
Zorro: una familia paramétrica flexible y
diferenciable de funciones de activación que

extiende ReLU y GELU

Mat́ıas Roodschild
inst1, Jorge Gotay-Sardiñas1 Victor A. Jimenez1, and Adrián Will1

Facultad Regional Tucumán - Universidad Tecnológica Nacional, Rivadavia 1050, San
Miguel de Tucumán, Tucumán, Argentina,

mroodschild@gmail.com (ORCID 0000-0002-8344-1383), jgotay57@gmail.com

(ORCID 0000-0001-6995-9584), victoradrian.jimenez@frt.utn.edu.ar (ORCID

0000-0001-9804-1051), adrian.will@gitia.ar (ORCID 0000-0002-4935-8842),
https://gitia.ar/

Resumen Incluso en arquitecturas recientes de redes neuronales como
Transformers y Extended LSTM (xLSTM), aśı como en arquitecturas
tradicionales como las redes neuronales convolucionales (CNN), las fun-
ciones de activación son componentes esenciales. Permiten un entrena-
miento más efectivo y la captura de patrones no lineales. En los últimos
30 años se han propuesto más de 400 funciones, con parámetros fijos o
entrenables, aunque solo unas pocas se utilizan de forma generalizada.
ReLU es una de las más empleadas, y variantes como GELU y Swish
aparecen cada vez con mayor frecuencia. Sin embargo, ReLU presenta
puntos no diferenciables y problemas de gradientes explosivos; a su vez,
al probar distintos parámetros en variantes de GELU y Swish se obtie-
nen resultados dispares, lo que exige más parámetros para adaptarse a
conjuntos de datos y arquitecturas. Este art́ıculo introduce un nuevo con-
junto de funciones de activación denominado Zorro, una familia flexible
y continuamente diferenciable compuesta por cinco funciones principales
que fusionan ReLU y la sigmoide. Las funciones Zorro son suaves y adap-
tables, actúan como compuertas de información y se alinean con ReLU
en el intervalo [0,1], ofreciendo una alternativa a ReLU que no requiere
normalización y evita la muerte neuronal y las explosiones de gradien-
te. Zorro también aproxima funciones como Swish, GELU y DGELU, al
tiempo que proporciona parámetros para ajustarse a diferentes datasets
y arquitecturas. Evaluamos su desempeño en arquitecturas totalmen-
te conectadas, convolucionales y de tipo transformer para demostrar su
efectividad.

Keywords: funciones de activación, redes convolucionales, redes Trans-
former, desvanecimiento del gradiente, explosión del gradiente

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 340

Zorro: A Flexible and Differentiable Parametric
Family of Activation Functions That Extends

ReLU and GELU

Mat́ıas Roodschild
inst1, Jorge Gotay-Sardiñas1 Victor A. Jimenez1, and Adrián Will1

Facultad Regional Tucumán - Universidad Tecnológica Nacional, Rivadavia 1050, San
Miguel de Tucumán, Tucumán, Argentina,

mroodschild@gmail.com (ORCID 0000-0002-8344-1383), jgotay57@gmail.com

(ORCID 0000-0001-6995-9584), victoradrian.jimenez@frt.utn.edu.ar (ORCID

0000-0001-9804-1051), adrian.will@gitia.ar (ORCID 0000-0002-4935-8842),
https://gitia.ar/

Abstract. Even in recent neural network architectures such as Trans-
formers and Extended LSTM (xLSTM), and traditional ones like Con-
volutional Neural Networks, Activation Functions are an integral part
of nearly all neural networks. They enable more effective training and
capture nonlinear data patterns. More than 400 functions have been
proposed over the last 30 years, including fixed or trainable parameters,
but only a few are widely used. ReLU is one of the most frequently
used, with GELU and Swish variants increasingly appearing. However,
ReLU presents non-differentiable points and exploding gradient issues,
while testing different parameters of GELU and Swish variants produces
varying results, needing more parameters to adapt to datasets and archi-
tectures. This article introduces a novel set of activation functions called
Zorro, a continuously differentiable and flexible family comprising five
main functions fusing ReLU and Sigmoid. Zorro functions are smooth
and adaptable, and serve as information gates, aligning with ReLU in
the 0-1 range, offering an alternative to ReLU without the need for nor-
malization, neuron death, or gradient explosions. Zorro also approxi-
mates functions like Swish, GELU, and DGELU, providing parameters
to adjust to different datasets and architectures. We tested it on fully
connected, convolutional, and transformer architectures to demonstrate
its effectiveness.

Keywords: Activation Function, Convolutional Neural Network, Trans-
former Neural Network, Vanishing Gradient Problem, Exploding Gradi-
ent Problem

1. Introduction

Although some variations of Transformers and recent architectures have no
explicit activation functions, they are still an integral part of most neural net-
work architectures. Although only a handful are effectively used in practice, over

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 341

400 Neural Network activation functions have been defined over the last 30 years
(Kunc & Kléma, 2024). Activation functions are a simple yet effective way to
allow the network to capture nonlinear patterns in the data and get prescribed
behaviors like Logistic Sigmoid functions in LSTM networks, ReLU functions
in Transformers, and others. Nevertheless, not every function works for every
architecture or dataset, so many adaptive functions that include trainable pa-
rameters have been proposed (Delfosse et al., 2024; Martinez-Gost et al., 2024;
Mastromichalakis, 2023). These parameters allow the activation function to be
adapted to the particular dataset and not only the architecture.

In that line, designing an effective activation function or even knowing which
one is the most appropriate for a given architecture and dataset is still an active
area of research. Only in the last six months have there been over six different
proposals (Delfosse et al., 2024; Martinez-Gost et al., 2024; Noel & Oswal, 2024;
Rajanand & Singh, 2024; Subramanian et al., 2024; Sun et al., 2024). Moreover,
parametric activation functions that can adapt their behavior to the dataset
during training are an effective and relatively simple way to improve the results
without significantly increasing the processing time. Alternatively, the Extended
LSTM (xLSTM), a recent architecture proposed by the original author of LSTM
networks (Beck et al., 2024), includes the Swish activation function and claims to
achieve better generalization errors than current Transformer networks. Block
Recurrent Transformers (Hutchins et al., 2022) is another recent architecture
that uses an exponential function as an activation function. An adaptive, multi-
parametric, and differentiable function that can approximate many of the usual
activation functions (Swish, SiLU, GELU, ReLU, among others) should allow
future researchers and developers many possibilities.

In this work, we define and study a multi-parametric family of activation
functions called Zorro, proposing five variations (Symmetric-Zorro, Asymmetric-
Zorro, Sigmoid-Zorro, Tanh-Zorro, and Sloped-Zorro). All these functions were
designed as a combination of ReLU and Sigmoid activation functions and were
inspired by DGELU and DSiLU. DSiLU, the derivative of the SiLU activation
function, was proposed as an activation function for Convolutional Networks
in . DGELU, the derivative of the GELU function, has not been proposed as
an activation function up to date. So, Zorro has the same general shape as
these functions but preserves the linear central part in [0, 1] characteristic of
the ReLU function. This design allows Zorro to provide similar results for the
general case where data is normalized or initialized for the ReLU function, im-
proving the results above 1 and below 0. The rest of the functions are defined
by reparametrizations and rescaling so that they approximate their namesakes:
Sigmoid-Zorro has a similar range and derivative in zero as the Sigmoid func-
tion, making it appropriate for use as a gating function; Tanh-Zorro has range
slightly more extensive than [−1, 1], is centered in zero, and with derivative 1
in zero, similar to the original Tanh function; Asymmetric-Zorro exploits the
fact that different coefficient for negatives and values over one can produce bet-
ter results; Finally, Sloped-Zorro increases the derivative of the linear part so
that training is faster than others. The paper is completed by an in-depth test

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 342

on a simple feedforward architecture that shows that, even though they are all
reparametrizations of the same basic function, their behavior as activation func-
tions is entirely different, making them suitable for different architectures and
datasets.

