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Resumen Predecir con precisión los tiempos de llegada de los autobu-
ses es fundamental para mejorar la movilidad urbana y optimizar los
servicios de transporte público. Las demoras y la incertidumbre en los
horarios generan frustración en los pasajeros y dificultan la planificación
eficiente de los viajes. En este contexto, contar con estimaciones confia-
bles y en tiempo real sobre los tiempos de llegada puede ayudar a los
usuarios a reducir la espera y tomar decisiones informadas. Este trabajo
analiza distintos enfoques predictivos, incluyendo Regresión Lineal, ARI-
MA, redes LSTM (Long Short-Term Memory) y GRU (Gated Recurrent
Units), para estimar los tiempos de llegada a partir de datos reales de
GPS de autobuses en la ciudad de Tandil (Buenos Aires, Argentina).
Los resultados experimentales mostraron que los modelos de aprendizaje
profundo, en particular LSTM, superan significativamente a los enfoques
tradicionales, lo que resalta su potencial para optimizar los sistemas de
transporte público. Además del desarrollo y evaluación de los modelos
predictivos, se diseño e implementó una aplicación móvil que integra es-
tas predicciones y ofrece a los usuarios información en tiempo real sobre
los horarios estimados de llegada y posibles demoras.

Keywords: Transporte público, Redes neuronales, Movilidad urbana

How Much Longer? Estimating Bus Arrival
Times with Predictive Models

Abstract. Predicting bus arrival times accurately is essential for im-
proving urban mobility and enhancing public transportation services.
Delays and uncertainty in bus schedules can lead to passenger frustra-
tion and inefficient travel planning. In this context, providing real-time,
reliable arrival time estimates can help commuters reduce waiting times
and make informed decisions. This work explores different predictive ap-
proaches, including Linear Regression, ARIMA, Long Short-Term Mem-
ory (LSTM), and gated recurrent units (GRU), to estimate bus arrival
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times based on real-world bus GPS data from the city of Tandil (Buenos
Aires, Argentina). Experimental results demonstrate that deep learning
models, particularly LSTM, can significantly outperform traditional ap-
proaches, highlighting their potential to optimize public transportation
systems. In addition to developing predictive models, we provide a mobile
application that integrates the prediction models, offering users real-time
information on bus arrival times.

Keywords: Public Transportation, Deep Learning, Urban Mobility

1 Introducción
El transporte constituye un componente esencial en la vida cotidiana de las
personas y representa un eje central en la planificación y el desarrollo urbano,
especialmente ante el crecimiento poblacional y el aumento sostenido del tránsito
vehicular (Hassannayebi et al., 2023). En este contexto, el diseño de sistemas de
transporte público eficientes resulta clave para garantizar una movilidad urbana
equitativa y sostenible (M. Chen et al., 2004; Hassannayebi et al., 2023). Es-
ta necesidad es particularmente evidente en ciudades intermedias como Tandil
(Buenos Aires, Argentina), donde el transporte público constituye el principal
medio de desplazamiento para una gran parte de la población, al tratarse de un
servicio accesible, económico y de uso extendido.

No obstante, uno de los principales desafíos que enfrentan los usuarios de
estos sistemas es la incertidumbre respecto a los tiempos de llegada de los auto-
buses. La falta de información confiable genera frustración, pérdida de tiempo y
una percepción negativa del servicio (Chowdhury & Ceder, 2016; Hassannayebi
et al., 2023; Singh & Kumar, 2022). Esta problemática se ve agravada por la al-
ta variabilidad en los tiempos de viaje, atribuible a factores como la congestión
vehicular, la distribución de pasajeros y las condiciones meteorológicas. Dichas
variaciones no solo disminuyen la calidad del servicio ofrecido, sino que también
desincentivan su uso (M. Chen et al., 2004).

En este escenario, contar con modelos capaces de predecir con precisión los
tiempos de arribo de los autobuses a sus puntos de parada o estaciones se vuelve
fundamental para mejorar tanto la experiencia de los usuarios como la eficiencia
operativa del sistema. La provisión de información actualizada en tiempo real
puede mitigar los efectos negativos de las irregularidades en las frecuencias, opti-
mizar la planificación de recorridos y facilitar la recuperación ante interrupciones
del servicio (M. Chen et al., 2004). Sin embargo, la efectividad de estos modelos
depende en gran medida de la calidad y confiabilidad de los datos empleados.
Aspectos como la cobertura del GPS, la frecuencia de actualización y la presen-
cia de datos incompletos o erróneos pueden comprometer seriamente la precisión
de las predicciones. Por ello, garantizar la fiabilidad de los datos constituye un
requisito indispensable en el desarrollo de soluciones predictivas robustas.

En este trabajo se propone la evaluación de distintos enfoques de predicción
aplicados a la estimación de los tiempos de llegada de autobuses en la ciudad de
Tandil, utilizando datos reales recolectados mediante dispositivos GPS instala-
dos en las unidades. El objetivo principal es el análisis comparativo de diversos
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enfoques de modelado que permitan generar estimaciones confiables en tiempo
real, contribuyendo a una mejor planificación de viajes, la reducción de los tiem-
pos de espera y, en última instancia, a una mayor satisfacción de los usuarios
del sistema. Como complemento, se desarrolló una aplicación móvil3 que permite
visualizar las predicciones generadas, facilitando el acceso a esta información por
parte de la ciudadanía.

