maps para la visualizacién e interaccién con el
mapa de manera intuitiva y eficiente.

4 Evaluacién experimental

Para la implementacién de los distintos modelos de prediccién se emplearon bi-
bliotecas tales como TensorFlow, Keras, NumPy y herramientas de scikit-learn
para las etapas de preprocesamiento y evaluacién. En el caso del modelo de
regresiéon lineal, se utilizo la clase Sequential de Keras, construyendo una arqui-
tectura compuesta por multiples capas densas con funciones de activacién ReLU,
regularizacion L2 y capas de Dropout con el objetivo de mitigar el sobreajus-
te. El modelo fue entrenado utilizando el optimizador Adam, con la funcién de
pérdida MAE y la métrica adicional MSE para el monitoreo del rendimiento.
Para los modelos ARIMA, se utilizé la biblioteca pmdarima, especificamente la
funcién auto__arima, la cual permite realizar una btsqueda automética de los
hiperpardmetros del modelo, orden (p,d,q), para cada serie temporal (latitud y
longitud), sin incorporar estacionalidad. En el caso de las arquitecturas basadas
en redes neuronales recurrentes, tanto los modelos LSTM como GRU fueron im-
plementados mediante la clase Sequential, combinando una o més capas LSTM o
GRU (segun correspondiera), seguidas por capas densas. Ambos modelos fueron
entrenados utilizando el optimizador Adam y la funcién de pérdida MSE. En lo
que respecta a hiper-parametros, se evaluaron diferentes configuraciones estruc-
turales, como la cantidad de unidades por capa y la disposicién de las capas, a
fin de analizar su impacto en el desempefio, seleccionando la combinacién con
mejor rendimiento. Finalmente, para la evaluaciéon del desempeiio de los mode-
los se emplearon métricas cominmente utilizadas en tareas de regresion: MAE,
MSE, RMSE y RS (esta tltima tnicamente aplicada en los modelos de regresion
lineal y ARIMA).

Modelo regresion lineal. A partir de los datos previamente procesados, ana-
lizados y filtrados, se calculé el tiempo de viaje entre pares de puntos geograficos
para cada combinacion de linea y unidad de autobus dentro de un mismo dia y
en franjas horarias especificas. Esta metodologia gener6 méas de 8.000 pares por
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Tabla 1: Resultados del Modelo de Regresion Lineal

(a) Prediccién posicién (b) Prediccién velocidad
Line MAE| MSE \[RMSE| Rs Line MAE| MSE \[RMSE| Rs
500 | 8.827 [125.417| 11.199 |0.101 500 | 8.827 [125.417| 11.199 |0.101
501 | 8.857 [128.901| 11.353 |0.216 501 | 8.857 [128.901| 11.353 |0.216
502 (10.311{169.371| 13.014 |0.097 502 (10.311{169.371| 13.014 |0.097
503 | 9.917 |156.084| 12.493 |0.194 503 | 9.917 |156.084| 12.493 |0.194
504 | 9.336 |141.159| 11.881 |0.084 504 | 9.336 |141.159| 11.881 |0.084
505 | 8.963 |135.187| 11.627 |0.187 505 | 8.963 |135.187| 11.627 |0.187

cuarteto (linea, unidad, dfa, horario), lo que extrapolado a todas las combinacio-
nes posibles durante el periodo de observacién resulté en millones de registros,
dificultando tanto su procesamiento como su evaluaciéon en un entorno realista.
En este contexto, se optd por trabajar con un subconjunto de aproximadamente
10.000 registros, correspondientes a una linea y unidad especificas, en el rango
horario de 11:00 a 13:00 del dfa 15/10/2017. Esta fecha fue seleccionada por ser
el primer dia con registros disponibles y por coincidir con un domingo, lo que
presumiblemente reduce la variabilidad causada por el transito y la demanda del
servicio, ofreciendo mayor regularidad en los recorridos. Los resultados obteni-
dos (Tabla 1la) mostraron un desempeiio variable del modelo segin la linea de
autobus analizada. Si bien algunas lineas presentaron valores razonables de RS,
los MAE y RMSE contintian siendo elevados en términos préacticos.