The rest of this work is organized as follows: Section 2 shows the related
works, highlighting important aspects of the preexisting activation functions;
Section 3 describes the most commonly used activation functions; Section 4
presents the Zorro function proposed in this work, describing its characteristics
and different variants; Section 5 presents a parameter adjustment analysis us-
ing a fully connected dense feedforward network; Section 6 presents the results
of applying the proposed functions in convolutional architecture on 5 different
datasets; Section 7 presents the results obtained by applying variants of the Zorro
function in a Transformer architecture; Finally, Section 8 presents the general
conclusion and perspectives of future works.

2. Related Works

Activation function design is a very active area of research. Besides the thor-
ough and comprehensive review (Kunc & Kléma, 2024), Website Papers With
Code (((Papers with Code - An Overview of Activation Functions)), 2024), a
recognized website for keeping records of state-of-the-art machine learning algo-
rithms, reports 74 of the most frequently used activation functions. Moreover,
(Dubey et al., 2022) conducts an extensive and systematic study of activation
function from perspectives such as function shape, differentiability, boundedness,
number of parameters, whether or not it is a monotone function, and computer
efficiency.

As for the frequency of use in software packages, LLMs, CNNs, and other
commercially, academic, and widely used architectures, we can mention ReLU,
Sigmoid, Tanh, Sigmoid-Weighted Linear Units (SiLU), Gaussian Error Lin-
ear Unit (GELU) (Hendrycks & Gimpel, 2023), Swish (Ramachandran et al.,
2017), ELU (Clevert et al., 2015a), and Leaky ReLU (Maas et al., 2013) (among
many others). There also exist parametric versions of many of those, including
Shifted and Scaled Sigmoid (Arai & Imamura, 2018) and Scaled Tanh (LeCun
et al., 1998), which include a slope parameter, a parametric version of Leaky
ReLU (PLeaky ReLU) (He et al., 2015), Parametric Leaky Tanh (Mastromicha-
lakis, 2023), and more sophisticated approaches, including ErfReLU (Rajanand
& Singh, 2024) which is ReLU with an adaptability parameter that can be
trained along with the weights. This is a partial list since, once again, there are
a considerable number of functions.

Other than those frequently used activation functions that have produced
good results in a wide range of applications, datasets, and architectures, some
functions for particular purposes have been devised. As a small sample of the
many such functions, ASU (Rahman et al., 2023) is a function designed to cope
with the specific case of vibrations, Signed and Truncated Logarithm Activation
Function (STL) (Gong, 2023), based on a logarithmic function that produces an

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 343

entirely different behavior, and the functions proposed in (D. et al., 2024) were
designed to preserve sharpness in signals or images. Finally, recent architectures
like AAREN Neural Networks include exponential activations (Feng et al., 2024),
in whole or only on the positive side (Biswas et al., 2023), Extended LSTM
(xLSTM) that includes ReLU and Swish (Beck et al., 2024), and transformer
architectures that still include ReLU activation functions.

None of the functions collected in those reviews and recent publications (Noel
& Oswal, 2024; Subramanian et al., 2024; Sun et al., 2024) coincide with the ones
proposed in this work. The closest are DSiLU and DGELU, as depicted in the
next section. Moreover, DSiLU was proposed as an activation function for a
Convolutional architecture. However, as far as we have checked, DGELU has
never been proposed or analyzed as an activation in the literature.

3. Some relevant activation functions

3.1. Generalized Sigmoid (GSigmoid)

The Logistic Sigmoid is one of the first functions for neuron activation, and
it is widely used in several architectures. It is defined by Equation 1. The Shift
and Scaled Sigmoid (Arai & Imamura, 2018) is a more generalized version of this
function, which includes two parameters to provide flexibility. For simplicity, in
this work, we call this function Generalized Sigmoid (GS), defined by Equation
2, where the parameter a controls the increase in slope, and b is a horizontal
shift. Figure 1 shows the curve obtained with different values of a, considering b
equal to zero for clarity.

σ(x) =
1

1 + e−x
(1)

GS(x, a, b) = σ(a(x− b)) (2)

This function preserves the differentiability and boundedness properties of
the original Sigmoid function. For a > 1, it increases the maximum value for
its derivative, acquiring benefits in some neural network training contexts. The
reparametrization of the Logistic Sigmoid function allows us to define the func-
tions proposed in this work easily.

3.2. ReLU-based functions

Rectified Linear Unit (ReLU) is one of the most widely used activation func-
tions in many neural network architectures. Its linear part with the derivative
equal to 1 for positive input values, simplicity of computation, and efficiency
make it the preferred choice in many problems. Mathematically, it is defined by
Equation 3.

ReLU(x) = max(0, x) (3)

Despite having many advantages, this function causes the Explosive Gradient
Problem (EGP) (Philipp et al., 2017), where the gradient becomes unstable and

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 344

-6 -4 -2 0 2 4 6

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

f(
x
)

Sigmoid

GSigmoid(a=2.0, b=0)

GSigmoid(a=0.5, b=0)

Fig. 1: Logistic Sigmoid and GSigmoid for different values of the a parameter.

usually must be clipped (gradient clipping). In addition, it converts all negative
inputs to zero, producing a large area with zero derivatives. For this reason, some
neurons stop updating their weights during training (neuron death). Variants of
the ReLU function, such as the Leaky Rectified Linear Unit (Leaky ReLU) (Maas
et al., 2013), were proposed to mitigate this problem. The Leaky ReLU replaces
the zero value for negative inputs with a small fraction of the input (αx where
α is a small value, usually 0.01). ReLU and Leaky ReLU are shown in Figure 2,
along with other activation functions.

-5 -4 -3 -2 -1 0 1 2 3

x

-1

-0.5

0

0.5

1

1.5

2

2.5

3

f(
x
)

ReLU

Leaky ReLU (=0.1)

ELU (=0.1)

SiLU

GELU

Swish (= 0.5)

Fig. 2: Comparison of ReLU-based, ELU and Swish-based activation functions.

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 345

3.3. Exponential Linear Unit (ELU)

The Exponential Linear Unit (ELU) (Clevert et al., 2015b) is an alterna-
tive to the ReLU function, designed to reduce the Vanishing Gradient Problem
(VGP) (Hochreiter, 1998). The ELU function is defined by Equation 4, where
the hyperparameter α controls the saturation rate for negative inputs. It is the
identity for positive inputs and presents negative values for x < 0, being differ-
entiable in the whole domain (see Figure 2). The parameter can be set to have
the mean of activation values closer to zero, avoiding problems of bias shifting
between layers during training and achieving faster and more stable learning
than some of its counterparts.

ELU(x, α) =

{
α(ex − 1) x ≤ 0

x x > 0
(4)

3.4. Swish-based functions (SiLU and GELU)

The Swish function (Ramachandran et al., 2017) was designed as a smooth
replacement for the ReLU as an activation function. Equation 5 defines it by
multiplying x and the Sigmoid function, and the β parameter controls the shape
of the function around zero. It is unbounded for positive values and tends to
zero for negative values.

Swish(x, β) = xσ(βx) (5)

Different activation functions represent particular cases of the Swish function.
One is the Sigmoid-Weighted Linear Units (SiLU) (Elfwing et al., 2017) defined
by Equation 6 by multiplying x and the Sigmoid function. So, it is obtained from
the Swish function by setting 1 for the β parameter.