2 Trabajos relacionados
La predicción de los tiempos de llegada en sistemas de transporte público ha
sido ampliamente estudiada debido a su relevancia para mejorar la eficiencia, la
confiabilidad y la experiencia del usuario (Ge et al., 2024; Zhao et al., 2018). Los
enfoques abarcan desde modelos estadísticos tradicionales hasta arquitecturas
avanzadas de redes neuronales, dependiendo su elección de factores como la
calidad de los datos, el contexto del sistema y los recursos disponibles (Ma et al.,
2015). A continuación, se presentan trabajos relevantes que emplean las técnicas
más comunes para estimar tiempos de traslado y llegada.

Uno de los enfoques más tradicionales de predicción es la regresión lineal, que
modela la relación entre variables independientes y una variable dependiente.
Cardona et al., 2015, por ejemplo, usaron este modelo para estimar los tiempos
de llegada en Pereira (Colombia), basándose en distancia, velocidad y condicio-
nes simuladas de tráfico. Si bien obtuvo buenos resultados en tramos simples (por
ejemplo, sectores del recorrido sin paradas ni intersecciones semaforizadas), el
modelo no pudo generalizar a contextos más dinámicos, debido al incumplimien-
to de supuestos claves del modelo lineal como normalidad, homocedasticidad e
independencia de errores.

Otro enfoque clásico es el modelo ARIMA (modelos autorregresivos inte-
grados de media móvil), apropiado para series temporales univariadas (aquellas
que representan la serie de tiempo mediante una única variable) estacionarias.
Suwardo et al., 2010 utilizaron este modelo para predecir los tiempos de viaje
entre dos ciudades de Malasia utilizando información sobre estaciones/paradas,
frecuencia del servicio y velocidades de los autobuses. Aunque los resultados
fueron prometedores, la falta de comparación con otros modelos limita la eva-
luación de su efectividad. Por su parte, Rashidi y Ranjitkar, 2015 destacaron su
precisión y simplicidad frente a modelos alternativos. Sin embargo, estos mode-
los usualmente suponen que los factores externos se mantienen constantes o se
integran directamente en el modelo (Kumar et al., 2025), lo que puede limitar
su aplicabilidad cuando las condiciones del tráfico varían a lo largo del día.

Además de los enfoques estadísticos y secuenciales, diversos modelos de cla-
sificación han sido utilizados. Por ejemplo, Li, 2017 utilizó Random Forest para
predecir los tiempos de llegada en Beijing, utilizando variables como número de
intersecciones, distancia, tipo de día, precipitación y visibilidad. Los resultados
superaron a modelos clásicos y de redes neuronales, aunque con riesgo de fil-
tración por la partición de datos. De forma similar, Liu et al., 2021 utilizaron
3 Actualmente, la ciudad de Tandil no dispone de una aplicación oficial que brinde

estimaciones en tiempo real sobre el transporte público.
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K-NN para predecir el flujo de tráfico urbano en función de la latitud, longitud
y flujo en un momento dado, reportando mejores resultados que Random Fo-
rest y ARIMA, aunque sin detallar volumen ni división de datos. Finalmente,
Vangeneugden et al., 2024 utilizaron redes bayesianas para predecir retrasos en
trenes en Bélgica, en función de los tiempos de llegada y partida a las estaciones,
junto también con los retrasos de otros trenes en la misma estación. Si bien los
autores evaluaron distintas variantes del modelo incluyendo diversas fuentes de
información, no realizaron una comparación con otros enfoques, lo que dificulta
evaluar la capacidad de generalización de los resultados.

El Modelo Oculto de Markov (HMM) permiten inferir variables no observa-
bles (por ejemplo, condiciones de tráfico o patrones de comportamiento vehicu-
lar) a partir de variables como ubicación o tiempos de llegada previos. Z. Chen
et al., 2016 aplicaron un HMM para predecir tres condiciones de tráfico urbano
(fluido, moderado, congestionado) utilizando datos históricos de flujo vehicular y
velocidad en intersecciones. Comparado con métodos tradicionales como prome-
dios históricos o modelos autorregresivos, el HMM mostró mejores resultados,
especialmente durante horarios pico y días laborales. Sin embargo, su rendi-
miento disminuyó ante eventos imprevistos como accidentes, lo que sugiere que
una integración con modelos híbridos o fuentes de datos en tiempo real podría
mejorar su efectividad en entornos altamente dinámicos.