Para el segundo enfoque se consideré la estimacion de velocidades por hora-
rio y posicién. Con dicha informacién, los tiempos de viaje podrian calcularse
posteriormente utilizando la distancia recorrida en cada segmento y la velocidad
estimada para ese tramo. Para este modelo, se incluyé la linea y la unidad como
variables explicativas, bajo la hipétesis de que la velocidad se encuentra més
relacionada con la zona geografica que del recorrido especifico. Para su entre-
namiento se utilizaron, aproximadamente 2,2 millones de registros, reservando
cerca de un millén para evaluacion, aplicando una divisién aleatoria 70/30. Sin
embargo, los resultados obtenidos con esta segunda estrategia (Tabla 1b) fueron
incluso inferiores a los del modelo original de prediccién de tiempos de viaje.
Estos resultados evidencian su falta de capacidad para capturar patrones no
lineales y variaciones temporales frecuentes, propias de la tarea.

Modelo ARIMA. Dado que este modelo esta disefiado para estimar una tnica
variable a lo largo del tiempo, fue necesario definir dos modelos, uno para latitud
y otro para longitud. Sin embargo, tras evaluar distintos modelos para cada linea
de autobis, se observé que las predicciones de los siguientes 10 pasos/minutos
resultaban altamente imprecisas, ubicando incluso los puntos predichos fuera del
recorrido real de la linea (ejemplificado en la Figura 3 para la linea 505). Este
comportamiento no fue exclusivo de un momento especifico, sino que se repitié
sistemdticamente para cualquier combinacién de dia/hora evaluada.

Asimismo, se observo que cuando las variaciones entre coordenadas consecu-
tivas eran pequenas, el modelo tenia dificultades para identificar patrones signi-
ficativos. ARIMA es maés efectivo cuando existe una tendencia clara en los datos,
y si las diferencias espaciales entre puntos no se ajustan bien a un modelo basa-
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L

Figura 3: Predicciones del Modelo ARIMA para posiciones (linea 505)

do en diferencias, es probable que amplifique pequenas fluctuaciones en lugar de
capturar una estructura relevante. Por otra parte, ARIMA es un modelo lineal,
lo que limita su capacidad para representar trayectorias no lineales. En recorri-
dos con curvas, giros o trayectorias zigzagueantes, las coordenadas espaciales no
siguen un patrén lineal predecible, y el modelo intenta ajustarse incorrectamente
a una estructura inexistente. Otro inconveniente relevante fue el modelado sepa-
rado de la latitud y la longitud, lo que ignora su relaciéon geografica intrinseca.
Como resultado, puede ocurrir que una coordenada predicha sea razonable, pero
su combinacién con la otra no represente una ubicacién coherente.

Frente a estos problemas, se exploraron alternativas sin lograr mejoras. Una
de las variantes consistié en predecir la distancia entre puntos consecutivos en
lugar de las coordenadas geogréaficas. Sin embargo, este enfoque asumia trayec-
torias rectilineas entre puntos, cuando en realidad los recorridos podian incluir
curvas o desvios que afectaban considerablemente la precisién. Se observé que, si
bien los primeros pasos de la prediccién presentaban errores moderados, estos se
acumulaban rapidamente con el tiempo, volviendo el modelo ineficaz para esti-
maciones a largo plazo. La Tabla 2 ilustra las predicciones de distancia recorrida
frente al valor real, asi como los errores acumulados después de 20 minutos, para
la linea 505. Aunque los errores iniciales eran relativamente bajos, luego de 20
minutos la desviacién superaba el kilémetro en todos los modelos evaluados (y
en algunos casos los 2 kilémetros), indicando una pérdida sustancial de precision.

En conclusién, aunque ARIMA puede ofrecer buenos resultados en condi-
ciones ideales con datos lineales y bien estructurados, las particularidades de
los datos espaciales utilizados en este trabajo no se ajustaban a sus supuestos
matematicos. Dado que el modelo mostrd limitaciones incluso en contextos re-
ducidos y controlados, resultaba improbable que pudiera escalar efectivamente
a conjuntos de mayor tamano o complejidad.

