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Abstract.  

Diseño de un Cifrador de bloque de 256 bits, con clave de 128 bits, y vector de 

inicialización de 256 bits, a partir de la estructura de una red de Feistel, con dos 

algoritmos cifradores paralelos, con Modo de Encadenamiento de Bloques de 

Cifrado de Propagación (PCBC), Propagating Cipher Block Chaining). El 

primer algoritmo está conformado por una secuencia 3-entrelazada con 

polinomio primitivo único, originada por un Linear Feedback Shift Registers 

(LFSR) de 71 bits. El segundo algoritmo está conformado por una secuencia 2-

entrelazada con polinomio primitivo único, produida por un Linear Feedback 

Shift Registers (LFSR) de 67 bits. Finalmente el texto cifrado obtenido fue 

sometido a conjunto de pruebas estadísticas de aleatoriedad. 
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1 Introducción 

El presente documento expone el desarrollo de un cifrador de bloque, basado en 

una red de Feistel que permite el cifrado y descifrado utilizando la misma estructura, 

donde para el caso del descifrado se utilizan las subclaves cambiando el orden de las 

mismas [1], [2] y [3]. La clave adoptada es de 16 caracteres, es decir 128 bits,  

El tamaño de los bloques es de 256 bits, con clave de 128 bits, y vector de 

inicialización de 256 bits. El cifrador es una red de Feistel, con dos algoritmos 

cifradores paralelos, con modo de encadenamiento de Bloques de Cifrado de 

Propagación (PCBC, Propagating Cipher Block Chaining), 

El primer algoritmo de cifrado está conformado por una secuencia 3-entrelazada 

obtenida a partir de secuencias pseudoaleatorias producidas por un único polinomio 

primitivo que opera sobre un Linear Feedback Shift Registers (LFSR) de 71 bits . 
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El segundo algoritmo está compuesto por una secuencia 2-entrelazada lograda a 

partir de cadenas pseudoaleatorias obtenidas por un único polinomio primitivo que 

trabaja sobre un Linear Feedback Shift Registers (LFSR) de 67 bits. 

El texto cifrado completo obtenido al final del proceso de encriptación, fue 

sometido a conjunto de pruebas estadísticas, para verificar su aleatoriedad.  

2 Esquema del cifrador 

El cifrado de bloque se denomina así por realizar el proceso de encriptación 

trabajando sobre cadenas de texto de igual longitud. En este caso se utilizaron bloques 

de 256 bits, luego esos bloques son ensamblados siguiendo el modo de 

encadenamiento de bloques de cifrado de propagación (Propagating Cipher Block 

Chaining,(PCBC)). Básicamente la estructura del cifrador está conformada por una 

red de Feistel que para desarrollarla requiere trabajar los siguientes aspectos: 

 Red de Feistel para cifrado  

o De 95 rondas, con Modo de Encadenamiento de Bloques de Cifrado de 

Propagación (PCBC) 

 Red de Feistel para descifrado 

o De 95 rondas, con Modo de Encadenamiento de Bloques de Cifrado de 

Propagación (PCBC) 

 Clave y subclaves 

 Vector de inicialización 

 Algoritmos de cifrado 

 Secuencias entrelazadas: 

o Secuencia 3-entrelazada 

o Secuencia 2-entrelazada 

 Matrices de permutación: 

o IP de 256 bits, PC1 de 128 bits, PC2 de 128 bits 

2.1 Red de Feistel para cifrado 

El proceso de cifrado consiste en dividir el texto plano en bloques de 256 bits, el 

primer bloque es sometido a una operación XOR con el vector de inicialización, luego 

al resultado se le realiza una permutación IP. 

La salida de la permutación entra en la red de Feistel, que se detalla en la Figura 1 

y se producen 95 rondas, con sus respectivas subclaves, después se realiza una 

permutación IP-1, para obtener el primer bloque de texto cifrado. 

Para los siguientes bloques de texto plano, se realiza una operación XOR con los 

bloques de texto plano y cifrado del primer bloque y al resultado se le ejecuta una 

nueva operación XOR con el texto plano del bloque y la salida sufre una permutación 

IP antes de entrar a la red de Feistel y producir 95 rondas, con las subclaves 

correspondientes. 

Después de esta operación se calcula la permutación IP-1 y se consigue un nuevo 

bloque de texto cifrado y así sucesivamente hasta completar el cifrado de todos los 
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bloques de texto plano. 

 

Fig. 1. Red de Feistel para cifrado 

2.2 Red de Feistel para descifrado 

La Red de Feistel para descrifrado es similar a la anterior, pero en este caso se 

toma el texto cifrado y se lo divide en bloques de 256 bits, Figura 2. 

Para el primer bloque de texto cifrado se realiza una permutación IP antes de entrar 

a la red de Feistel y realizar 95 rondas, con las claves introducidas en modo inverso, 

al resultado se le realiza una permutación IP-1 y luego se produce una operación XOR 

con el vector de inicialización para obtener el primer bloque de texto plano. 

Para el resto de los bloques de texto cifrado, el proceso comienza con la 

permutación IP, después se ingresa a la red de Feistel y se llevan a cabo 95 rondas, 

con las subclaves ingresadas en modo inverso. 

