EST, Concurso de Trabajos Estudiantiles 2025

Evaluador de Léogica Modal embebido en Haskell

Bautista José Peirone!0009-0004-7282-660X]

Universidad Nacional de Rosario
bpeirone@dcc.fceia.unr.edu.ar

Resumen Las l6gicas modales son una familia de 16gicas derivadas de la 16gica
proposicional, las cuales resultan utiles para expresar y probar razonamientos
que requieren un mayor grado de expresividad que el provisto por la 16gica de
la cual parten. Si bien pueden aplicarse en diversas dreas, no existen muchas
herramientas que permitan utilizar las mismas de manera facil. De aqui surge la
iniciativa de implementar una herramienta al estilo de un lenguaje de dominio
especifico embebido (EDSL, embedded domain-specific language) que permita
al usuario del lenguaje poder trabajar de forma algebraica con los simbolos de la
l6gica de manera muy sencilla.

Keywords: Loégica Modal, Haskell, Programacioén Funcional, Lenguaje Embebido de
Dominio Especifico

Modal Logic interpreter embedded in Haskell

Abstract. Modal logics are a family of logics derived from propositional logic
that allow for more expressive reasoning than the one provided by the one they
build from. Despite its numerous theoretical and practical applications there is
a relatively scarce number of tools available for working with them in a user-
friendly and intuitive manner. This work presents the implementation of an em-
bedded domain-specific language (EDSL) designed with the goal to make alge-
braic manipulation of modal logic formulas simple.

Keywords: Modal Logic, Haskell, Functional Programming, Embedded Domain Spe-
cific Language

1 Introduccion

1.1 Légica Modal

La l6gica modal es una teoria formal para realizar deducciones que parte de agregar dos
operadores unarios a los presentes en la logica proposicional, [, {, llamados operado-
res modales. Estas preceden férmulas y les brindan interpretaciones nuevas, donde Ul¢

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 153

EST, Concurso de Trabajos Estudiantiles 2025

significa “es necesario que ¢”, mientras que ¢ significa “es posible que ¢”. Sin em-
bargo, estas no son las tnicas formas de entender lo que representan (Buehler, [2014),
y esto contribuye al enriquecimiento de esta familia de 16gicas con diversidad de usos
y campos de aplicacién tanto tedricos como practicos, que van desde los silogismos
filosoficos hasta la verificacion de sistemas de software. Ademds, ambos operadores
estdn relacionados por la equivalencia (¢ <= —O—¢, por lo que usualmente se le
asigna interpretacién solo a uno de ellos y la otra es obtenida a partir de esta relacion.

La semantica de esta 16gica se basa en un modelo de grafos dirigidos (Vardi, |1997),
y afiade una forma de relacionar férmulas con propiedades en grafos (Huth and Ryan,
2004), lo cual amplia ain mds las formas de interpretar estas 16gicas. Esta idea se de-
sarrolla con mds detalle en el cuerpo del trabajo, junto con su implementacién en el
lenguaje.

Ademas, esta familia de 16gicas es utilizada como punto de partida para otras mas
complejas, como la l6gica temporal o l6gica de acciones, que surgen de extender a
modelos y predicados mas complejos.

Consideremos un conjunto de atomos A, el conjunto F de férmulas modales se
define inductivamente como el menor conjunto tal que las siguientes propiedades son
vélidas:

-ACF
- V¢€.7:7{_'¢7|:’¢7<>¢} CF
- Vo, e FAONY, OV Y, 0 =y, ¢ «— Yy} CF

1.2 Kripke Frames como modelo semantico

La semdntica de esta 16gica depende de una estructura conocida como Kripke Frame
(Estivill-Castro and Rosenblueth, |2013)). Esta consiste en un grafo cuyos vértices re-
presentan estados y sus aristas las transiciones entre ellos, y una funcién de etiquetado
que indica qué proposiciones atémicas son verdaderas en cada estado, ambas siendo
facilmente representables en un lenguaje de programacion.

Es decir, formalmente definimos un modelo como M = (V,E,T), donde V es el
conjunto de vértices, E C V X V representa las transiciones entre estados y T : V —
P (A) es la funcién de etiquetado, que a cada vértice le asigna el conjunto de 4tomos
que son verdaderos en él. El operador secuente indica qué férmulas valen en cada estado
y se define como la relacién I C V x F que verifica:

wlkp <~ peT(w)

wiFoA Ay <= wiF¢ywlry,

wlFkoVy <= wiF¢owlry,

wlk—¢ = wlf ¢,

wik¢g -y <= wik¢ = wliFy.

wiFkg +— v <= wilF¢ <= wliFy.

wlFO¢ < YveW,si(wv)€E, entonces vIF- ¢,
wliFO¢ < FveWtalque (w,v) EEyvi-¢.