SiLU(x) = xσ(x) (6)

A more probabilistic approach for the same problem of finding a differentiable
yet efficient replacement for the ReLU function produced the Gaussian Error
Linear Unit (GELU) (Hendrycks & Gimpel, 2023). Recently, GELU has been
increasingly used in transformer architectures (M. Lee, 2023). It is defined by
Equation 7, where σ is the Logistic Sigmoid function, and erf is the Gauss Error
Function. Since it is complex and expensive to calculate, the original authors
suggested and analyzed an approximation using the Swish function with β =
1.702. So, this is another particular case of the Swish function. Figure 2 compares
ReLU-based functions, the ELU function, and Swish-based functions.

GELU(x) =
x

2

[
1 + erf

(
x√
2

)]
≈ xσ(1.702x) (7)

3.5. Derivatives of the SiLU and GELU functions

The derivative of the function Swish is defined by Equation 8 and shown
in Figure 3. For β = 1, it is the derivative of the function SiLU (DSiLU); for

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 346

β = 1.702, it is the derivative of the function GELU (DGELU). It is clear that
they are reparametrizations of each other and have the same general shape.

DSwish(x, β) = βSwish(x, β) [1− σ(βx)] + σ(βx) (8)

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

f(
x
)

DSiLU

DGELU

DSwish (= 3)

Fig. 3: Comparison of DSwish-based activation functions.

Now being bounded and differentiable among other relevant properties, they
could be proposed as activation functions in their own right. DSiLU has been
proposed as an activation function for Convolutional Networks. Still, we have
not found works that propose DGELU as an activation function in the literature.
They have a similar shape as the functions proposed in this work, so they will
be compared to determine which provides better results.

4. A new activation function: Zorro

ReLU is a very powerful but simple activation function. Its definition allows
for a straightforward and fast implementation, and a simple normalization or
a smart initialization usually fixes any problem due to the non-differentiability
around zero. However, the tendency to generate explosive gradients for input
values greater than one makes it very complicated for the training algorithm
to fit the data in these zones correctly. This problem is critical in industrial
environments, where a slight improvement in accuracy can be costly because it
comes from a small percentage of the data in those zones.

On the other hand, DSiLU and DGELU are bounded functions, differentiable,
not excessively complex to calculate, and have an almost linear part in the central
critical zone. These characteristics make them worthy of being considered an
activation function. The DSiLU function was the first to be proposed as an
activation function for convolutional networks, producing good results. We have

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 347

not found in the literature that DGELU has been considered as an activation
function.

In order to leverage the advantages of ReLU and solve its drawbacks, we
combine it with the Sigmoid function in a shape similar to the DGELU function
but preserving the linear part of the ReLU in [0, 1]. This combination gives rise to
the Zorro function defined by Equation 9, where GS is the Generalized Sigmoid
function, a and b are fixed parameters, and k is a coefficient defined by Equation
10. The fixed parameters control the shape and position of the characteristic
“humps” similar to those of the DGELU function, and the k coefficient ensures
the differentiability of the function at x = 0 and x = 1. We use the GSigmoid
function for the Zorro definition to simplify its mathematical expression. Also,
many software packages have optimized versions of the Sigmoid function that
would reduce computations and speed up training.

Zorrosym(x, a, b) =


kxGS(x, a, b) x < 0

x x ∈ [0, 1]

1-k(1-x)GS(1-x, a, b) x > 1

(9)

k = 1 + eab (10)

Figure 4 shows the Zorro function for particular values of a and b, where we
can see how it preserves the central linear part, is similar to SiLU for x < 0, and
is reflected around the point (0.5, 0.5) for x > 1 to preserve the symmetries like
DSiLU or DGELU functions. Larger values of the parameter a take the humps
closer to the asymptotic horizontal lines y = 0 and y = 1, while larger values
of b move the maximum and minimum values located in the humps away from
zero.

Fig. 4: The Zorro Activation Function and its derivative (a = 2 and b = 0.5).

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 348

The formula for the derivative can be seen in Equation 11. It confirms that
Zorro is differentiable, although the second derivative does not exist in 0 and 1.
A somewhat more involved calculation shows that it is bounded for a > 0 since
for a = 0 and b = 0, it is the identity. That is, it can be used as an activation
function and trained using backpropagation.

d
dxZorrosym(x, a, b) =



kGS(x, a, b)[1−
ax(1-GS(x, a, b))]

x < 0

1 x ∈ [0, 1]

kGS(1-x, a, b)[1−
a(1-x)(1-GS(1-x, a, b))]

x > 1

(11)

4.1. Variants of the Zorro Activation Function

Many variants can be defined based on the Zorro function described before.
The following are the most interesting ones that produce good results in practice.

Asymmetric-Zorro The mean value of the activation function over the entire
dataset is a good indicator of convergence: It has been shown that if this mean
value is not zero, it acts as a bias for the next layer, delaying the training process
(Clevert et al., 2015b). Thus, functions with zero mean, such as Tanh, will be
more effective than Sigmoid, and functions with lower mean in a given interval
symmetric around zero, such as SiLU, GELU, and Swish, will perform better
than ReLU. So, an asymmetric version of Zorro with a smaller mean value will
have these benefits and be able to train deeper networks. The asymmetric variant
of the Zorro function arises by considering independent values of the coefficients
a and b for the positive and negative parts, allowing asymmetric humps. The
Asymmetric-Zorro function is then defined by Equation 12. It is shown in Figure
5a for different parameter values.

Zorroasym(x, as, ai, b) =


kixGS(x, ai, b) x < 0

x x ∈ [0, 1]

1-ks(1-x)GS(1-x, as, b) x > 1

(12)

ki = 1 + eaib

ks = 1 + easb
(13)

Sigmoid-Zorro Some architectures, such as LSTM and Variational Autoen-
coders, use the Sigmoid function. Replacing it with the Zorro function would
lead to undesired results due to the difference in the central position and the
slope in the linear zone. The Sigmoid and similar functions, such as the Hard-
Sigmoid, have a bounded image, varying its values between 0 and 1. In contrast,
the Zorro function defined in Equation 9 has a bounded image, varying its values

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 349

-8 -6 -4 -2 0 2 4

x

-1

-0.5

0

0.5

1

1.5

f(
x
)

Asymmetric-Zorro

(a
s
=0.8, a

i
=0.6, b=0.4)

Asymmetric-Zorro

(a
s
=0.8, a

i
=0.5, b=0.4)

(a) Asymmetric-Zorro.

-15 -10 -5 0 5 10

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

f(
x
)

Sigmoid

Sigmoid-Zorro

(a=2, b=0.5)

(b) Sigmoid-Zorro.

-6 -4 -2 0 2 4

x

-1

-0.5

0

0.5

1

f(
x
)

Tanh

Tanh-Zorro

(a=3.5, b=1.0)

(c) Tanh-Zorro.

-2 -1 0 1 2 3 4 5

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

f(
x
)

Sloped-Zorro

(m=1, a=2, b=0.3)

Sloped-Zorro

(m=1.3, a=2, b=0.3)

(d) Sloped-Zorro.

Fig. 5: Most relevant variants of the Zorro family activation function.

between −k/a and 1 + k/a for a > 0. So, the Sigmoid-Zorro function arises by
applying a shift and rescaling as indicated by Equation 14, obtaining a function
with behavior more similar to the Sigmoid and allowing its use in the mentioned
architectures.

Zorrosigmoid(x, a, b) = Zorrosym((x+ 2)/4, a, b) (14)

This variant is symmetric, with a decreasing slope up to 0.25 and a horizontal
offset so that its value at x = 0 is equal to 0.5, just like the Sigmoid function.
Figure 5b compares the two functions, showing how this setting produces an
activation function with the same central area, principal value, global mean
value, and horizontal asymptotics as the Sigmoid function. However, the Zorro
variant has the characteristic humps, and its image is broader than the Sigmoid
function. This means that even when only a small margin is outside [0, 1], a
cumulative application of the Sigmoid will tend to produce small changes (VGP)
In contrast, cumulative applications of the Sigmoid-Zorro will tend to explode

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 350

and go to infinity if the problem conditions are correct. In this work, we will
limit ourselves to showing the behavior of functions on simple architectures and
in an application case. The analysis of the particular behavior of Zorro and
Sigmoid-Zorro on relevant architectures replacing Sigmoid will be addressed in
future work.