Finalmente después de este proceso se hace una permutación IP-1 y a la salida se le 

aplica una operación XOR con la resultante de la operación XOR entre el texto 
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cifrado y texto plano del bloque anterior, para lograr un nuevo bloque de texto plano. 

 

Fig. 2. Red de Feistel para descifrado 

2.3 Clave y subclaves 

Como se dijo previamente, la clave está conformada con 16 caracteres (128 bits), 

de la que se obtienen 95 subclaves de 128 bits, siguiendo los pasos que se muestran en 

la Figura 3.  

La clave es sometida a una permutación según la matriz de permutación PC1, 

luego se divide el bloque de 128 bits resultante en dos bloques de 64 bits, los que 

sufren desplazamiento de las posiciones de los bits de manera de tener 95 pares de 

bloques de 64 bits que corresponderán a las 95 subclaves. 

En los pares de las rondas: múltiplos de 5, los bits se desplazan dos posicionres a la 

izquierda, en el resto de los pares el desplazamiento es de una posición a la izquierda. 

Esos pares son ensamblados y luego sometidos a la permutación PC2, para obtener 

las 95 subclaves finales. 
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Fig. 3. Tratamiento de las subclaves 

2.4 Vector de inicialización 

Es para iniciar las tareas de encadenamiento de bloques, tanto de cifrado como de 

descifrado. Es única para todo el proceso, debe ser secreta como la clave y su longitud 

es igual a la de los bloques: 256 bits. 

2.5 Algoritmos de cifrado 

Los algoritmos de cifrado tienen la configuración que se indica en la Figura 4. 

Tienen una entrada de 128 bits, que conforman los estados iniciales para los LFSR, 

que una vez cargados, realizan 128 ciclos con los distintos polinomios primitivos de 

conexión que producen la secuencias respectivas, las que luego se entrecruzan, 

entregando 128 bits de salida. 

2.6 Secuencias t-entrelazadas 

Tenemos las siguientes t-secuencias entrelazadas con polinomio primitivo único 

para los algoritmos de cifrado 1 y 2 [4] : 
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Fig. 4. Algoritmos de cifrado 1 y 2 

Secuencia 3-entrelazada con polinomio primitivo único. Los LFSR tienen una 

longitud de 71 bits y en Tabla 1, se indica el polinomio.primitivo único [5], [6], [7] y 

[8]. 

Tabla 1. LFSR, longitudes y polinomio primitivo del generador  

LFSR Longitud Polinomio primitivo 

1 71 P(x)2 = x71 + x49 + x45 + x34 + x30 + x21 + 1 

Secuencia 2-entrelazada con polinomio primitivo único. Los LFSR tienen una 

longitud de 67 bits y en Tabla 2, se indica el polinomio primtivo único [5], [6], [7] y 

[8]. 

Tabla 2. LFSR, longitudes y polinomio primitivo del generador  

LFSR Longitud Polinomio primitivo 

2 67 P(x)7 = x67 + x64 + x44 + x28 + x26 + x25 + 1 

2.7 Matrices de Permutación 

Se recurre a una matriz con una distribución aleatoria de las posiciones, para 

obtenerlas se utiliza un generador de números aleatorios, en esta ocasión se adopta un 

generador congruencial multiplicativo [9]. En Tabla 3 se observan los valores: 

Generador congruencial multiplicativo. El generador tiene la siguiente expresión: 

𝑥𝑖+1 = (𝑎𝑥 ∙ 𝑥𝑖  )𝑚𝑜𝑑 𝑚𝑥 
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Donde: 𝑎𝑥 = 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑑𝑜𝑟  𝑚𝑥 = 𝑚ó𝑑𝑢𝑙𝑜  𝑥0 = 𝑠𝑒𝑚𝑖𝑙𝑙𝑎 

Tabla 3. Matriz IP, PC1 y PC2 

Matriz módulo multiplicador semilla 

IP 1048576 3137 7369 

PC1 1048576 3163 7393 

PC2 1048576 3167 7411 

3 Elección de las pruebas estadísticas 

3.1 Pruebas de aleatoriedad 

El conjunto de pruebas estadísticas para generadores de números aleatorios y 

pseudoaleatorios para aplicaciones criptográficas fueron seleccionadas de la 

Publicación especial 800-22 revisión 1a del Instituto Nacional de Estándares y 

Tecnología (NIST), del trabajo de Rukhin (et al.) [10]. La Tabla 4 muestra las pruebas 

estadísticas para números aleatorios y pseudoaleatorios adoptadas. 