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 154

EST, Concurso de Trabajos Estudiantiles 2025

Las primeras seis reglas son andlogas a las que encontramos en la 16gica proposicio-
nal, ya que los operadores asociados a estas se heredan de ella. Las ultimas dos reglas
son las propias de los operadores modales y es donde entran en juego las transiciones
entre estados. Ambos operadores, [1y ¢, cuamplen los roles de cuantificador universal
y existencial respectivamente, aunque de forma mds limitada que en la 16gica de pre-
dicados o de ordenes mayores. Aqui la cuantificacién se da sobre un conjunto finito,
caracteristica fundamental que hace a esta 16gica decidible (Vardi, [1997).

Estas reglas son adaptadas al lenguaje, y cuando la relacién es vélida, la expresion
correspondiente evalia a True, y cuando no lo es, evalia a False. Sobre la relaciéon
del secuente se construyen las operaciones de satisfacibilidad y validez, denominadas
respectivamente isSatis y isValid, y definidas como

YweW, wik¢ JweW, wik¢
isValid ¢ isSatis ¢

A modo de ejemplo, se presenta un posible modelo, donde el conjunto de férmulas
atémicas al lado de cada vértice indica las que son verdaderas en dicho estado.

{p.q} v {r}
) @A@ 0
J

Figura 1. Modelo de ejemplo

Basdndonos en este ejemplo, podemos clasificar las siguientes afirmaciones como

wilEp At

wy IE Or

wy IFO(pA—p)
XwilEpvgVvr
XwalEO(pAT)

1.3 Lenguaje Embebido de Dominio Especifico

El objetivo del trabajo es implementar una herramienta practica para el manejo alge-
braico y automdtico de férmulas y modelos, por lo tanto, el poder de expresividad de
la sintaxis junto con su semdntica asociada son reducidas al campo de operadores 16gi-
cos, descripcion de funciones como pares ordenados y relaciones, por ello un lenguaje
de dominio especifico es una herramienta que se adapta muy bien a las necesidades y
flexibilidad requerida del problema.

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 155

EST, Concurso de Trabajos Estudiantiles 2025

La implementacién de nuestro programa como un lenguaje embebido en Haskell
se debe a diversos factores. Haskell es un lenguaje puramente funcional, estatico y
fuertemente tipado, (Hutton, |2016), (Gibbons| 2013). Por un lado, su infraestructura
de alto nivel nos resuelve muchos problemas al proveernos de un sistema de tipos muy
expresivo que facilita la representacion de las estructuras y modelos que encontramos en
nuestro programa, y la verificacién de tipos resulta muy Ttil para la deteccién temprana
de errores durante las etapas de desarrollo. Ademads, podemos utilizar las herramientas
de programacion y compilado con las que ya cuenta Haskell. Por otro lado, el desarrollo
embebido nos permite trabajar en un disefio e implementacion de alto nivel, sin tener
que preocuparnos por los detalles de los que se encarga el lenguaje anfitrién, como por
ejemplo la entrada y salida de archivos, compilacion, entre otros.

Finalmente, las cualidades funcionales de Haskell nos permiten abstraer nociones
de estado (Hughes, |1989), aislando mejor cada componente en la medida de lo posible,
facilitando su desarrollo y escalabilidad. Teniendo en cuenta que la herramienta fue
disefiada para que la extension a variantes de la familia modal resulte sencilla, este
factor es de gran importancia.

Todo esto nos lleva a la eleccidon de Haskell como lenguaje anfitrién, porque provee
una forma simple de implementar una herramienta con las caracteristicas buscadas en
la solucién a nuestro problema.

2 Desarrollo

2.1 Capacidades del lenguaje

La herramienta presentada en este trabajo consiste en una interfaz interactiva que per-
mite definir férmulas, cargar modelos y evaluar expresiones, para lo cual se utiliza la
semantica previamente detallada, y aplicar una operacién para determinar si un conjun-
to de axiomas se verifica sobre un modelo. Ademas, esta admite la carga de archivos de
extensiéon m11 para poder almacenar definiciones y modelos.