Modelos LSTM y GRU. Los modelos LSTM y GRU fueron entrenados y
evaluados utilizando tres conjuntos de datos diferenciados por el intervalo tem-
poral entre mediciones: 1, 2 y 5 minutos. Esta segmentacién permitié analizar
cémo influye la frecuencia de muestreo en el rendimiento predictivo y el costo
computacional. Para cada conjunto, se implementaron dos variantes: una sim-
ple, que solo incluye las coordenadas (latitud y longitud), y otra compleja, que

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Pagina 320


Alex
Cuadro de texto


ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Tabla 2: Predicciones del Modelo ARIMA para distancias (en metros).

Minuto |Prediccién|Valor Real| Error |Acumulado| |Minuto|Prediccién|Valor Real| Error |Acumulado
1 239.983 | 427.471 |-187.488| 187.488 11 262.594 | 385.123 |-122.529| 1149.229
2 234.134 0.800 |233.334| -46.646 12 263.801 | 266.459 | -2.658 | 1151.887
3 245.659 | 694.863 |-449.205| 402.559 13 264.856 | 312.007 |-47.152 | 1199.039
4 247.966 | 349.194 |-101.228| 503.788 14 265.766 | 463.111 |-197.345| 1396.383
5 251.373 | 337.537 |-86.164 | 589.952 15 266.566 0.800 |265.766 | 1129.817
6 253.076 187.831 | 65.246 | 524.706 16 267.267 | 1162.909 |-895.642| 2025.459
7 255.883 | 275.581 |-19.779 | 544.485 17 267.889 156.270 |111.619| 1913.849
8 257.899 | 351.932 |-94.033 | 648.518 18 268.416 | 601.697 |-333.280| 2247.129
9 259.732 | 411.947 |-152.215| 790.732 19 268.885 | 386.873 |-117.989| 2365.113
10 261.219 | 497.186 |-235.967| 1026.699 20 269.294 | 200.846 | 68.449 | 2296.664

Tabla 3: Comparaciéon de Tiempo de Entrenamiento para los Distintos Modelos

Linea Modelo Tiempo (seg)| |Linea Modelo Tiempo (seg)

GRU simple 531.992 GRU simple 509.841

500 LSTM simple 505.397 503 LSTM simple 427.147
GRU complejo 862.302 GRU complejo 843.859
LSTM complejo 784.059 LSTM complejo 858.832
GRU simple 414.565 GRU simple 420.465

501 LSTM simple 384.451 504 LSTM simple 399.969
GRU complejo 782.329 GRU complejo 762.256
LSTM complejo 782.348 LSTM complejo 709.761
GRU simple 476.864 GRU simple 456.136

502 LSTM simple 453.014 505 LSTM simple 401.285
GRU complejo 900.428 GRU complejo 815.527
LSTM complejo 772.071 LSTM complejo 765.212

incorpora variables adicionales como velocidad, hora del dia y dia de la semana,
y ademas predice la velocidad como salida secundaria.

Los resultados obtenidos® muestran que ambos modelos, especialmente LSTM,
son capaces de capturar patrones temporales complejos cuando los datos tienen
una alta resoluciéon temporal. Los mejores desempenos se obtuvieron con in-
tervalos de 1 minuto, donde los errores de prediccién fueron significativamente
menores. Sin embargo, este beneficio presenta como desventaja un mayor tiem-
po de entrenamiento, producto del mayor volumen de datos. A medida que se
incrementdé el intervalo (2 y 5 minutos), la precisién de los modelos disminuyé
de manera considerable, lo cual se atribuye a la pérdida de informacién sobre
variaciones temporales sutiles entre puntos consecutivos. GRU mostré un com-
portamiento muy similar al de LSTM respecto a la sensibilidad a la frecuencia
de muestreo. En intervalos de 1 minuto, los errores fueron comparables a los
de LSTM, mientras que con intervalos mas amplios el rendimiento decayd. Es-
to refuerza la importancia de contar con datos de alta frecuencia para lograr
predicciones precisas en trayectorias de vehiculos.