Ante las limitaciones de los modelos estadísticos tradicionales y los enfoques
probabilísticos, las redes neuronales recurrentes, como LSTM (Long Short-Term
Memory) y GRU (Gated Recurrent Unit), se han destacado por capturar patro-
nes complejos en datos secuenciales de mediano a largo plazo. Ge et al., 2024
exploraron variantes del modelo LSTM para la predicción del tiempo de llegada
de autobuses considerando la cantidad de recorridos completos realizados por
el autobús hasta el momento, el tiempo del último recorrido, el tiempo de des-
canso entre recorridos, el tiempo entre distintos autobuses realizando el mismo
recorrido y el tiempo de inicio del recorrido. Si bien los resultados parecieron pro-
metedores, dado que todas las comparaciones realizadas solo incluyeron variantes
de LSTM, no es posible determinar la superioridad del enfoque o la generaliza-
ción de sus observaciones. Por su parte, Zhao et al., 2018 propusieron un modelo
GRU integrando datos de sensores (velocidad y volumen vehicular). Los resul-
tados mostraron una mejora significativamente en la precisión en comparación
con otros modelos de redes neuronales, tanto para situaciones de tráfico normal,
como para situaciones anormales como ser lluvia o la presencia de accidentes, lo
que refuerza su aplicabilidad en escenarios reales.

En resumen, los enfoques clásicos como la regresión lineal destacan por su
relativo bajo costo computacional y fácil interpretación, pero se ven limitados
en entornos variables y relaciones no lineales. ARIMA mejora la predicción tem-
poral, aunque pierde efectividad ante dinámicas complejas o factores externos
variables. Los modelos de clasificación y probabilísticos, como Random Forest
o HMM, ofrecen mejoras frente a métodos tradicionales, pero su efectividad
depende fuertemente de cómo se representan los datos y de la calidad de las ob-
servaciones disponibles. Finalmente, las redes neuronales recurrentes, ofrecen un
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equilibrio entre precisión y adaptabilidad, siendo capaces de capturar patrones
temporales complejos en entornos cambiantes, aunque requieren mayores recur-
sos computacionales y volúmenes significativos de datos para su entrenamiento.

3 Predicción de tiempos de llegada
3.1 Datos Utilizados
La calidad y cantidad de datos son claves en sistemas de predicción, ya que
inconsistencias, valores faltantes o registros anómalos pueden afectar la preci-
sión de los modelos y, por ende, la experiencia del usuario. En este estudio se
utilizaron cerca de cuatro millones de registros correspondientes a seis líneas de
autobuses urbanos de Tandil (500 a 505). Cada línea cuenta con un promedio de
750 mil registros, los cuales incluyen identificador del vehículo, marca temporal,
velocidad y coordenadas geográficas (latitud y longitud)4.

Cobertura temporal. La evaluación de la cobertura temporal de los datos es
clave para asegurar que el modelo se adapte a distintos momentos del día y la
semana. Se analizó la distribución horaria de los registros (Figura 1a), observán-
dose mayor concentración durante las horas pico, en línea con la demanda del
servicio. Sin embargo, se detectaron anomalías en los extremos horarios (alrede-
dor de las 5:00 y 23:00 hs), posiblemente ligadas a variaciones operativas al inicio
o fin de los recorridos. La distribución semanal (Figura 1b) resulta en general
equilibrada, salvo por un leve aumento de registros los miércoles, posiblemente
por una mayor cantidad de unidades en circulación. Durante los fines de semana,
la caída en los registros refleja la reducción habitual en las frecuencias.

Distribución por línea de autobús y unidad. La cantidad de registros por
línea (Figura 1c) es relativamente uniforme, destacándose la de recorrido más
extenso y mayor demanda por su mayor volumen de datos. A nivel de unidad,
se observaron mayores variaciones, atribuibles a diferencias en la frecuencia de
circulación. Dado que el análisis se realiza de forma agregada por línea, estas
disparidades no afectan significativamente la representatividad de los datos.

Registros nulos y duplicados. No se detectaron valores nulos, pero sí regis-
tros duplicados, definidos como aquellos con igual línea, unidad, marca temporal
y coordenadas. En promedio cerca de 40 mil por línea (alrededor del 5 %) eran
duplicados. Estos podrían deberse a errores de transmisión o capturas repetidas
en intervalos breves. Al no aportar información adicional fueron eliminados.

Filtrado por recorrido. En el análisis de las velocidades se identificaron va-
lores atípicos superiores a 120 km/h, incompatibles con el comportamiento de
un autobús urbano. Al visualizar las ubicaciones asociadas, muchos de estos re-
gistros aparecían fuera del área de cobertura, en zonas rurales o autovías. Esto
evidenció la necesidad de un filtrado geográfico para eliminar puntos fuera de
4 Los datos fueron recolectados por terceros en octubre y noviembre de 2017 desde una

aplicación de transporte pública y oficial discontinuada en 2022. Los datos utilizados,
el código de aplicación y el código para reproducir la evaluación se encuentran dis-
ponibles públicamente en el repositorio: https://github.com/NicolasMP51/BusNow.
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(a) Distribución por hora (b) Distribución por día (c) Distribución por línea
Figura 1: Gráficos de la cantidad de registros para cada hora del día, día de la
semana y línea de autobús respectivamente.

Figura 2: Ubicación de los registros de la línea 500 antes y después del filtrado

los recorridos oficiales. Esta etapa fue clave para asegurar que el conjunto de
datos refleje adecuadamente las condiciones reales del sistema de transporte. La
Figura 2 muestra el antes y después de este proceso para una de las líneas.