Tanh-Zorro The previous function was designed to replace the Sigmoid from
gates in LSTM networks. This type of network also uses the Hyperbolic Tan-
gent (Tanh) as the activation function. Following the same sense, we define the
Tanh-Zorro function to mimic the Tanh behavior, defined by Equation 15. This
activation function has a mean activation closer to zero, so, as mentioned above,
it will produce less bias in subsequent layers and should provide better training
performance.

Zorrotanh(x, a, b) = 2 Zorrosigmoid(x, a, b)− 1 (15)

Figure 5c compares the Tanh and the Tanh-Zorro functions. It is easy to see
that the Tanh-Zorro function is centered at (0,0), has a linear part between −1
and 1 with slope 1, and has the same asymptotics as the original function. This
characteristic allows the Tanh-Zorro variant to replace Tanh on most architec-
tures, considering that the image is more extensive than [−1, 1]. A cumulative
application could explode even for a small range, and the gradient would tend
to be infinite given the right conditions because the Tanh-Zorro image is outside
that range.

Sloped-Zorro Previous approaches have shown that increasing the function’s
derivative will increase the convergence performance (Roodschild et al., 2020).
Therefore, increasing the function’s slope should produce faster training and
better performance and allow the backpropagation algorithm to train networks
with more layers (higher VGP resistance). We then propose the Sloped-Zorro
variant with a different slope through Equation 16, reparametrizing the origi-
nal Zorro function by introducing the m coefficient. This way, differentiability,
boundedness, and other important properties are preserved. The effect of the
reparametrization can be seen in Figure 5d.

Zorrosloped(x, as, ai, b,m) = Zorroasym(mx, as, ai, b) (16)

4.2. Approximations to other activation functions

One of the main design objectives of Zorro is to be flexible and represent
other widely used activation functions. First, it is possible to approximate the
ReLU function by taking the Sloped-Zorro function with m = 1, as = 0, and ai
as high as possible. If we assign infinity to the parameter ai, the Zorro function
mathematically becomes ReLU. However, depending on the implementation and
the programming language, the function may yield an invalid or infinite value, so

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 351

assigning a sufficiently large value is acceptable. Figure 6e compares ReLU and
the Zorro function for different values of its parameter. We can see that ai = 50
achieves an excellent approximation.

On the other hand, taking an appropriate value for ai and bi from the asym-
metric Sloped-Zorro function defined by Equation 16 will approximate the nega-
tive part of the Swish function. For positive values, Zorro can only be a straight
line or a concave function that eventually becomes asymptotic at y = 1. There-
fore, there is a maximal interval in which variants of Zorro can approximate
Swish-based functions and their derivatives due to their general form. Table 1
shows the different sets of parameters that can be used with Zorro to approximate
these functions. The last column shows the maximum difference (ε) between the
two functions. In the case of SiLU and GELU, several sets of parameters allow
Sloped-Zorro to approximate them depending on the input range adopted (see
Table 1). If normalized data are used or a batch normalization is included in
the training, the data will be mostly between 0 and 1, so the approximation
interval (−∞, 1) is the most accurate. However, any of the other approximation
intervals could be used to cover a broader domain. These parameters could even
be trainable to find a value that best fits each data set. Figures 6a and 6b show
the approximation mentioned above. It is clear that, despite having very similar
functions, their behavior around zero is very different, and the linear part of
ReLU preserved in Zorro makes for a function different from GELU and other
variants of Swish.

Activation
function

Approximation
interval

Best parameter values Max. Error
m a i as b ε

ReLU (−∞,∞) 1.00 50.00 0.0 1.0 0.001

SiLU /
Swish

(−∞, 1) 0.70 1.30 0.0 1.8 0.041
(−1,∞) 0.98 0.80 0.0 1.3 0.254
(−2, 5) 0.95 0.90 0.0 1.1 0.219

GELU
(−∞, 1) 0.80 1.80 0.0 1.3 0.054
(−1,∞) 0.99 1.99 0.0 1.3 0.155
(−2, 5) 0.98 1.30 0.0 1.5 0.147

DSiLU (−∞,∞) 0.41 3.40 3.4 1.2 0.037

DGELU (−∞,∞) 0.70 3.30 3.3 1.7 0.036

Table 1: Different parameter values of the Sloped-Zorro function to approximate
the more commonly used activation functions.

DSiLU and DGELU, the derivatives of the functions SiLU and GELU, re-
spectively, can be approximated by the original Symmetric-Zorro very effectively
using the parameters given in Table 1. Our tests show, nevertheless, that the
linear part original of the ReLU still produces better results than GELU and
DGELU in many cases. A thorough comparison of an appropriate case will be
conducted in a subsequent paper. Once again, the flexibility of our family of func-

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 352

tions will allow for many adaptations to particular architectures and datasets,
with only a few parameters during training.

-8 -6 -4 -2 0 2 4 6

x

-1

0

1

2

3

4

5

6

f(
x
)

Zorro(m=0.7, as=0, ai=1.3,

b=1.8) SiLU in (-Inf, 1)

Zorro(m=0.98, as=0, ai=0.8,

b=1.3) SiLU in (-1, Inf)

Zorro(m=0.95, as=0, ai=0.9,

b=1.1) SiLU in (-2, 5)

SiLU

(a) SiLU-Zorro.

-8 -6 -4 -2 0 2 4 6

x

-1

0

1

2

3

4

5

6

f(
x
)

Zorro(m=0.8, as=0, ai=1.8,

b=1.3) GELU in (-Inf, 1)

Zorro(m=0.99, as=0, ai=1.3,

b=1.3) GELU in (-1, Inf)

Zorro(m=0.98, as=0, ai=1.3,

b=1.5) GELU in (-2, 5)

GELU

(b) GELU-Zorro.

-8 -6 -4 -2 0 2 4 6

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

f(
x
)

Zorro(m=0.41, as=3.4,

ai=3.4, b=1.2)

DSiLU

(c) DSiLU-Zorro.

-8 -6 -4 -2 0 2 4 6

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

f(
x
)

Zorro(m=0.7, as=3.3,

ai=3.3, b=1.7)

DGELU

(d) DGELU-Zorro.

-0.4 -0.2 0 0.2 0.4

x

-0.1

0

0.1

0.2

0.3

0.4

0.5

f(
x
)

Zorro(m=1, as=0,

 ai=20, b=1)

Zorro(m=1, as=0,

 ai=30, b=1)

Zorro(m=1, as=0,

 ai=50, b=1)

ReLU

(e) ReLU-Zorro.

Fig. 6: Approximation of some widely used activation functions using the Zorro
function.

5. Parameter adjustment

Our functions are mainly reparametrizations of each other. Therefore, it is
very important to establish a convenient set of parameters for each variant so
that future users do not have to fit the parameters to a particular architecture
and dataset forcibly. However, we also consider it important to show that these
functions exhibit very different behaviors, making them suitable for different
architectures and environments.

