
Evaluador de Lógica Modal embebido en Haskell

Bautista José Peirone[0009-0004-7282-660X]

Universidad Nacional de Rosario
bpeirone@dcc.fceia.unr.edu.ar

Resumen Las lógicas modales son una familia de lógicas derivadas de la lógica
proposicional, las cuales resultan útiles para expresar y probar razonamientos
que requieren un mayor grado de expresividad que el provisto por la lógica de
la cual parten. Si bien pueden aplicarse en diversas áreas, no existen muchas
herramientas que permitan utilizar las mismas de manera fácil. De aquı́ surge la
iniciativa de implementar una herramienta al estilo de un lenguaje de dominio
especı́fico embebido (EDSL, embedded domain-specific language) que permita
al usuario del lenguaje poder trabajar de forma algebraica con los sı́mbolos de la
lógica de manera muy sencilla.

Keywords: Lógica Modal, Haskell, Programación Funcional, Lenguaje Embebido de
Dominio Especı́fico

Modal Logic interpreter embedded in Haskell

Abstract. Modal logics are a family of logics derived from propositional logic
that allow for more expressive reasoning than the one provided by the one they
build from. Despite its numerous theoretical and practical applications there is
a relatively scarce number of tools available for working with them in a user-
friendly and intuitive manner. This work presents the implementation of an em-
bedded domain-specific language (EDSL) designed with the goal to make alge-
braic manipulation of modal logic formulas simple.

Keywords: Modal Logic, Haskell, Functional Programming, Embedded Domain Spe-
cific Language

1 Introducción

1.1 Lógica Modal

La lógica modal es una teorı́a formal para realizar deducciones que parte de agregar dos
operadores unarios a los presentes en la lógica proposicional, □,♢, llamados operado-
res modales. Estas preceden fórmulas y les brindan interpretaciones nuevas, donde □φ

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 153

significa “es necesario que φ”, mientras que ♢φ significa “es posible que φ”. Sin em-
bargo, estas no son las únicas formas de entender lo que representan (Buehler, 2014),
y esto contribuye al enriquecimiento de esta familia de lógicas con diversidad de usos
y campos de aplicación tanto teóricos como prácticos, que van desde los silogismos
filosóficos hasta la verificación de sistemas de software. Además, ambos operadores
están relacionados por la equivalencia □φ ⇐⇒ ¬♢¬φ , por lo que usualmente se le
asigna interpretación solo a uno de ellos y la otra es obtenida a partir de esta relación.

La semántica de esta lógica se basa en un modelo de grafos dirigidos (Vardi, 1997),
y añade una forma de relacionar fórmulas con propiedades en grafos (Huth and Ryan,
2004), lo cual amplı́a aún más las formas de interpretar estas lógicas. Esta idea se de-
sarrolla con más detalle en el cuerpo del trabajo, junto con su implementación en el
lenguaje.

Además, esta familia de lógicas es utilizada como punto de partida para otras más
complejas, como la lógica temporal o lógica de acciones, que surgen de extender a
modelos y predicados más complejos.

Consideremos un conjunto de átomos A, el conjunto F de fórmulas modales se
define inductivamente como el menor conjunto tal que las siguientes propiedades son
válidas:

– A⊂F
– ∀φ ∈ F ,{¬φ ,□φ ,♢φ} ⊂ F
– ∀φ ,ψ ∈ F ,{φ ∧ψ,φ ∨ψ,φ → ψ,φ ←→ ψ} ⊂ F

1.2 Kripke Frames como modelo semántico

La semántica de esta lógica depende de una estructura conocida como Kripke Frame
(Estivill-Castro and Rosenblueth, 2013). Esta consiste en un grafo cuyos vértices re-
presentan estados y sus aristas las transiciones entre ellos, y una función de etiquetado
que indica qué proposiciones atómicas son verdaderas en cada estado, ambas siendo
fácilmente representables en un lenguaje de programación.