3.2 Modelos utilizados
A partir del análisis de los trabajos relacionados se seleccionaron cuatro modelos
representativos: Regresión Lineal, ARIMA, LSTM y GRU. Esta elección respon-
de tanto a la adecuación de estos enfoques a las características del conjunto de
datos como a su potencial para generar estimaciones precisas en un entorno
urbano real. La diversidad metodológica de los modelos seleccionados permite
comparar el desempeño de distintas aproximaciones bajo condiciones operativas
del sistema de transporte, atendiendo tanto a la complejidad temporal de los
datos como a los requerimientos prácticos de implementación.

Modelo de Regresión Lineal. Se exploraron dos enfoques basados en regre-
sión lineal múltiple. El primero consistió en estimar el tiempo de viaje entre pares
de puntos geográficos, considerando como variables independientes la distancia,
la velocidad, la hora del día y el día de la semana. Para ello, se agruparon
trayectos por línea y unidad dentro de un mismo día y en intervalos horarios
específicos. Si bien este enfoque resultó conceptualmente claro, generó un creci-
miento significativo en el tamaño de los datos, lo que limitó su aplicabilidad en
escenarios de entrenamiento y prueba realistas. El segundo enfoque propuso la

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 316

Alex
Cuadro de texto



¿Cuánto Falta? Modelos Predictivos del Tiempo de Llegada de Autobuses 7

predicción de la velocidad de los autobuses como variable intermedia, modelando
la línea y la unidad como variables explicativas. Esta alternativa buscó reducir la
dimensionalidad y capitalizar la hipótesis de que la velocidad se encuentra más
asociada al entorno geográfico que al recorrido específico. Este modelo ofreció
una representación más eficiente y flexible de los datos, facilitando su integración
con trayectos de distinta duración y resolución temporal.

Modelo ARIMA. Para aplicar ARIMA fue necesario transformar los datos de
entrada a series temporales con intervalos regulares, en este caso, de un minuto.
A partir de esta representación, se generaron modelos individuales por línea de
autobús utilizando las posiciones geográficas registradas para estimar ubicacio-
nes futuras en una ventana de n minutos. Dado que ARIMA permite estimar
solo una variable a la vez, se ajustaron dos modelos paralelos por serie: uno para
latitud y otro para longitud. También se exploró una variante que predecía la
distancia recorrida entre puntos sucesivos; sin embargo, esta aproximación in-
trodujo errores significativos al asumir trayectorias rectas, cuando en la práctica
los recorridos incluyen curvas y desvíos.

Modelo LSTM. En la implementación inicial, se emplearon capas LSTM pa-
ra modelar las dependencias temporales en los datos de ubicación, utilizando
secuencias históricas de posiciones geográficas y tiempos de paso por dichas po-
siciones. En una primera instancia, el modelo se alimentó exclusivamente con
estas secuencias, sin incorporar variables contextuales, con el fin de evaluar su
capacidad para inferir coordenadas futuras a partir de la dinámica del recorrido.
Posteriormente, se amplió la entrada con variables adicionales como la hora del
día, la velocidad, el tiempo entre registros, el día de la semana y marcadores
de inicio o fin de recorrido. Un desafío particular surgió al generar predicciones
encadenadas: algunas variables adicionales podían derivarse de manera directa
(como el tiempo entre paradas), pero otras, como la velocidad, tenían un im-
pacto acumulativo en la trayectoria estimada. Para abordar este problema, se
reestructuró el modelo para que también predijera la velocidad, garantizando así
una coherencia entre la dinámica del recorrido y las estimaciones espaciales en
función de la zona, el día y el horario.

Modelo GRU. Se implementó como alternativa a LSTM, buscando una ar-
quitectura más liviana con menor cantidad de parámetros. Se replicaron las
configuraciones empleadas previamente: se entrenaron modelos con distintos in-
tervalos de muestreo (uno, dos y cinco minutos) y se compararon dos variantes.
La primera consideraba únicamente las coordenadas geográficas como entrada,
mientras que la segunda incorporaba variables contextuales adicionales, como ve-
locidad, hora del día, día de la semana y tiempos entre registros. Esta evaluación
permitió analizar el impacto de la reducción de complejidad arquitectónica sobre
el desempeño predictivo, en escenarios comparables a los del modelo LSTM.

3.3 Aplicación Móvil
Como complemento a los modelos de predicción, se desarrolló una aplicación
móvil orientada a mejorar la experiencia de viaje en el transporte público de
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Tandil. La aplicación cuenta con un mapa interactivo que permite visualizar en
tiempo real las líneas de autobús, sus recorridos, estaciones/paradas y la ubica-
ción actual de las unidades. A partir de estos datos, se estiman los tiempos de
llegada a cada parada utilizando el modelo LSTM entrenado previamente. La
aplicación incluye una funcionalidad de planificación de viajes que permite al
usuario calcular rutas entre dos puntos de la ciudad. También ofrece la posibili-
dad de guardar lugares frecuentes y consultas recientes para facilitar el acceso a
la información. La lógica de predicción y gestión de datos se realiza en un servi-
dor central, lo que reduce la carga de procesamiento en los dispositivos móviles
y garantiza la actualización constante de la información.