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 353

In order to do that, we use a dense feedforward architecture without batch
normalization or convolutions, a fixed training and validation division, and a
fixed number of epochs. The choice of a dense feedforward architecture is delib-
erate: Parameter exploration and activation function response to the vanishing
gradient problem makes more sense in feedforward neural networks (Glorot &
Bengio, 2010). Vanishing Gradient, Saturation, and Exploding Gradient prob-
lems tend to be more severe and challenging in this kind of network than in
more modern architectures such as LSTMs, GRUs, and Transformers, which
avoid these issues by design. These last networks incorporate specific features
and channels to respond to these problems more effectively, where deeper layers
receive unaltered fresh information. It strongly contrasts ordinary dense feed-
forward networks, where the information is passed down only from the previous
layer. So, we used a standard feedforward architecture of progressively deeper
layers in order to adjust our parameters and study the behavior of the functions.
Our experiments showed that, at least in convolutional architectures, the same
parameters adjusted in feedforward architectures produced good results without
further adjustments.

Now, in order to apply grid search, it is necessary to define an interval and
a step value to obtain the parameter sets that we need to evaluate. For this
purpose, we consider practical and usable values for training a neural network,
discarding extreme values and points where the function is not defined. Table 4
contains the intervals and steps used for each parameter of Zorro variants. The
conditions of the test are shown in Table 2.

Parameter Details

Dataset MNIST
Architecture Dense Feedforward
Optimizer Adam, learning rate: 0.01
Number of hidden neurons 128
Epochs 15
Batch normalization No
Batch Size 1024
Runs 4

Table 2: Details of the dense Feedforward architecture used for parameter ad-
justment.

Now, the desirable parameter values are those that allow the training of a
deep neural network. So, we progressively increase the depth until the VGP
sinks and the network cannot train anymore. We define a parameter set that
produces good training as one that obtains more than 90% validation error. Our
preliminary tests showed that until VGP occurs, any reasonable set of parameters
will produce good training. Then, as the number of layers approaches the VGP
point, only a small percentage (5% to 10%) of the parameters will produce good
training. We take those limit parameters as the preferred set.

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 354

Then, we define the Stable Layer as the maximum number of layers where
40% or more of the considered parameter sets yield good training. In other words,
the stable layer is the maximum layer where more than 40% of the parameter sets
obtain a validation error of 90%. After that layer, the training becomes unstable,
and progressively fewer parameter sets achieve the desired validation error. Then,
we define the Maximum Layer as the final layer that can be successfully and
consistently trained (with a smaller percentage of tested parameter sets). Due to
the VGP, no parameters can train the network for more layers. For the analysis,
the training was repeated 4 times for each parameter set and each number of
layers. This number was adopted because preliminary experiments showed they
are sufficient to determine whether the training is stable. If the training algorithm
is stable for 4 runs, it will train the network successfully when considering more
repetitions. If the algorithm fails in these runs, the reason is the VGP or a
problem with the architecture used.

Table 3 shows the Stable and Maximum layers for each activation function.
It reports the number of layers achieved, the percentage of parameter sets that
achieve a validation error equal to or greater than 90%, and the average training
and testing accuracy over the 4 runs performed. The Symmetric-Zorro function
successfully trains up to 30 layers with an accuracy of 96.7%, and only 52.4%
of the parameter sets (around half) get more than 90% validation error. The
maximum number of layers is 34, with only 23.8% of the parameter sets training
successfully. The accuracy is 96.5%, similar to the previous case, indicating a very
small decrease in performance for the stable set of parameters chosen. The other
functions present very different stable and maximal layers, ranging from only 15
for Sigmoid-Zorro to 40 for Tanh-Zorro. There are very small differences in the
validation error between the stable layer and the maximal layer (less than 1%
difference), showing that the training is consistent and successful, or VGP takes
place in a noticeable fashion, and the training becomes unstable. Some functions
are sensitive and require more parameter adjustment, like Asymmetric-Zorro
with 41.7% of successful parameters and Sloped-Zorro with 50.0%. Meanwhile,
Tanh-Zorro is almost insensitive, and 95.4% of the parameters can efficiently
train the network with 38 layers, decreasing to only 12.7% in 43 layers (meaning
that as we approach more complex problems and deeper networks, the need for
parameter adjustment might appear). It is also important to notice that the
functions and network might eventually train for more layers. However, since
that training is not consistently successful, we do not include those results in
the table.

Figure 7 shows the validation errors achieved using each of the parameter
values considered, corresponding to the Stable and Maximal layers, respectively.
It can be clearly observed that the stable layers have a higher percentage of suc-
cessful training (darker squares). Using more layers does not necessarily mean
failed training, only that the training will be more unstable. Finally, Table 4
shows the parameters that produce the best results in the Stable and Maximal
layers. The parameters that produce the best result in the Maximum layer are
not necessarily stable for different runs. So, this table includes the set of param-

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 355

Activation
function

Number of
layers

Percentage with
validation >90%

Max training
precision [%]

Max validation
precision [%]

Stable Maximal Stable Maximal Stable Maximal Stable Maximal

Symmetric-
Zorro

30 34 52.4 23.81 98.40 97.70 96.78 96.54

Asymmetric-
Zorro

40 43 41.7 6.67 97.24 96.81 96.31 95.71

Sigmoid-
Zorro

15 16 68.0 13.33 95.25 93.38 93.94 92.94

Tanh-Zorro 38 43 95.4 12.73 97.07 96.78 96.07 95.70

Sloped-
Zorro

23 30 50.0 11.67 98.69 98.06 96.82 96.58

Table 3: Parameter adjustment for the new activation functions - Stable and
Maximal layer for each function.

(a) Symmetric-
Zorro(Stable)

(b) Sloped-
Zorro(Stable)

(c) Sigmoid-
Zorro(Stable)

(d) Asymmetric-
Zorro(Stable)

(e) Tanh-
Zorro(Stable)

(f) Symmetric-
Zorro(Max.)

(g) Symmetric-
Zorro(Max.)

(h) Sigmoid-
Zorro(Max.)

(i) Asym-
Zorro(Max.)

(j) Tanh-
Zorro(Max.)

Fig. 7: Validation error surfaces for the stable and maximum layers obtained for
the different parameters of the Zorro function.

eters that produce stable results in the Maximum layer, although they are not
necessarily the most accurate.

6. Application to Convolutional Networks

The experiments performed in the previous section used feedforward net-
works with fully connected layers without applying convolution. We proceeded
with this method to study the impact on the Vanishing Gradient Problem and
highlight the differences between Zorro variants as activation functions. In this
section, we will apply the variants of Zorro to simple convolutional networks on

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 356

Activation
function

Parameter
interval

Parameter
step

Stable Layer Maximal Layer
Best value Best results Stable results

Symmetric-
Zorro

a ∈ [0, 6] 1.0 2.0 1.0 2.0
b ∈ [0, 0.5] 0.1 0.5 0.5 0.3

Asymmetric-
Zorro

ai ∈ [3, 6] 1.0 6.0 5.0 5.0
as ∈ [0.4, 1.2] 0.2 0.8 0.4 0.4
b ∈ [0, 0.4] 0.2 0.4 0.4 0.4

Sigmoid-
Zorro

a ∈ [0, 5.5] 0.5 2.0 4.5 3.0
b ∈ [0, 2] 0.5 0.5 0.5 1.5

Tanh-Zorro
a ∈ [1, 6] 0.5 3.5 4.0 3.5
b ∈ [0, 1.5] 0.5 1.0 1.0 1.5

Sloped-
Zorro

a ∈ [0, 6] 1.0 2.0 2.0 2.0
b ∈ [0, 6] 0.1 0.3 0.3 0.3
m ∈ [1, 2] 0.1 1.3 1.2 1.2
n ∈ [0, 0.5] 0.1 0.0 0.1 0.0

Table 4: Parameters for each activation function - Best values for stable and
maximal layer, and most frequent value in the maximal layer.

known datasets to show the improvements that can be achieved. Convolutional
Neural Networks (CNNs) (Huang et al., 2018) are a class of feedforward networks
specialized in processing input data with a grid-like topology, typically images.
CNNs exploit images’ spatial structure and features to extract and learn relevant
features. CNNs are crucial in the fields of deep learning and computer vision.
Important and widespread libraries like Keras, PyTorch, and OpenCV include
pre-trained Convolutional architectures VGG, ResNET, Inception, and YOLO
(You Only Look Once) (Shah et al., 2023). This last one is a leading library in
the world for computer vision. Improving these networks leads to better perfor-
mance in computer vision tasks, which is essential in practical applications such
as security systems, medical diagnostics, autonomous vehicles, and more.