Es decir, formalmente definimos un modelo como M = (V,E,T), donde V es el
conjunto de vértices, E ⊂ V ×V representa las transiciones entre estados y T : V →
P (A) es la función de etiquetado, que a cada vértice le asigna el conjunto de átomos
que son verdaderos en él. El operador secuente indica qué fórmulas valen en cada estado
y se define como la relación ⊩⊂V ×F que verifica:

w ⊩ p ⇐⇒ p ∈ T (w)

w ⊩ φ ∧ψ ⇐⇒ w ⊩ φ y w ⊩ ψ,

w ⊩ φ ∨ψ ⇐⇒ w ⊩ φ o w ⊩ ψ,

w ⊩ ¬φ ⇐⇒ w ̸⊩ φ ,

w ⊩ φ → ψ ⇐⇒ w ⊩ φ =⇒ w ⊩ ψ.

w ⊩ φ ←→ ψ ⇐⇒ w ⊩ φ ⇐⇒ w ⊩ ψ.

w ⊩□φ ⇐⇒ ∀v ∈W, si (w,v) ∈ E, entonces v ⊩ φ ,

w ⊩ ♢φ ⇐⇒ ∃v ∈W tal que (w,v) ∈ E y v ⊩ φ .

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 154

Las primeras seis reglas son análogas a las que encontramos en la lógica proposicio-
nal, ya que los operadores asociados a estas se heredan de ella. Las últimas dos reglas
son las propias de los operadores modales y es donde entran en juego las transiciones
entre estados. Ambos operadores, □ y ♢, cumplen los roles de cuantificador universal
y existencial respectivamente, aunque de forma más limitada que en la lógica de pre-
dicados o de ordenes mayores. Aquı́ la cuantificación se da sobre un conjunto finito,
caracterı́stica fundamental que hace a esta lógica decidible (Vardi, 1997).

Estas reglas son adaptadas al lenguaje, y cuando la relación es válida, la expresión
correspondiente evalúa a True, y cuando no lo es, evalúa a False. Sobre la relación
del secuente se construyen las operaciones de satisfacibilidad y validez, denominadas
respectivamente isSatis y isValid, y definidas como

∀w ∈W, w ⊩ φ

isValid φ

∃w ∈W, w ⊩ φ

isSatis φ

A modo de ejemplo, se presenta un posible modelo, donde el conjunto de fórmulas
atómicas al lado de cada vértice indica las que son verdaderas en dicho estado.

w1 w2

w3w4

{p,q} {p}

{}{r}

Figura 1. Modelo de ejemplo

Basándonos en este ejemplo, podemos clasificar las siguientes afirmaciones como

✓ w1 ⊩ p∧¬t
✓ w4 ⊩ ♢r
✓ w2 ⊩□(p∧¬p)
✗ w3 ⊩ p∨q∨ r
✗ w4 ⊩ ♢(p∧ r)

1.3 Lenguaje Embebido de Dominio Especı́fico

El objetivo del trabajo es implementar una herramienta práctica para el manejo alge-
braico y automático de fórmulas y modelos, por lo tanto, el poder de expresividad de
la sintaxis junto con su semántica asociada son reducidas al campo de operadores lógi-
cos, descripción de funciones como pares ordenados y relaciones, por ello un lenguaje
de dominio especı́fico es una herramienta que se adapta muy bien a las necesidades y
flexibilidad requerida del problema.

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 155

La implementación de nuestro programa como un lenguaje embebido en Haskell
se debe a diversos factores. Haskell es un lenguaje puramente funcional, estático y
fuertemente tipado, (Hutton, 2016), (Gibbons, 2013). Por un lado, su infraestructura
de alto nivel nos resuelve muchos problemas al proveernos de un sistema de tipos muy
expresivo que facilita la representación de las estructuras y modelos que encontramos en
nuestro programa, y la verificación de tipos resulta muy útil para la detección temprana
de errores durante las etapas de desarrollo. Además, podemos utilizar las herramientas
de programación y compilado con las que ya cuenta Haskell. Por otro lado, el desarrollo
embebido nos permite trabajar en un diseño e implementación de alto nivel, sin tener
que preocuparnos por los detalles de los que se encarga el lenguaje anfitrión, como por
ejemplo la entrada y salida de archivos, compilación, entre otros.