La aplicación fue desarrollada utilizando Android Studio y el lenguaje de
programación Kotlin, mientras que el servidor se implementó en Python. Para
el manejo de datos en tiempo real, se integró Firebase Realtime Database, lo
que permite actualizar constantemente la ubicación de los autobuses. Además,
se incorporó la API de Google Maps para la visualización e interacción con el
mapa de manera intuitiva y eficiente.

4 Evaluación experimental
Para la implementación de los distintos modelos de predicción se emplearon bi-
bliotecas tales como TensorFlow, Keras, NumPy y herramientas de scikit-learn
para las etapas de preprocesamiento y evaluación. En el caso del modelo de
regresión lineal, se utilizó la clase Sequential de Keras, construyendo una arqui-
tectura compuesta por múltiples capas densas con funciones de activación ReLU,
regularización L2 y capas de Dropout con el objetivo de mitigar el sobreajus-
te. El modelo fue entrenado utilizando el optimizador Adam, con la función de
pérdida MAE y la métrica adicional MSE para el monitoreo del rendimiento.
Para los modelos ARIMA, se utilizó la biblioteca pmdarima, específicamente la
función auto_arima, la cual permite realizar una búsqueda automática de los
hiperparámetros del modelo, orden (p,d,q), para cada serie temporal (latitud y
longitud), sin incorporar estacionalidad. En el caso de las arquitecturas basadas
en redes neuronales recurrentes, tanto los modelos LSTM como GRU fueron im-
plementados mediante la clase Sequential, combinando una o más capas LSTM o
GRU (según correspondiera), seguidas por capas densas. Ambos modelos fueron
entrenados utilizando el optimizador Adam y la función de pérdida MSE. En lo
que respecta a hiper-parámetros, se evaluaron diferentes configuraciones estruc-
turales, como la cantidad de unidades por capa y la disposición de las capas, a
fin de analizar su impacto en el desempeño, seleccionando la combinación con
mejor rendimiento. Finalmente, para la evaluación del desempeño de los mode-
los se emplearon métricas comúnmente utilizadas en tareas de regresión: MAE,
MSE, RMSE y Rš (esta última únicamente aplicada en los modelos de regresión
lineal y ARIMA).

Modelo regresión lineal. A partir de los datos previamente procesados, ana-
lizados y filtrados, se calculó el tiempo de viaje entre pares de puntos geográficos
para cada combinación de línea y unidad de autobús dentro de un mismo día y
en franjas horarias específicas. Esta metodología generó más de 8.000 pares por
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Tabla 1: Resultados del Modelo de Regresión Lineal
(a) Predicción posición

Line MAE MSE RMSE Rš
500 8.827 125.417 11.199 0.101
501 8.857 128.901 11.353 0.216
502 10.311 169.371 13.014 0.097
503 9.917 156.084 12.493 0.194
504 9.336 141.159 11.881 0.084
505 8.963 135.187 11.627 0.187

(b) Predicción velocidad

Line MAE MSE RMSE Rš
500 8.827 125.417 11.199 0.101
501 8.857 128.901 11.353 0.216
502 10.311 169.371 13.014 0.097
503 9.917 156.084 12.493 0.194
504 9.336 141.159 11.881 0.084
505 8.963 135.187 11.627 0.187

cuarteto (línea, unidad, día, horario), lo que extrapolado a todas las combinacio-
nes posibles durante el período de observación resultó en millones de registros,
dificultando tanto su procesamiento como su evaluación en un entorno realista.
En este contexto, se optó por trabajar con un subconjunto de aproximadamente
10.000 registros, correspondientes a una línea y unidad específicas, en el rango
horario de 11:00 a 13:00 del día 15/10/2017. Esta fecha fue seleccionada por ser
el primer día con registros disponibles y por coincidir con un domingo, lo que
presumiblemente reduce la variabilidad causada por el tránsito y la demanda del
servicio, ofreciendo mayor regularidad en los recorridos. Los resultados obteni-
dos (Tabla 1a) mostraron un desempeño variable del modelo según la línea de
autobús analizada. Si bien algunas líneas presentaron valores razonables de Rš,
los MAE y RMSE continúan siendo elevados en términos prácticos.

Para el segundo enfoque se consideró la estimación de velocidades por hora-
rio y posición. Con dicha información, los tiempos de viaje podrían calcularse
posteriormente utilizando la distancia recorrida en cada segmento y la velocidad
estimada para ese tramo. Para este modelo, se incluyó la línea y la unidad como
variables explicativas, bajo la hipótesis de que la velocidad se encuentra más
relacionada con la zona geográfica que del recorrido específico. Para su entre-
namiento se utilizaron, aproximadamente 2,2 millones de registros, reservando
cerca de un millón para evaluación, aplicando una división aleatoria 70/30. Sin
embargo, los resultados obtenidos con esta segunda estrategia (Tabla 1b) fueron
incluso inferiores a los del modelo original de predicción de tiempos de viaje.
Estos resultados evidencian su falta de capacidad para capturar patrones no
lineales y variaciones temporales frecuentes, propias de la tarea.
Modelo ARIMA. Dado que este modelo está diseñado para estimar una única
variable a lo largo del tiempo, fue necesario definir dos modelos, uno para latitud
y otro para longitud. Sin embargo, tras evaluar distintos modelos para cada línea
de autobús, se observó que las predicciones de los siguientes 10 pasos/minutos
resultaban altamente imprecisas, ubicando incluso los puntos predichos fuera del
recorrido real de la línea (ejemplificado en la Figura 3 para la línea 505). Este
comportamiento no fue exclusivo de un momento específico, sino que se repitió
sistemáticamente para cualquier combinación de día/hora evaluada.