Al definir una férmula se le asigna un nombre a la misma, para que pueda ser utili-
zada en posteriores expresiones. De esta manera se pueden definir estructuras comunes
entre férmulas y después aplicar sustituciones sintdcticas sobre ellas para obtener otras.
Por ejemplo si definimos la férmula P como:

def P = p and q -> r

y aplicamos en P las siguientes sustituciones:
P [a and t/plls -> t /r]
obtenemos una férmula equivalente a:

(a and t) and q -> (s -> t)

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 156

EST, Concurso de Trabajos Estudiantiles 2025

Los nombres de las definiciones deben empezar con mayuscula, y los de los &tomos
con minuscula, para que no haya ambigiiedades a la hora de evaluar las expresiones.
A continuacién se expresa la carga del modelo de ejemplo de la figura[T}

set frame = {

wl -> {w2},

w3 -> {wl},

w4d -> {w2,w3,wd}
}

set tag = {
wi -> {p,q},
w2 -> {p},
w4 -> {r}

}

En la primer sentencia se definen los vértices V y las transiciones entre estos, E, mien-
tras que en la segunda sentencia se define el etiquetado de vértices 7. Estas partes se
definen por separado para poder modificar el etiquetado sin tener que cambiar las tran-
siciones y viceversa, lo cual hace mds flexible y dindmica la carga de diversos modelos.

Evaluar la férmula f en el estado w del modelo se corresponde con la expresion
w | |- £. El modelo que se utiliza para la evaluacion es siempre el ultimo que se carg6.

También se pueden evaluar las dos operaciones adicionales mencionadas anterior-
mente, verificacion de validez y satisfacibilidad, definidas sobre la operacion primitiva
anterior, escribiendo las expresiones isValid f y isSatis f respectivamente.

Uno de los aspectos principales de la l16gica modal es la estrecha relacidn que existe
entre algunas de sus féormulas y propiedades sobre los grafos de los modelos (Huth and
Ryan, 2004)). Por ejemplo, la propiedad [1¢ — ¢ vale para cualquier férmula modal ¢
en un modelo M si y solo si el grafo de M es reflexivo.

Esta relacion entre férmulas y propiedades de grafos permitié implementar de ma-
nera sencilla en el EDSL una operacién para asegurar que se cumplen determinados
axiomas, analizando las propiedades sobre el grafo subyacente que se corresponden
con cada axioma. La sintaxis de esta operacion es la siguiente:

assume {Axiom-Al, Axiom-A2, ...}

donde A1, .. , An son nombres de axiomas pertenecientes a una lista definida en
la implementacién en la cual se encuentran. Por ejemplo, el axioma de la propiedad
antes mencionada, [J¢p — ¢, se llama T, y por tanto se podria verificar la propiedad
escribiendo:

assume {Axiom-T}

Es comtn ver varios de estos axiomas usados en conjunto ya que acarrean alguna
interpretacion propia para los operadores. A estos conjuntos de axiomas se los deno-
minan légicas, y el lenguaje provee las mds utilizadas y conocidas. Por lo tanto, si el
conjunto de axiomas a verificar se corresponde con alguna l6gica implementada en el
lenguaje, se puede utilizar la expresion:

assume Logic-L

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 157

EST, Concurso de Trabajos Estudiantiles 2025

donde L es el nombre de dicha légica.

Finalmente, el lenguaje admite una configuracién para poder observar mas en de-
talle los pasos de evaluacién de cada una de las expresiones con el fin de proveer al
usuario informacién que puede ser ttil para la interpretacion de los resultados.

2.2 Implementacion de la herramienta

La construccién del intérprete se dividié en los pasos de representacion de datos, anali-
sis sintactico y evaluacién.

Los grafos los interpretamos como funciones de sus vértices a su conjunto de veci-
nos. Por otro lado, el etiquetado de vértices puede también plantearse como una funcién
con dominio en los vértices del grafo y cuya imagen corresponde al conjunto de 4tomos
vélidos en cada uno. Los modelos fueron implementados en Haskell con los siguientes
tipos de datos:

data Graph v = Graph data Model w a = Model
{ vertices :: [v] { graph :: Graph w
, edges :: M.Map v [v] , tag :: M.Map w (S.Set a)
} }

Las férmulas escritas en el lenguaje soportan dos caracteristicas de alto nivel que fa-
cilitan el proceso de escritura: sustituciones sinticticas y definiciones por nombre. Para
implementar esto fue necesario separar en dos etapas el procesamiento de las féormulas.
Los tipos de datos de los resultados de cada etapa son los presentados en la figura[2] La
Unica diferencia entre estos tipos es la posibilidad que provee el primero de ellos pa-
ra expresar las dos caracteristicas anteriormente mencionadas. El analizador sintactico
genera una salida de tipo F1 String, y el médulo Elab.hs luego convierte la repre-
sentacion de F1 a F2. Parte del algoritmo utilizada para esta conversion se presenta en

la figura

elab’ env (LAtomic x) = return $ sub env (Atomic x)
elab’ env (LIdent v) = do def <- snd <$> getEnv
maybe (undefVarError v) (return
sub env) (lookup v def)
do fl1 <- elab’ env sl
f2 <- elab’ env s2
return $ And f1 £f2
do f2 <- elab’ env s2
elab’ ((x,f2):env) sl

elab’ env (LAnd s1 s2)

elab’ env (LSub x s1 s2)