Finalmente, las cualidades funcionales de Haskell nos permiten abstraer nociones
de estado (Hughes, 1989), aislando mejor cada componente en la medida de lo posible,
facilitando su desarrollo y escalabilidad. Teniendo en cuenta que la herramienta fue
diseñada para que la extensión a variantes de la familia modal resulte sencilla, este
factor es de gran importancia.

Todo esto nos lleva a la elección de Haskell como lenguaje anfitrión, porque provee
una forma simple de implementar una herramienta con las caracterı́sticas buscadas en
la solución a nuestro problema.

2 Desarrollo

2.1 Capacidades del lenguaje

La herramienta presentada en este trabajo consiste en una interfaz interactiva que per-
mite definir fórmulas, cargar modelos y evaluar expresiones, para lo cual se utiliza la
semántica previamente detallada, y aplicar una operación para determinar si un conjun-
to de axiomas se verifica sobre un modelo. Además, esta admite la carga de archivos de
extensión mll para poder almacenar definiciones y modelos.

Al definir una fórmula se le asigna un nombre a la misma, para que pueda ser utili-
zada en posteriores expresiones. De esta manera se pueden definir estructuras comunes
entre fórmulas y después aplicar sustituciones sintácticas sobre ellas para obtener otras.
Por ejemplo si definimos la fórmula P como:

def P = p and q -> r

y aplicamos en P las siguientes sustituciones:

P [a and t/p][s -> t /r]

obtenemos una fórmula equivalente a:

(a and t) and q -> (s -> t)

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 156

Los nombres de las definiciones deben empezar con mayúscula, y los de los átomos
con minúscula, para que no haya ambigüedades a la hora de evaluar las expresiones.

A continuación se expresa la carga del modelo de ejemplo de la figura 1:

set frame = {

w1 -> {w2},

w3 -> {w1},

w4 -> {w2,w3,w4}

}

set tag = {

w1 -> {p,q},

w2 -> {p},

w4 -> {r}

}

En la primer sentencia se definen los vértices V y las transiciones entre estos, E, mien-
tras que en la segunda sentencia se define el etiquetado de vértices T . Estas partes se
definen por separado para poder modificar el etiquetado sin tener que cambiar las tran-
siciones y viceversa, lo cual hace más flexible y dinámica la carga de diversos modelos.

Evaluar la fórmula f en el estado w del modelo se corresponde con la expresión
w ||- f. El modelo que se utiliza para la evaluación es siempre el último que se cargó.

También se pueden evaluar las dos operaciones adicionales mencionadas anterior-
mente, verificación de validez y satisfacibilidad, definidas sobre la operación primitiva
anterior, escribiendo las expresiones isValid f y isSatis f respectivamente.

Uno de los aspectos principales de la lógica modal es la estrecha relación que existe
entre algunas de sus fórmulas y propiedades sobre los grafos de los modelos (Huth and
Ryan, 2004). Por ejemplo, la propiedad □φ −→ φ vale para cualquier fórmula modal φ

en un modelo M si y solo si el grafo de M es reflexivo.
Esta relación entre fórmulas y propiedades de grafos permitió implementar de ma-

nera sencilla en el EDSL una operación para asegurar que se cumplen determinados
axiomas, analizando las propiedades sobre el grafo subyacente que se corresponden
con cada axioma. La sintaxis de esta operación es la siguiente:

assume {Axiom -A1, Axiom -A2, ...}

donde A1, .. , An son nombres de axiomas pertenecientes a una lista definida en
la implementación en la cual se encuentran. Por ejemplo, el axioma de la propiedad
antes mencionada, □φ −→ φ , se llama T , y por tanto se podrı́a verificar la propiedad
escribiendo:

assume {Axiom -T}

Es común ver varios de estos axiomas usados en conjunto ya que acarrean alguna
interpretación propia para los operadores. A estos conjuntos de axiomas se los deno-
minan lógicas, y el lenguaje provee las más utilizadas y conocidas. Por lo tanto, si el
conjunto de axiomas a verificar se corresponde con alguna lógica implementada en el
lenguaje, se puede utilizar la expresión:

assume Logic -L

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 157

donde L es el nombre de dicha lógica.
Finalmente, el lenguaje admite una configuración para poder observar más en de-

talle los pasos de evaluación de cada una de las expresiones con el fin de proveer al
usuario información que puede ser útil para la interpretación de los resultados.