Asimismo, se observó que cuando las variaciones entre coordenadas consecu-
tivas eran pequeñas, el modelo tenía dificultades para identificar patrones signi-
ficativos. ARIMA es más efectivo cuando existe una tendencia clara en los datos,
y si las diferencias espaciales entre puntos no se ajustan bien a un modelo basa-
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10 N. Miccio Palermo et al.

Figura 3: Predicciones del Modelo ARIMA para posiciones (línea 505)

do en diferencias, es probable que amplifique pequeñas fluctuaciones en lugar de
capturar una estructura relevante. Por otra parte, ARIMA es un modelo lineal,
lo que limita su capacidad para representar trayectorias no lineales. En recorri-
dos con curvas, giros o trayectorias zigzagueantes, las coordenadas espaciales no
siguen un patrón lineal predecible, y el modelo intenta ajustarse incorrectamente
a una estructura inexistente. Otro inconveniente relevante fue el modelado sepa-
rado de la latitud y la longitud, lo que ignora su relación geográfica intrínseca.
Como resultado, puede ocurrir que una coordenada predicha sea razonable, pero
su combinación con la otra no represente una ubicación coherente.

Frente a estos problemas, se exploraron alternativas sin lograr mejoras. Una
de las variantes consistió en predecir la distancia entre puntos consecutivos en
lugar de las coordenadas geográficas. Sin embargo, este enfoque asumía trayec-
torias rectilíneas entre puntos, cuando en realidad los recorridos podían incluir
curvas o desvíos que afectaban considerablemente la precisión. Se observó que, si
bien los primeros pasos de la predicción presentaban errores moderados, estos se
acumulaban rápidamente con el tiempo, volviendo el modelo ineficaz para esti-
maciones a largo plazo. La Tabla 2 ilustra las predicciones de distancia recorrida
frente al valor real, así como los errores acumulados después de 20 minutos, para
la línea 505. Aunque los errores iniciales eran relativamente bajos, luego de 20
minutos la desviación superaba el kilómetro en todos los modelos evaluados (y
en algunos casos los 2 kilómetros), indicando una pérdida sustancial de precisión.

En conclusión, aunque ARIMA puede ofrecer buenos resultados en condi-
ciones ideales con datos lineales y bien estructurados, las particularidades de
los datos espaciales utilizados en este trabajo no se ajustaban a sus supuestos
matemáticos. Dado que el modelo mostró limitaciones incluso en contextos re-
ducidos y controlados, resultaba improbable que pudiera escalar efectivamente
a conjuntos de mayor tamaño o complejidad.

Modelos LSTM y GRU. Los modelos LSTM y GRU fueron entrenados y
evaluados utilizando tres conjuntos de datos diferenciados por el intervalo tem-
poral entre mediciones: 1, 2 y 5 minutos. Esta segmentación permitió analizar
cómo influye la frecuencia de muestreo en el rendimiento predictivo y el costo
computacional. Para cada conjunto, se implementaron dos variantes: una sim-
ple, que solo incluye las coordenadas (latitud y longitud), y otra compleja, que
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Tabla 2: Predicciones del Modelo ARIMA para distancias (en metros).
Minuto Predicción Valor Real Error Acumulado

1 239.983 427.471 -187.488 187.488
2 234.134 0.800 233.334 -46.646
3 245.659 694.863 -449.205 402.559
4 247.966 349.194 -101.228 503.788
5 251.373 337.537 -86.164 589.952
6 253.076 187.831 65.246 524.706
7 255.883 275.581 -19.779 544.485
8 257.899 351.932 -94.033 648.518
9 259.732 411.947 -152.215 790.732
10 261.219 497.186 -235.967 1026.699

Minuto Predicción Valor Real Error Acumulado
11 262.594 385.123 -122.529 1149.229
12 263.801 266.459 -2.658 1151.887
13 264.856 312.007 -47.152 1199.039
14 265.766 463.111 -197.345 1396.383
15 266.566 0.800 265.766 1129.817
16 267.267 1162.909 -895.642 2025.459
17 267.889 156.270 111.619 1913.849
18 268.416 601.697 -333.280 2247.129
19 268.885 386.873 -117.989 2365.113
20 269.294 200.846 68.449 2296.664

Tabla 3: Comparación de Tiempo de Entrenamiento para los Distintos Modelos
Línea Modelo Tiempo (seg)

500

GRU simple 531.992
LSTM simple 505.397
GRU complejo 862.302

LSTM complejo 784.059

501

GRU simple 414.565
LSTM simple 384.451
GRU complejo 782.329

LSTM complejo 782.348

502

GRU simple 476.864
LSTM simple 453.014
GRU complejo 900.428

LSTM complejo 772.071

Línea Modelo Tiempo (seg)

503

GRU simple 509.841
LSTM simple 427.147
GRU complejo 843.859

LSTM complejo 858.832

504

GRU simple 420.465
LSTM simple 399.969
GRU complejo 762.256

LSTM complejo 709.761

505

GRU simple 456.136
LSTM simple 401.285
GRU complejo 815.527

LSTM complejo 765.212

incorpora variables adicionales como velocidad, hora del día y día de la semana,
y además predice la velocidad como salida secundaria.