La Tabla 3 muestra los tiempos de entrenamiento para cada modelo y linea
de autobts. En general, los modelos complejos requirieron mas tiempo de en-
trenamiento que los modelos simples, debido a un mayor niimero de parametros
y mayor complejidad del problema. Contrario a lo que se esperaria por la ar-
quitectura mas liviana de los GRU, los modelos LSTM resultaron, en promedio,

5 Las tablas correspondientes a los intervalos 2 y 5 pueden encontrarse en el repositorio.
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Tabla 4: Comparacién de métricas para los distintos modelos

Linea Modelo MAE | MSE Linea Modelo MAE | MSE

GRU simple |9.150e-4|2.565e-6 GRU simple |1.174e-3|5.640e-6

500 LSTM simple |8.370e-4|2.374e-6 503 LSTM simple [1.099e-3|5.519e-6
GRU complejo |8.700e-4|2.440e-6 GRU complejo |1.135e-3|5.599e-6
LSTM complejo|8.390e-4|2.350e-6 LSTM complejo|1.149e-3|5.622e-6
GRU simple |9.810e-4|3.105e-6 GRU simple |9.370e-4|3.054e-6

501 LSTM simple [9.570e-4|3.057e-6 504 LSTM simple [9.630e-4|3.093e-6
GRU complejo |9.640e-4|3.091e-6 GRU complejo |8.970e-4|3.016e-6
LSTM complejo|9.350e-4|3.076e-6 LSTM complejo|9.150e-4|2.905e-6
GRU simple |8.770e-4|2.086e-6 GRU simple |3.137e-3|2.907e-5

502 LSTM simple [9.000e-4|2.089e-6 505 LSTM simple |3.119e-3|2.817e-5
GRU complejo |8.920e-4|2.078e-6 GRU complejo |3.151e-3]2.913e-5
LSTM complejo|8.660e-4|1.983e-6 LSTM complejo|3.079e-3|2.772e-5

ligeramente mas rapidos que los GRU equivalentes. Esto sugiere que, mas alla
del ntimero de parametros, otros factores como el tamano de las capas, el opti-
mizador utilizado o la naturaleza de los datos pueden influir significativamente
en el entrenamiento.

En lo que respecta a la predicciéon de un solo paso (1 minuto, Tabla 4), en
general, tanto los modelos LSTM como los GRU mostraron un desempefio com-
parable en la mayoria de las lineas, aunque los LSTM complejos obtuvieron los
mejores resultados. Su mayor capacidad para capturar dependencias a largo pla-
zo podria explicar esta ventaja. Para las lineas 500, 501, 502 y 504, las diferencias
entre modelos fueron minimas, indicando que cualquiera de las variantes podria
ser utilizada con buenos resultados. En cambio, en la linea 503 se registraron
errores mas altos en todos los modelos, con el LSTM simple mostrando el mejor
desempertio relativo. La linea 505 present6 los mayores errores en general, siendo
también en este caso el LSTM complejo el modelo con menor MSE.

Para evaluar la viabilidad practica de estos modelos, se realizaron 20 pre-
dicciones consecutivas por linea (Tabla 5). En lo que respecta al tiempo de
inferencia, se observaron diferencias minimas entre los modelos, rondando apro-
ximadamente un segundo por secuencia. El modelo LSTM complejo destacd por
su baja media y mediana de error en varias lineas, y por presentar desviacio-
nes estandar menores, lo que refleja mayor estabilidad en las predicciones. Por
ejemplo, en la Linea 500 alcanzé una media de 345.77 (£ 448.92) metros. En
contraposicién, los modelos simples (tanto LSTM como GRU) presentaron erro-
res mayores y mas dispersos; en la Linea 502, por ejemplo, el GRU simple mostrd
una media de 498.13 (+ 593.42). E1 GRU complejo, si bien no fue consistente-
mente el mejor, tuvo un rendimiento competitivo en algunas lineas. En la Linea
501, por ejemplo, super6 al LSTM complejo en consistencia, con una desviacion
estandar mas baja, aunque con una media levemente superior.