2.2 Implementación de la herramienta

La construcción del intérprete se dividió en los pasos de representación de datos, análi-
sis sintáctico y evaluación.

Los grafos los interpretamos como funciones de sus vértices a su conjunto de veci-
nos. Por otro lado, el etiquetado de vértices puede también plantearse como una función
con dominio en los vértices del grafo y cuya imagen corresponde al conjunto de átomos
válidos en cada uno. Los modelos fueron implementados en Haskell con los siguientes
tipos de datos:

data Graph v = Graph

{ vertices :: [v]

, edges :: M.Map v [v]

}

data Model w a = Model

{ graph :: Graph w

, tag :: M.Map w (S.Set a)

}

Las fórmulas escritas en el lenguaje soportan dos caracterı́sticas de alto nivel que fa-
cilitan el proceso de escritura: sustituciones sintácticas y definiciones por nombre. Para
implementar esto fue necesario separar en dos etapas el procesamiento de las fórmulas.
Los tipos de datos de los resultados de cada etapa son los presentados en la figura 2. La
única diferencia entre estos tipos es la posibilidad que provee el primero de ellos pa-
ra expresar las dos caracterı́sticas anteriormente mencionadas. El analizador sintáctico
genera una salida de tipo F1 String, y el módulo Elab.hs luego convierte la repre-
sentación de F1 a F2. Parte del algoritmo utilizada para esta conversión se presenta en
la figura 3.

elab ’ env (LAtomic x) = return $ sub env (Atomic x)

elab ’ env (LIdent v) = do def <- snd <$> getEnv

maybe (undefVarError v) (return

. sub env) (lookup v def)

elab ’ env (LAnd s1 s2) = do f1 <- elab ’ env s1

f2 <- elab ’ env s2

return $ And f1 f2

elab ’ env (LSub x s1 s2) = do f2 <- elab ’ env s2

elab ’ ((x,f2):env) s1

Figura 3. Fragmento de la elaboración de términos

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 158

data F1 a = LBottom

| LTop

| LAtomic a

| LIdent a

| LSub a (F1 a) (F1 a)

| LAnd (F1 a) (F1 a)

| LOr (F1 a) (F1 a)

| LImply (F1 a) (F1 a)

| LIff (F1 a) (F1 a)

| LNot (F1 a)

| LSquare (F1 a)

| LDiamond (F1 a)

data F2 a = Bottom

| Top

| Atomic a

| And (F2 a) (F2 a)

| Or (F2 a) (F2 a)

| Imply (F2 a) (F2 a)

| Iff (F2 a) (F2 a)

| Not (F2 a)

| Square (F2 a)

| Diamond (F2 a)

Figura 2. Representación de fórmulas

Para la implementación del analizador sintáctico se utilizó una libreria de Haskell,
Happy. A partir de una gramática, Happy construye un parser para esta, lo cual acelera
y hace muy flexible el desarrollo del parser.

Debido a que tanto los grafos como los etiquetados los pensamos como funciones,
solo es necesario diseñar una gramática que permita especificar funciones por extensión
genéricas. Se implementó la siguiente gramática en el analizador sintáctico de funciones

f uncion ::= ‘{’ secuenciaAsignaciones ‘}’
secuenciaAsignaciones ::= secuenciaAsignaciones ‘,’ asignacion

| asignacion

| ε
asignacion ::= identi f icador ‘->’ ‘{’ secuenciaIdenti f icadores ‘}’

Para las sentencias del lenguaje, que comprenden desde asignaciones, especifica-
ción de modelos y expresiones a evaluar, se utiliza la sintaxis definida por

sentencia ::= ‘def’ identi f icador ‘=’ f ormula

| ‘set’ ‘frame’ ‘=’ f uncion

| ‘set’ ‘tag’ ‘=’ f uncion

| expresion

Y las expresiones, divididas en 4 tipos, se determinan por

expresion ::= ‘assume’ logica

| ‘isSatis’ f ormula

| ‘isValid’ f ormula

| estado ‘||-’ f ormula

Los lenguajes funcionales suelen carecer, a primera vista, de caracterı́sticas conside-
radas fundamentales para casi cualquier persona acostumbrada a las facilidades provis-
tas por los lenguajes imperativos. Entre estas se encuentran el manejo de excepciones,