Los resultados obtenidos5 muestran que ambos modelos, especialmente LSTM,
son capaces de capturar patrones temporales complejos cuando los datos tienen
una alta resolución temporal. Los mejores desempeños se obtuvieron con in-
tervalos de 1 minuto, donde los errores de predicción fueron significativamente
menores. Sin embargo, este beneficio presenta como desventaja un mayor tiem-
po de entrenamiento, producto del mayor volumen de datos. A medida que se
incrementó el intervalo (2 y 5 minutos), la precisión de los modelos disminuyó
de manera considerable, lo cual se atribuye a la pérdida de información sobre
variaciones temporales sutiles entre puntos consecutivos. GRU mostró un com-
portamiento muy similar al de LSTM respecto a la sensibilidad a la frecuencia
de muestreo. En intervalos de 1 minuto, los errores fueron comparables a los
de LSTM, mientras que con intervalos más amplios el rendimiento decayó. Es-
to refuerza la importancia de contar con datos de alta frecuencia para lograr
predicciones precisas en trayectorias de vehículos.

La Tabla 3 muestra los tiempos de entrenamiento para cada modelo y línea
de autobús. En general, los modelos complejos requirieron más tiempo de en-
trenamiento que los modelos simples, debido a un mayor número de parámetros
y mayor complejidad del problema. Contrario a lo que se esperaría por la ar-
quitectura más liviana de los GRU, los modelos LSTM resultaron, en promedio,
5 Las tablas correspondientes a los intervalos 2 y 5 pueden encontrarse en el repositorio.
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12 N. Miccio Palermo et al.

Tabla 4: Comparación de métricas para los distintos modelos
Línea Modelo MAE MSE

500

GRU simple 9.150e-4 2.565e-6
LSTM simple 8.370e-4 2.374e-6
GRU complejo 8.700e-4 2.440e-6

LSTM complejo 8.390e-4 2.350e-6

501

GRU simple 9.810e-4 3.105e-6
LSTM simple 9.570e-4 3.057e-6
GRU complejo 9.640e-4 3.091e-6

LSTM complejo 9.350e-4 3.076e-6

502

GRU simple 8.770e-4 2.086e-6
LSTM simple 9.000e-4 2.089e-6
GRU complejo 8.920e-4 2.078e-6

LSTM complejo 8.660e-4 1.983e-6

Línea Modelo MAE MSE

503

GRU simple 1.174e-3 5.640e-6
LSTM simple 1.099e-3 5.519e-6
GRU complejo 1.135e-3 5.599e-6

LSTM complejo 1.149e-3 5.622e-6

504

GRU simple 9.370e-4 3.054e-6
LSTM simple 9.630e-4 3.093e-6
GRU complejo 8.970e-4 3.016e-6

LSTM complejo 9.150e-4 2.905e-6

505

GRU simple 3.137e-3 2.907e-5
LSTM simple 3.119e-3 2.817e-5
GRU complejo 3.151e-3 2.913e-5

LSTM complejo 3.079e-3 2.772e-5

ligeramente más rápidos que los GRU equivalentes. Esto sugiere que, más allá
del número de parámetros, otros factores como el tamaño de las capas, el opti-
mizador utilizado o la naturaleza de los datos pueden influir significativamente
en el entrenamiento.

En lo que respecta a la predicción de un solo paso (1 minuto, Tabla 4), en
general, tanto los modelos LSTM como los GRU mostraron un desempeño com-
parable en la mayoría de las líneas, aunque los LSTM complejos obtuvieron los
mejores resultados. Su mayor capacidad para capturar dependencias a largo pla-
zo podría explicar esta ventaja. Para las líneas 500, 501, 502 y 504, las diferencias
entre modelos fueron mínimas, indicando que cualquiera de las variantes podría
ser utilizada con buenos resultados. En cambio, en la línea 503 se registraron
errores más altos en todos los modelos, con el LSTM simple mostrando el mejor
desempeño relativo. La línea 505 presentó los mayores errores en general, siendo
también en este caso el LSTM complejo el modelo con menor MSE.