Tabla 4. Pruebas estadísticas para números aleatorios y pseudoaleatorios 

 
Pruebas estadísticas para números aleatorios y pseudoaleatorios 

1 Frecuencia (Monobit) 

2 Prueba de frecuencia dentro de un bloque 

3 Prueba de entropía aproximada 

4 Prueba de sumas acumuladas 

5 Prueba de rachas 

6 Prueba serial 

7 Prueba estadística universal de Maurer 

8 Prueba de coincidencia de plantillas sin superposición 

9 Prueba de complejidad lineal 

10 Prueba de transformada de Fourier discreta (espectral) 

3.2 Pruebas sobre el cifrador 

Se analizaron cien secuencias binarias de 100.000 de bits, obtenidas del cifrador a 

partir de cien claves diferentes. El nivel de significancia adoptado para las pruebas 

estadísticas es: 𝛼 =  0,01. La hipótesis nula es: 𝐻0 → 𝑝_𝑣𝑎𝑙𝑢𝑒 > 0,01 

3.3 Interpretación de los resultados 

Teniendo los resultados se pueden realizar dos procesos para la interpretación de 

los mismos: Proporción de muestras que pasan las pruebas y Prueba de Uniformidad 

de los P-valor  
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3.4 Proporción de muestras que pasan las pruebas 

Para el análisis de los resultados, se determina la proporción de muestras que 

superan las pruebas, y con esos datos se construye un gráfico de puntos, luego se 

verifica si los mismos caen dentro de los límites superior e inferior:. 

𝐿𝑆, 𝐿𝐼 = (1 − 𝛼) ± 3 ∙ √𝛼 ∙ (1 − 𝛼) 𝑘⁄  

En nuestro caso el número de muestras k = 100 y el nivel de significancia elegido 

es: α = 0.01, los límites quedan: 𝐿𝑆 = 1,02   𝐿𝐼 = 0,96 

Se consideran todas pruebas, los resultados fueron satisfactorios como muestran la 

Tabla 5 y la Figura 5. 

Tabla 5. Pruebas estadísticas para números aleatorios y pseudoaleatorios 

Pruebas estadísticas para números aleatorios 
y pseudoaleatorios 

Total Pasan Propor. Superior Inferior 

Frecuencia (Monobit) 100 98 0,98 1,02 0,96 

Prueba de frecuencia dentro de un bloque 100 100 1,00 1,02 0,96 

Prueba de entropía aproximada 100 99 0,99 1,02 0,96 

Prueba de sumas acumuladas 100 98 0,98 1,02 0,96 

Prueba de rachas 100 99 0,99 1,02 0,96 

Prueba serial 100 100 1,00 1,02 0,96 

Prueba estadística universal de Maurer 100 99 0,99 1,02 0,96 

Prueba de coincidencia de plantillas s/super. 100 97 0,97 1,02 0,96 

Prueba de complejidad lineal 100 98 0,98 1,02 0,96 

Prueba de transformada de Fourier discreta  100 99 0,99 1,02 0,96 

 

Fig. 5. Proporción de muestras que superan las pruebas 

3.5 Distribución Uniforme de los P-valor 

Pruebas de bondad de ajuste. Este control se ejecuta para cada prueba sobre las 

cien muestras, con los resultados de las frecuencias de p-valor obtenidos. Se 

consideran todas pruebas, los resultados fueron satisfactorios como muestran la Tabla 

6 y la Figura 6 
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Tabla 6. Distribución Uniforme de los P-valor 

Pruebas p-valor p-valor límite Pasa 

Frecuencia (Monobit) 0,8677 0,0001 Sí 

Prueba de frecuencia dentro de un bloque 0,4559 0,0001 Sí 

Prueba de entropía aproximada 0,0002 0,0001 Sí 

Prueba de sumas acumuladas 0,5544 0,0001 Sí 

Prueba de rachas 0,8514 0,0001 Sí 

Prueba serial 0,5749 0,0001 Sí 

Prueba estadística universal de Maurer 0,8514 0,0001 Sí 

Prueba de coincidencia de plantillas s/super 0,2493 0,0001 Sí 

Prueba de complejidad lineal 0,2368 0,0001 Sí 

Prueba de transformada de Fourier discreta 0,7792 0,0001 Sí 

 

Fig. 6. Distribución Uniforme de los P-valor, eje vertical en escala logarítmica invertida 

4 Comparación de frecuencias de caracteres 

Superposición de gráficos de frecuencias de caracteres de texto plano y texto 

cifrado, para observar las diferencias entre ambos, en Figura 7: 

 

Fig. 7. Frecuencias de caracteres de texto plano y texto cifrado 
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5 Conclusiones y Trabajos Futuros 

Un cifrador de bloque de 256 bits, que cuenta con una clave de 128 bits y vector de 

inicialización de 256 bits, para los procesos de encadenamiento. Que presenta un 

diseño novedoso con la incorporación de  algoritmos de cifrado paralelos que 

contienen secuencias t-entrelazadas de un único polinomio primitivo. 

Además se presenta un sistema de generación de  95 subclaves a partir de la clave 

inicial, que se utilizan en las 95 rondas de cifrado y descifrado de la red. 

El resultado obtenido del texto cifrado tiene una secuencia de caracteres aleatorios, 

lo que hace difícil un criptoanálisis basado en la estadística de aparición de caracteres, 

dicha aleatoriedad es verificada mediante pruebas respectivas. 

Para futuras versiones se pueden incorporar entre otras cosas: claves más largas, 

mayor cantidad de rondas, nuevos procesos de generación de subclaves, otros  

algoritmos cifrado y la utilización de distintos métodos de concatenación de bloques. 
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