A CNN takes an input image and automatically assigns importance to var-
ious aspects or features of the image through adjustable weights and biases,
effectively differentiating between different elements during training. The archi-
tecture is based on convolutional, pooling, and fully connected layers. The con-
volutional layer is the core of the CNN. It performs most of the computational
work necessary for feature extraction using filters. The pooling layer reduces the
spatial size of the input and extracts the most dominant information without
losing important image properties. This pooling layer reduces processing needs,
acts as a noise suppressor, and maintains translational invariance. It means that
if the input image is shifted, the output of the pooling layer does not change
significantly. At the end of the convolutional and pooling layers, fully connected
layers are typically used for the final task.

We will use simple convolutional neural networks to test the new Zorro ac-
tivation functions against more traditional ones. Comparisons of GELU and
DGELU with their respective approximations using the Zorro function are of
particular interest. The selected databases are some of the most widely used in

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 357

the machine learning literature: MNIST (Deng, 2012), Fashion MNIST (Xiao et
al., 2017), CIFAR-10, Letters EMNIST (Cohen et al., 2017), and Balanced EM-
NIST (Cohen et al., 2017). The architecture used for CNN is described in Table
5. Each convolutional layer was followed by the activation function under obser-
vation. Although these are small architectures, they are sufficient to demonstrate
the validity of the approach and evaluate the impact of the proposed activation
functions on CNN performance. Hypothesis tests were performed to compare
the results and determine whether there are significant differences in the means
of the precisions achieved in the different runs corresponding to the different
activation functions used. Specifically, we use Welch’s t-test (Welch, 1947) for
two independent samples, assuming the two population variances are different.
We are using the Student’s t Distribution, given that 10 runs were performed.

Parameter Details

Input shape 28× 28× 1 for single-channel images
Normalization No
Batch size 1024 for Letters and Balanced databases

2048 for other databases
Optimizer Adam, SGD (with momentum), learning rate: 0.001
Loss function Categorical Cross entropy
Training epochs 30

Layers Convolution 2D (filters: 4, kernel size: 3× 3)
Convolution 2D (filters: 4, kernel size: 3× 3)
Max Pooling 2D (size: 2× 2)
Dropout (0.25)
Flatten
Dense Feedforward (512 units)
Dropout (0.5)
Output (activation: softmax)

Table 5: Details of the Convolutional Neural Network (CNN) architecture used
to test different activation functions.

Table 6 shows the accuracy of the validation set obtained by each activation
function on each database. They were grouped into four parts: the first con-
tains the traditional functions, including Sigmoid, ReLU, and Swish-based; the
second corresponds to DGELU, separated from the others because it has not
been proposed as an activation function in previous papers; the third contains
the Zorro variants proposed in this work; and the last part includes the Zorro
function with parameter setting that approximate the GELU and DGELU func-
tion. The average accuracy values exceeding the accuracy obtained by the ReLU
function are highlighted in bold style. It is important to note that the accuracy
reported for CIFAR-10 is significantly low compared to state-of-the-art results,
which achieve 95% accuracy because we do not use Fractional Max Pooling (((Pa-
pers with Code - An Overview of Activation Functions)), 2024). However, this

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 358

Activation CIFAR-10 Fashion MNIST MNIST Letters EMNIST Balanced EMNIST
Function Max. Mean STD p Max. Mean STD p Max. Mean STD p Max. Mean STD p Max. Mean STD p

Sigmoid 43.13 40.39 1.95 0.00 83.09 81.97 0.58 0.00 94.89 94.51 0.25 0.00 3.85 3.85 0.00 0.00 2.13 2.13 0.00 0.00
Tanh 54.90 51.91 1.77 0.00 88.61 88.33 0.22 0.00 98.34 97.91 0.26 0.00 83.38 80.96 1.51 0.00 76.38 73.51 2.15 0.00
ReLU 61.10 59.13 1.32 1.00 90.63 90.03 0.32 1.00 99.00 98.76 0.20 1.00 90.44 88.78 2.07 1.00 83.09 82.52 0.36 1.00
ELU 55.21 53.00 1.41 0.00 88.95 88.68 0.20 0.00 98.65 98.52 0.10 0.00 89.04 88.54 0.34 0.73 80.51 79.05 1.41 0.00
SiLU 57.27 56.23 1.06 0.00 89.16 88.78 0.24 0.00 98.93 98.67 0.17 0.25 90.45 90.24 0.14 0.05 83.35 83.20 0.13 0.00
GELU 60.02 58.24 1.21 0.13 90.11 89.64 0.26 0.01 98.94 98.73 0.09 0.68 90.63 90.37 0.12 0.04 83.87 83.70 0.15 0.00
DGELU 55.53 54.08 0.90 0.00 88.77 88.28 0.25 0.00 98.29 98.05 0.23 0.00 89.27 46.22 44.67 0.02 2.13 2.13 0.00 0.00

Zorrosigmoid 47.70 45.90 1.04 0.00 84.61 83.81 0.50 0.00 96.43 95.78 0.45 0.00 67.03 59.17 19.49 0.00 65.01 61.55 1.92 0.00
Zorrotanh 53.05 51.59 1.30 0.00 87.75 87.60 0.13 0.00 98.24 97.58 0.31 0.01 83.18 79.50 3.24 0.00 78.10 72.94 2.04 0.00
Zorrosym 62.97 60.26 1.41 0.08 90.96 90.62 0.30 0.00 99.06 98.90 0.09 0.06 90.98 90.86 0.11 0.01 84.70 84.43 0.14 0.00
Zorroasym 62.37 58.51 2.65 0.52 90.96 90.51 0.27 0.00 98.94 98.85 0.07 0.22 91.04 90.31 0.35 0.05 84.60 83.94 0.29 0.00
Zorrosloped 63.36 61.51 1.25 0.00 91.40 90.93 0.24 0.00 99.01 98.93 0.08 0.02 91.63 91.11 0.20 0.01 85.44 84.82 0.30 0.00

Zorrorelu 60.38 58.28 1.44 0.19 90.61 90.00 0.50 0.88 98.90 98.71 0.15 0.49 90.38 89.97 0.27 0.11 84.47 83.45 0.57 0.00
Zorrogelu1 60.84 58.77 1.17 0.52 90.60 90.14 0.34 0.46 98.95 98.72 0.19 0.61 91.02 90.76 0.18 0.02 84.85 84.13 0.30 0.00
Zorrogelu2 61.41 59.05 2.42 0.93 91.23 90.66 0.27 0.00 99.07 98.90 0.08 0.04 91.68 90.98 0.27 0.01 84.61 84.44 0.10 0.00
Zorrogelu3 61.70 59.23 1.54 0.88 90.62 90.06 0.32 0.79 99.05 98.87 0.14 0.17 91.18 90.79 0.25 0.01 85.04 84.44 0.24 0.00
Zorrodgelu 56.41 53.57 1.90 0.00 88.83 88.58 0.22 0.00 98.42 98.05 0.25 0.00 88.70 20.79 35.73 0.00 2.13 2.13 0.00 0.00

Table 6: Results for the different tested activation functions on a Convolutional
Architecture for 10 repetitions.

simple architecture is sufficient to demonstrate the efficiency of our approach.
The fourth column of each database shows the p-value of the statistical test that
allows deciding when the average accuracy for each activation function differs
significantly from the average accuracy of the ReLU function at a significance
level α = 0.05. If the p-value is less than α the hypothesis can be rejected, and
the alternate hypothesis can be accepted (the mean values are different). That is,
the mean accuracy from the analyzed activation function is statistically different
from the ReLU mean accuracy (these cases are indicated in a bold style).