Para evaluar la viabilidad práctica de estos modelos, se realizaron 20 pre-
dicciones consecutivas por línea (Tabla 5). En lo que respecta al tiempo de
inferencia, se observaron diferencias mínimas entre los modelos, rondando apro-
ximadamente un segundo por secuencia. El modelo LSTM complejo destacó por
su baja media y mediana de error en varias líneas, y por presentar desviacio-
nes estándar menores, lo que refleja mayor estabilidad en las predicciones. Por
ejemplo, en la Línea 500 alcanzó una media de 345.77 (± 448.92) metros. En
contraposición, los modelos simples (tanto LSTM como GRU) presentaron erro-
res mayores y más dispersos; en la Línea 502, por ejemplo, el GRU simple mostró
una media de 498.13 (± 593.42). El GRU complejo, si bien no fue consistente-
mente el mejor, tuvo un rendimiento competitivo en algunas líneas. En la Línea
501, por ejemplo, superó al LSTM complejo en consistencia, con una desviación
estándar más baja, aunque con una media levemente superior.

En conclusión, tanto LSTM como GRU funcionaron adecuadamente en con-
textos de alta resolución temporal, pero el modelo LSTM complejo se posicionó
como la opción más adecuada para predicciones encadenadas, al lograr un equi-
librio superior entre precisión, estabilidad y eficiencia.
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Tabla 5: MAE para predicciones encadenadas
Línea Modelo Media (ś Desv. Est.) Mediana

500

GRU simple 625.58 (ś 687.81) 381.28
LSTM simple 694.31 (ś 838.91) 407.90
GRU complejo 406.63 (ś 326.77) 315.78

LSTM complejo 675.27 (ś 689.73) 448.24

501

GRU simple 498.13 (ś 593.42) 295.53
LSTM simple 385.53 (ś 451.00) 244.22
GRU complejo 365.51 (ś 416.01) 235.34

LSTM complejo 395.56 (ś 405.79) 270.82

502

GRU simple 888.63 (ś 986.16) 595.59
LSTM simple 669.15 (ś 945.34) 382.69
GRU complejo 597.12 (ś 845.23) 350.10

LSTM complejo 570.94 (ś 816.12) 335.97

Línea Modelo Media (ś Desv. Est.) Mediana

503

GRU simple 392.03 (ś 451.56) 261.15
LSTM simple 479.26 (ś 525.22) 305.09
GRU complejo 572.00 (ś 544.15) 406.04

LSTM complejo 364.95 (ś 443.61) 233.40

504

GRU simple 1367.26 (ś 1220.77) 960.18
LSTM simple 1269.43 (ś 1213.76) 846.62
GRU complejo 1265.83 (ś 1189.85) 867.97

LSTM complejo 1268.29 (ś 1213.93) 854.31

505

GRU simple 394.85 (ś 481.99) 252.95
LSTM simple 663.18 (ś 820.04) 371.01
GRU complejo 438.58 (ś 525.82) 278.29

LSTM complejo 345.77 (ś 448.92) 222.74

5 Conclusiones

Este trabajo abordó la estimación de los tiempos de llegada de autobuses en la
ciudad de Tandil (Buenos Aires, Argentina) con el objetivo de mejorar la expe-
riencia de los usuarios del transporte público. Se exploraron diversos enfoques
metodológicos para la predicción de tiempos de llegada, comparando técnicas
clásicas y modelos basados en redes neuronales. Para ello, se implementaron
y evaluaron modelos predictivos como regresión lineal, ARIMA, LSTM y GRU,
permitiendo identificar sus fortalezas y limitaciones en el contexto local. Además,
se desarrolló una aplicación móvil que visualiza en tiempo real tanto la ubicación
de los autobuses como las predicciones generadas, potencialmente facilitando el
acceso a esta información por parte de la ciudadanía.

El trabajo, no obstante, presenta ciertas limitaciones. La disponibilidad y
calidad de los datos afectaron la precisión de los modelos, particularmente en
situaciones atípicas como desvíos de los recorridos predefinidos o eventos no
recurrentes, los cuales requirieron un proceso exhaustivo de limpieza y prepro-
cesamiento. Por otro lado, si bien se consideraron modelos avanzados, su imple-
mentación práctica puede estar condicionada por los recursos computacionales
disponibles. También quedó fuera del alcance del trabajo una validación de la
aplicación móvil complementaria y de la calidad percibida de los modelos de
predicción con usuarios o actores institucionales.

Más allá de su dimensión técnica, el trabajo tiene un potencial impacto so-
cial significativo. Un sistema de transporte más predecible y eficiente podría
contribuir a mejorar la calidad de vida de los habitantes, reducir los tiempos de
espera y aumentar la confianza en el uso del transporte público. Para los actores
institucionales, el trabajo tiene el potencial de colaborar en el diseño y la optimi-
zación de la gestión del transporte, contribuyendo a decisiones sobre la cantidad
de unidades en circulación en momentos específicos, la definición de recorridos o
incluso la ubicación de paradas. A largo plazo, estas mejoras podrían promover
una movilidad urbana más sostenible e inclusiva, especialmente en los sectores
de la población más dependientes del transporte público.

En el futuro, el sistema podría mejorar con la incorporación de nuevas fuentes
de información y el ajuste en tiempo real de los modelos a condiciones cambian-
tes, como congestiones, accidentes o el estado meteorológico. Además, el desarro-
llo de herramientas de monitoreo y visualización para los operadores contribuiría
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a consolidar una plataforma integral de apoyo a la gestión del transporte público
en ciudades intermedias como Tandil.
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