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 159

variables mutables accesibles de forma global o incluso entrada y salida de archivos o
terminal. El paradigma funcional resuelve estas carencias con funciones de alto orden,
tipos polimórficos y, a menudo, patrones especiales de escritura que permiten este ma-
nejo de forma más organizada, como lo hace nuestro lenguaje anfitrión con mónadas
(Wadler, 1995). Este es solo un nombre elaborado para referirse a un estilo de progra-
mación que abstrae en la implementación las caracterı́sticas mencionadas.

Esto es lo que se observa en el fragmento del programa de la figura 3, donde se
utilizó una mónada implementada con transformadores provistos en la librerı́a estándar,
además de proveerles una interfaz propia que se adecuara al uso.

Teniendo ya una representación completa del estado diseñado para el problema, con
un manejo cómodo de este, se procede a diseñar el proceso de evaluación. Este queda
dividido en dos módulos totalmente separados e independientes, ya que cada uno im-
plementa operaciones del lenguaje que dependen de algoritmos totalmente distintos:
Modal.hs y Frame.hs. El primero se encarga de la evaluación semántica de fórmu-
las sobre modelos, mientras que el segundo implementa la verificación de propiedades
sobre grafos, asociada a la operación assume.

Por ejemplo, en el segundo módulo mencionado se implementan las funciones is-
Reflexive e isSymmetric, la primera verifica que para cada vértice v del grafo exista la
arista (v,v), mientras que la segunda chequea que para cada arista (v,u) también exista
(u,v).

type GraphProperty v = Graph v -> Bool

isReflexive :: Ord v => GraphProperty v

isReflexive g = all hasLoop (vertices g)

where

hasLoop v = existsEdge g (v,v)

isSymmetric :: Ord v => GraphProperty v

isSymmetric g = checkSymmetry (vertices g)

where

checkSymmetry [] = True

checkSymmetry (v:vs) = all (isSymmetricPair v) vs &&

checkSymmetry vs

isSymmetricPair x y = existsEdge g (x,y) ==

existsEdge g (y,x)

En cuanto a la evaluación de fórmulas, la lógica principal se halla en la implementa-
ción de la relación de secuente (⊩). Distinguimos principalmente tres casos: un átomo,
un operador n-ario proposicional y un operador modal. Cabe destacar que la versión
mostrada aquı́ es una simplificación que omite la construcción de trazas de ejecución,
debido a que no es relevante.

En el caso del átomo, se accede al modelo del entorno y se verifica si en dicho esta-
do vale de acuerdo con el etiquetado. Este es uno de los casos base de la recursión. La
evaluación sobre las operaciones es muy sencilla, consiste en aplicar recursivamente la
función sobre los argumentos de la operación y utilizar los resultados con el operador
correspondiente a esta en Haskell. Nuevamente, las mónadas facilitan la ocultación del
estado, y permiten propagar el modelo en cada llamada recursiva. Finalmente, un ope-

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 160

rador modal requiere también la evaluación recursiva sobre todos los vecinos de nuestro
estado actual, lo cual queda determinado por el grafo, y la secuencia de valores obtenida
es reducida mediante una operación que depende del operador modal en cuestión.

w ||- f@(Atomic p) =

do model <- ask

let b = p ‘elem ‘ validAtoms model w

return b

w ||- f@(And f1 f2) =

do t1 <- w ||- f1

t2 <- w ||- f2

return (t1 && t2)

w ||- f@(Square f1) =

do model <- ask

ts <- mapM (||- f1) (nextStates model w)

return (and ts)

w ||- f@(Diamond f1) =

do model <- ask

ts <- mapM (||- f1) (nextStates model w)

return (or ts)

2.3 Conclusión

Este trabajo consistió en el diseño e implementación de un lenguaje de dominio especı́fi-
co para poder representar modelos y fórmulas de la lógica modal. Este se implementó
como un lenguaje embebido en Haskell para aprovechar la infraestructura y herramien-
tas que este lenguaje ya nos provee, como su sistema de tipos, funciones de alto orden,
compiladores y librerı́as. Además, la elección de un lenguaje funcional facilitó varias
etapas del proceso por su simplicidad para representar el estado interno del programa y
el manejo de errores.