The best function is Sloped-Zorro, which gives the best average accuracy
for all databases: 61.51% for CIFAR-10, 90.93% for Fashion MNIST, 98.93% for
MINST, 91.11% for Letters, and 84.82% for Balanced Letters. ReLU gives better
results for traditional functions for CIFAR-10, Fashion MNIST, and MNIST,
whereas GELU is the best for Letters and Balanced Letters. GELU is better
than SiLU, but the difference is very small. The Sigmoid function generates
a higher error, causing the network not to train for the Letters and Balanced
Letters datasets. On the other hand, DGELU is one of the worst in the group
of traditional functions, with clearly unstable behavior in the last two datasets
(high standard deviation value for one case and validation accuracy close to zero
in the other case).

The results for Zorro (see the second group of rows in Table 6) show that the
Symmetric, Asymmetric, and Sloped variants are the best compared to Sigmoid-
Zorro and Tanh-Zorro. They are most clearly seen in the average errors reported
for the last two data sets. This behavior is possibly due to the linear part of the
Zorro function being located in the positive part for the first variants. In contrast,
the linear part is centered at 0 for the Sigmoid and Tanh variants of Zorro.
However, the Zorro-Sigmoid and variant Zorro-Tanh functions perform better
than the original Sigmoid and Tanh functions. Also, Symmetric, Asymmetric,
and Sloped variants obtain better results than ReLU in most cases, and we can
state that the mean values are statistically different.

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 359

On the other hand, the approximating functions of ReLU and DGELU are
among the best functions tested. If we compare the original functions with their
respective approximations, we see that the Zorro-based versions are better on
average, although the differences are very small. Table 7 shows the results of
the hypothesis test where the average accuracy of the activation function and
the average accuracy of the corresponding approximation to the Zorro function
do not present significant differences. It can be observed that the hypothesis
cannot be rejected for ReLU and ReLU-Zorro, so the means are equal. It is
an expected behavior since the ReLU approximation is very accurate, as seen in
Section 4.2. Similar results were obtained for DGELU and DGELU-Zorro, except
for the Fashion MNIST dataset, where Zorro obtained a slight improvement of
88.6% over 88.3%. Finally, for GELU and its approximations, the hypothesis is
rejected in all cases except MNIST because the functions are not as close as in
the previous cases. However, the accuracy obtained with Zorro is slightly higher
than the original function.

Function CIFAR-10 Fashion MNIST MNIST Letters Balanced

Zorrorelu 0.188 0.883 0.500 0.105 0.001
Zorrogelu1 0.338 0.000 0.803 0.000 0.001
Zorrogelu2 0.362 0.000 0.000 0.000 0.000
Zorrogelu3 0.127 0.000 0.021 0.000 0.000
Zorrodgelu 0.456 0.000 0.985 0.178 1.000

Table 7: p-values obtained from hypothesis test for means comparison for ReLU,
GELU, and DGELU and their respective Zorro approximations using the CNN
architecture.

7. Application to Transform Neural Network

We followed an example using the CIFAR-100 database and 8-layered Trans-
former architecture taken from (S. H. Lee et al., 2021), version for Keras 2,
modified on 10-01-2022. The architecture was trained from scratch in a GPU
following the details contained in Table 8.

Our results are shown in Table 9, indicating the maximum and mean values
of 10 runs, the standard deviation, and the p-value of the hypothesis test to
compare the mean accuracy achieved with each function and their respective
approximate Zorro functions. It shows that the Zorrorelu variant can effectively
replace ReLU with no significant difference in accuracy. Meanwhile, the vari-
ants Zorrogelu1, Zorrogelu2, and Zorrogelu3 present a very small difference below
GELU, but there is no statistical evidence to reject the hypothesis and state that
they are different. Therefore, for an approach based on adapting the activation
function to a particular dataset, using these functions is a good starting point

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 360

Parameter Details

Input shape 32× 32× 3 for three-channel images
Data augmentation Random transformations (output shape: 72×72×3)
Total parameters Trainable: 21,787,755, Non-Trainable: 7
Optimizer AdamW, weight decay 0.0001, learning rate 0.001
Loss function Sparse Categorical Cross-entropy
Training Epochs 70

Layers Shifted Patch Tokenization (output shape: 12×12×540)
Patch Encoder
Transformer Blocks (repeated 8 times):

- Layer Normalization (if indicated)
- Multi-Head with Attention Local Self Attention
- Add (residual connection)
- Layer Normalization (if indicated)
- Dense (128 units), custom Activation Function
- Dropout (0.1)
- Dense (64 units), custom Activation Function
- Dropout (0.1)
- Add (residual connection)

Layer Normalization (if indicated)
Flatten
Dropout (0.5)
Dense (2048 units), custom Activation Function
Dropout (0.5)
Dense (1024 units), custom Activation Function
Dropout (0.5)
Output Dense Layer (100 units), custom Activation

Table 8: Details of the Transformer-based neural network architecture.

when the original architecture contains ReLU, GELU, or similar Swish-based
functions.

Finally, Zorrodgelu improves over DGELU (0.705 vs. 0.683), although these
functions achieved the lowest performance. The other Zorro variants described
in this work are not shown because they fail to train the network adequately,
achieving even lower accuracy values. Improving the accuracy by incorporating
changes in the activation function in this architecture and dataset is a challenge.
More tests and adjustments are necessary in order to modify the activation in
this architecture in a useful way.

8. Conclusions

A set of 5 flexible, fast, and adaptive activation functions has been introduced
in this paper. We have demonstrated that our family of parametric functions can
approximate ReLU, Swish, SiLU, DSiLU, GELU, and DGELU. This character-
istic makes them ideal for studying parametric adaptation in architectures and
packages that involve these functions, such as Yolo V8, xLSTM, and many LLMs

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 361

Activation
Normalization Testing

Top 5 Accuracy
functions Max. Mean STD p-value

ReLU Yes 0.566 0.835 0.831 0.002 -

ReLU No 0.568 0.839 0.834 0.004 -
Zorrorelu No 0.566 0.841 0.833 0.004 0.583

GELU No 0.576 0.843 0.837 0.004 -
Zorrogelu1 No 0.573 0.841 0.836 0.004 0.583
Zorrogelu2 No 0.569 0.842 0.835 0.004 0.278
Zorrogelu3 No 0.568 0.839 0.834 0.004 0.111

DGELU No 0.359 0.694 0.683 0.006 -
Zorrodgelu No 0.383 0.718 0.705 0.005 0.000

Table 9: Results for the different activation functions on a Transformer Archi-
tecture with 8 layer groups for 10 repetitions on the CIFAR-100 dataset.

and Transformers. We also showed that they assimilate many features of tradi-
tional functions, such as Tanh, while retaining the central linear part that has
made ReLU successful. It is important to note that more variants are clearly pos-
sible but have not been studied or proposed here: A variant with a fixed height
different from 1, a sloped variant whose maximum and minimum change along
with the slope, and many others. This work only depicted the most important
and promising variants that proved more useful in our test.

For these variants, we provided a parameter adjustment that should provide
future users with an initial parameter and behavior that should be considered a
criterion to decide which variants should be best for each particular case. More-
over, as shown in the experiments, the new activation functions produce good
results in the convolutional networks. More research is necessary to find improve-
ments in Transformer architecture, but the variants we provide can effectively
replace ReLU, GELU, and DGELU for a parametric or heuristic search.