En conclusion, tanto LSTM como GRU funcionaron adecuadamente en con-
textos de alta resolucién temporal, pero el modelo LSTM complejo se posiciond
como la opcién més adecuada para predicciones encadenadas, al lograr un equi-
librio superior entre precisién, estabilidad y eficiencia.
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Tabla 5: MAE para predicciones encadenadas

Linea Modelo Media ($ Desv. Est.)|Mediana| |Linea Modelo Media (§ Desv. Est.)|Mediana

GRU simple 625.58 ($ 687.81) 381.28 GRU simple 392.03 ($ 451.56) 261.15

500 LSTM simple 694.31 ($ 838.91) 407.90 503 LSTM simple 479.26 ($ 525.22) 305.09
GRU complejo 406.63 ($ 326.77) 315.78 GRU complejo 572.00 ($ 544.15) 406.04
LSTM complejo 675.27 ($ 689.73) 448.24 LSTM complejo 364.95 ($ 443.61) 233.40
GRU simple 498.13 ($ 593.42) 295.53 GRU simple 1367.26 ($ 1220.77) 960.18

501 LSTM simple 385.53 ($ 451.00) 244.22 504 LSTM simple 1269.43 ($ 1213.76) 846.62
GRU complejo 365.51 ($ 416.01) 235.34 GRU complejo | 1265.83 ($ 1189.85) 867.97
LSTM complejo 395.56 ($ 405.79) 270.82 LSTM complejo| 1268.29 (§ 1213.93) 854.31
GRU simple 888.63 ($ 986.16) 595.59 GRU simple 394.85 ($ 481.99) 252.95

502 LSTM simple 669.15 ($ 945.34) 382.69 505 LSTM simple 663.18 ($ 820.04) 371.01
GRU complejo 597.12 ($ 845.23) 350.10 GRU complejo 438.58 (§ 525.82) 278.29
LSTM complejo 570.94 ($ 816.12) 335.97 LSTM complejo 345.77 ($ 448.92) 222.74

5 Conclusiones

Este trabajo abordé la estimaciéon de los tiempos de llegada de autobuses en la
ciudad de Tandil (Buenos Aires, Argentina) con el objetivo de mejorar la expe-
riencia de los usuarios del transporte ptublico. Se exploraron diversos enfoques
metodologicos para la predicciéon de tiempos de llegada, comparando técnicas
clasicas y modelos basados en redes neuronales. Para ello, se implementaron
y evaluaron modelos predictivos como regresion lineal, ARIMA, LSTM y GRU,
permitiendo identificar sus fortalezas y limitaciones en el contexto local. Ademas,
se desarrollé una aplicacion moévil que visualiza en tiempo real tanto la ubicacién
de los autobuses como las predicciones generadas, potencialmente facilitando el
acceso a esta informacién por parte de la ciudadania.

El trabajo, no obstante, presenta ciertas limitaciones. La disponibilidad y
calidad de los datos afectaron la precision de los modelos, particularmente en
situaciones atipicas como desvios de los recorridos predefinidos o eventos no
recurrentes, los cuales requirieron un proceso exhaustivo de limpieza y prepro-
cesamiento. Por otro lado, si bien se consideraron modelos avanzados, su imple-
mentaciéon practica puede estar condicionada por los recursos computacionales
disponibles. También quedo6 fuera del alcance del trabajo una validaciéon de la
aplicacién mévil complementaria y de la calidad percibida de los modelos de
prediccién con usuarios o actores institucionales.

Mas alla de su dimensioén técnica, el trabajo tiene un potencial impacto so-
cial significativo. Un sistema de transporte mas predecible y eficiente podria
contribuir a mejorar la calidad de vida de los habitantes, reducir los tiempos de
espera y aumentar la confianza en el uso del transporte ptblico. Para los actores
institucionales, el trabajo tiene el potencial de colaborar en el disefio y la optimi-
zaciéon de la gestion del transporte, contribuyendo a decisiones sobre la cantidad
de unidades en circulaciéon en momentos especificos, la definiciéon de recorridos o
incluso la ubicacion de paradas. A largo plazo, estas mejoras podrian promover
una movilidad urbana mas sostenible e inclusiva, especialmente en los sectores
de la poblacién mas dependientes del transporte piuiblico.

En el futuro, el sistema podria mejorar con la incorporacién de nuevas fuentes
de informacién y el ajuste en tiempo real de los modelos a condiciones cambian-
tes, como congestiones, accidentes o el estado meteorolégico. Ademas, el desarro-
llo de herramientas de monitoreo y visualizaciéon para los operadores contribuiria
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a consolidar una plataforma integral de apoyo a la gestion del transporte publico
en ciudades intermedias como Tandil.
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