Consideramos que este trabajo presenta potencial para su aplicación en contextos
académicos, particularmente en la enseñanza de lógica modal y sus aplicaciones. La
naturaleza interactiva de la herramienta, combinada con su capacidad para visualizar
tanto modelos como procesos de evaluación, la convierte en un recurso valioso para
la comprensión de conceptos abstractos que tradicionalmente resultan desafiantes para
los estudiantes. Su uso podrı́a facilitar la resolución de problemas prácticos median-
te la experimentación directa con diferentes configuraciones de modelos y fórmulas,
permitiendo a los estudiantes desarrollar intuición sobre las propiedades de los siste-
mas modales. Además, la posibilidad de verificar axiomas y explorar correspondencias
entre propiedades de grafos y validez de fórmulas ofrece un enfoque pedagógico que
conecta la teorı́a formal con representaciones visuales concretas, lo que puede resultar
especialmente beneficioso en cursos introductorios de lógica computacional y verifica-
ción formal.

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 161

2.4 Trabajo futuro

La herramienta presenta a dı́a de hoy numerosas ramas con desarrollo pendiente, tanto
para expandir el poder expresivo como para aumentar las capacidades ya existentes.
Es claro que el potencial está limitado a evaluaciones sobre modelos; sin embargo,
las gramáticas y tipos de datos son suficientemente flexibles como para que cualquier
modificación resulte sencilla de aplicar. Los ejemplos más claros y adecuados son las
familias LTL y CTL (Huth and Ryan, 2004), resultantes de ampliar la familia de ope-
radores disponibles a costa de dar semántica propia a estos, pero usando el mismo tipo
de modelos utilizados en la familia modal aquı́ presentada.

Adicionalmente, se identifica la necesidad de mejorar significativamente la visuali-
zación de resultados, particularmente en lo que respecta a la presentación de trazas de
ejecución y la representación gráfica de modelos complejos. Otras áreas de desarrollo
incluyen la optimización del rendimiento para el manejo de modelos de gran escala, la
implementación de pruebas automatizadas más exhaustivas, y la extensión de la docu-
mentación mediante casos de estudio que demuestren la aplicabilidad de la herramienta
en escenarios reales de verificación formal.

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 162

Bibliografı́a

Buehler RJ (2014) Modal reasoning. Based on lectures by W. Holliday
Estivill-Castro V, Rosenblueth DA (2013) Efficient construction of kripke structures and

model checking of logic-labeled sequential finite state machines. INFORMATION
16(2(B)):1555–1560

Gibbons J (2013) Functional programming for domain-specific languages. In: Central
European Functional Programming - Summer School on Domain-Specific Langua-
ges, Springer, LNCS, vol 8606, pp 1–28, DOI 10.1007/978-3-319-15940-9 1, URL
http://link.springer.com/chapter/10.1007/978-3-319-15940-9_1

Hughes J (1989) Why Functional Programming Matters. The Computer Journal
32(2):98–107, DOI 10.1093/comjnl/32.2.98, URL https://academic.oup.com/

comjnl/article-lookup/doi/10.1093/comjnl/32.2.98

Huth MRA, Ryan MD (2004) Logic in computer science: modelling and reasoning
about systems. In: Logic in computer science: modelling and reasoning about sys-
tems, 2nd edn, Cambridge university press, Cambridge, pp 306–328

Hutton G (2016) Programming in Haskell, 2nd edn. Cambridge University Press, USA
Vardi MY (1997) Why is modal logic so robustly decidable?, URL http://www.cs.

rice.edu/~vardi, department of Computer Science, Rice University
Wadler P (1995) Monads for functional programming. In: Jeuring J, Meijer E (eds)

Advanced Functional Programming, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp 24–52

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 163

http://link.springer.com/chapter/10.1007/978-3-319-15940-9_1
https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/32.2.98
https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/32.2.98
http://www.cs.rice.edu/~vardi
http://www.cs.rice.edu/~vardi

	Evaluador de Lógica Modal embebido en Haskell