The proposed values should give a good starting point for any architecture
and dataset. In subsequent works, we will present an in-depth analysis showing
the effectiveness of the Zorro variants in other CNNs and LSTMs. Also, we will
study the parameters to be trainable and heuristics to avoid lengthy parameter
adjustment processes for each case.

Funding

The research leading to these results received funding from Universidad Tec-
nológica Nacional under Grant Agreement No SITCTU10258C related to “Au-
tomatic Hyperparameter Design in Deep Neural Networks”research project.

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 362

References

Arai, H., & Imamura, H. (2018). Spin-wave coupled spin torque oscillators for
artificial neural network. Journal of Applied Physics, 124 (15). https :
//doi.org/10.1063/1.5040020

Beck, M., Pöppel, K., Spanring, M., Auer, A., Prudnikova, O., Kopp, M., Klam-
bauer, G., Brandstetter, J., & Hochreiter, S. (2024). Xlstm: Extended
long short-term memory. https://arxiv.org/abs/2405.04517

Biswas, K., Karri, M., & Bağcı, U. (2023, October). A Non-monotonic Smooth
Activation Function. https://doi.org/10.48550/arXiv.2310.10126

Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015a). Fast and accurate deep
network learning by exponential linear units (elus). https://doi.org/10.
48550/ARXIV.1511.07289

Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015b). Fast and accurate deep
network learning by exponential linear units (elus). https://doi.org/10.
48550/ARXIV.1511.07289

Cohen, G., Afshar, S., Tapson, J., & Van Schaik, A. (2017). Emnist: Extending
mnist to handwritten letters. 2017 International Joint Conference on
Neural Networks (IJCNN), 2921–2926.

D., S., J., S., & P., M. (2024). Hosc: A periodic activation function for preserving
sharp features in implicit neural representations. https://arxiv.org/abs/
2401.10967v1

Delfosse, Q., Schramowski, P., Mundt, M., Molina, A., & Kersting, K. (2024,
March). Adaptive Rational Activations to Boost Deep Reinforcement
Learning. https://doi.org/10.48550/arXiv.2102.09407

Deng, L. (2012). The mnist database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine, 29 (6), 141–142.

Dubey, S. R., Singh, S. K., & Chaudhuri, B. B. (2022, June). Activation Func-
tions in Deep Learning: A Comprehensive Survey and Benchmark.

Elfwing, S., Uchibe, E., & Doya, K. (2017, November). Sigmoid-weighted lin-
ear units for neural network function approximation in reinforcement
learning. https://doi.org/10.48550/arXiv.1702.03118

Feng, L., Tung, F., Hajimirsadeghi, H., Ahmed, M. O., Bengio, Y., & Mori, G.
(2024). Attention as an rnn. https://arxiv.org/abs/2405.13956

Glorot, X., & Bengio, Y. (2010, 13–15 May). Understanding the difficulty of
training deep feedforward neural networks. In Y. W. Teh & M. Titter-
ington (Eds.), Proceedings of the thirteenth international conference on
artificial intelligence and statistics (pp. 249–256, Vol. 9). PMLR.

Gong, Y. (2023, July). STL: A Signed and Truncated Logarithm Activation
Function for Neural Networks.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification. https://
doi.org/10.48550/ARXIV.1502.01852

Hendrycks, D., & Gimpel, K. (2023). Gaussian error linear units (gelus).

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 363

Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent
neural nets and problem solutions. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 6 (2), 107–116.

Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2018). Densely
connected convolutional networks.

Hutchins, D., Schlag, I., Wu, Y., Dyer, E., & Neyshabur, B. (2022). Block-
recurrent transformers. https://arxiv.org/abs/2203.07852

Kunc, V., & Kléma, J. (2024, February). Three Decades of Activations: A Com-
prehensive Survey of 400 Activation Functions for Neural Networks.
https://doi.org/10.48550/arXiv.2402.09092

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86 (11), 2278–
2324.

Lee, M. (2023, August). GELU Activation Function in Deep Learning: A Com-
prehensive Mathematical Analysis and Performance. https://doi.org/
10.48550/arXiv.2305.12073

Lee, S. H., Lee, S., & Song, B. C. (2021). Vision transformer for small-size
datasets.

Maas, A. L., Hannun, A. Y., Ng, A. Y., et al. (2013). Rectifier nonlinearities
improve neural network acoustic models. Proc. ICML, 30, 3.

Martinez-Gost, M., Pérez-Neira, A., & Lagunas, M. A. (2024). ENN: A Neural
Network with DCT Adaptive Activation Functions. IEEE Journal of
Selected Topics in Signal Processing, 18 (2), 232–241. https://doi.org/
10.1109/JSTSP.2024.3361154

Mastromichalakis, S. (2023, August). Parametric Leaky Tanh: A New Hybrid
Activation Function for Deep Learning. https : //doi . org/10 . 48550/
arXiv.2310.07720

Noel, M. M., & Oswal, Y. (2024, May). A Significantly Better Class of Activation
Functions Than ReLU Like Activation Functions. https://doi.org/10.
48550/arXiv.2405.04459

Papers with Code - An Overview of Activation Functions. (2024). Retrieved
July 5, 2024, from paperswithcode.com/methods/category/activation-
functions

Philipp, G., Song, D., & Carbonell, J. G. (2017). The exploding gradient prob-
lem demystified - definition, prevalence, impact, origin, tradeoffs, and
solutions. https://doi.org/10.48550/ARXIV.1712.05577

Rahman, J. U., Makhdoom, F., & Lu, D. (2023, April). Amplifying Sine Unit: An
Oscillatory Activation Function for Deep Neural Networks to Recover
Nonlinear Oscillations Efficiently. https://doi.org/10.48550/arXiv.2304.
09759

Rajanand, A., & Singh, P. (2024). ErfReLU: Adaptive activation function for
deep neural network. Pattern Analysis and Applications, 27 (2), 68. https:
//doi.org/10.1007/s10044-024-01277-w

Ramachandran, P., Zoph, B., & Le, Q. V. (2017). Searching for activation func-
tions. https://doi.org/10.48550/ARXIV.1710.05941

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 364

Roodschild, M., Gotay, J., & Will, A. (2020). A new approach for the vanishing
gradient problem on sigmoid activation. Progress in Artificial Intelli-
gence, 9, 351–360. https://doi.org/10.1007/s13748-020-00218-y

Shah, S. R., Qadri, S., Bibi, H., Shah, S. M. W., Sharif, M. I., & Marinello,
F. (2023). Comparing inception v3, vgg 16, vgg 19, cnn, and resnet
50: A case study on early detection of a rice disease. Agronomy, 13 (6).
https://doi.org/10.3390/agronomy13061633

Subramanian, B., Jeyaraj, R., Ugli, R. A. A., & Kim, J. (2024, February).
APALU: A Trainable, Adaptive Activation Function for Deep Learn-
ing Networks. https://doi.org/10.48550/arXiv.2402.08244

Sun, H., Wu, Z., Xia, B., Chang, P., Dong, Z., Yuan, Y., Chang, Y., & Wang,
X. (2024, May). A Method on Searching Better Activation Functions.
https://doi.org/10.48550/arXiv.2405.12954

Welch, B. L. (1947). The generalization of ‘student’s’ problem when several
different population variances are involved. Biometrika, 34 (1/2), 28–35.
http://www.jstor.org/stable/2332510

Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-mnist: A novel image dataset
for benchmarking machine learning algorithms. arXiv 1708.07747.

ASAID, Argentine Symposium on Artificial Intelligence and Big Data 2025

Memorias de las 54 JAIIO - ASAID - ISSN: 2451-7496 - Página 365