Figura 3. Fragmento de la elaboracién de términos

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 158

EST, Concurso de Trabajos Estudiantiles 2025

LSquare (F1 a)
LDiamond (F1 a)

data F1 a = LBottom data F2 a = Bottom
| LTop | Top
| LAtomic a | Atomic a
| LIdent a | And (F2 a) (F2 a)
| LSub a (F1 a) (F1 a) | Or (F2 a) (F2 a)
| LAnd (F1 a) (F1 a) | Imply (F2 a) (F2 a)
| LOr (F1 a) (F1 a) | Iff (F2 a) (F2 a)
| LImply (F1 a) (F1 a) | Not (F2 a)
| LIff (F1 a) (F1 a) | Square (F2 a)
| LNot (F1 a) | Diamond (F2 a)
|
|

Figura 2. Representacion de féormulas

Para la implementacion del analizador sintéctico se utiliz6 una libreria de Haskell,
Happy. A partir de una gramatica, Happy construye un parser para esta, lo cual acelera
y hace muy flexible el desarrollo del parser.

Debido a que tanto los grafos como los etiquetados los pensamos como funciones,
solo es necesario disefiar una gramadtica que permita especificar funciones por extension
genéricas. Se implementd la siguiente gramaética en el analizador sintdctico de funciones

Sfuncion n= {7 secuenciaAsignaciones ‘}’
secuenciaAsignaciones ::= secuenciaAsignaciones ¢ ,’ asignacion

| asignacion

| €
asignacion n=identificador ‘=>> ‘{’ secuencialdentificadores }’

Para las sentencias del lenguaje, que comprenden desde asignaciones, especifica-
cion de modelos y expresiones a evaluar, se utiliza la sintaxis definida por
sentencia ::= ‘def’ identificador ‘=" formula

| “set’ ‘frame’ ‘=’ funcion
| “set’ ‘tag’ ‘=’ funcion
| expresion

Y las expresiones, divididas en 4 tipos, se determinan por

expresion ::= ‘assume’ logica
| “isSatis’ formula
| “isValid’ formula
| estado ‘| |-’ formula
Los lenguajes funcionales suelen carecer, a primera vista, de caracteristicas conside-
radas fundamentales para casi cualquier persona acostumbrada a las facilidades provis-
tas por los lenguajes imperativos. Entre estas se encuentran el manejo de excepciones,

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 159

EST, Concurso de Trabajos Estudiantiles 2025

variables mutables accesibles de forma global o incluso entrada y salida de archivos o
terminal. El paradigma funcional resuelve estas carencias con funciones de alto orden,
tipos polimérficos y, a menudo, patrones especiales de escritura que permiten este ma-
nejo de forma mds organizada, como lo hace nuestro lenguaje anfitrién con ménadas
(Wadler, |1995). Este es solo un nombre elaborado para referirse a un estilo de progra-
macion que abstrae en la implementacion las caracteristicas mencionadas.

Esto es lo que se observa en el fragmento del programa de la figura 3] donde se
utilizé una ménada implementada con transformadores provistos en la libreria estandar,
ademads de proveerles una interfaz propia que se adecuara al uso.

Teniendo ya una representacion completa del estado disefado para el problema, con
un manejo comodo de este, se procede a disefiar el proceso de evaluacion. Este queda
dividido en dos médulos totalmente separados e independientes, ya que cada uno im-
plementa operaciones del lenguaje que dependen de algoritmos totalmente distintos:
Modal.hs y Frame.hs. El primero se encarga de la evaluacién semdntica de férmu-
las sobre modelos, mientras que el segundo implementa la verificacién de propiedades
sobre grafos, asociada a la operacion assume.

Por ejemplo, en el segundo médulo mencionado se implementan las funciones is-
Reflexive e isSymmetric, la primera verifica que para cada vértice v del grafo exista la
arista (v,v), mientras que la segunda chequea que para cada arista (v,u) también exista

(u,v).

type GraphProperty v = Graph v -> Bool

isReflexive :: Ord v => GraphProperty v
isReflexive g = all hasLoop (vertices g)
where

hasLoop v = existsEdge g (v,v)

isSymmetric :: Ord v => GraphProperty v
isSymmetric g = checkSymmetry (vertices g)
where

checkSymmetry [] = True

checkSymmetry (v:vs) = all (isSymmetricPair v) vs &&
checkSymmetry vs

isSymmetricPair x y = existsEdge g (x,y) ==
existsEdge g (y,x)

En cuanto a la evaluacién de férmulas, la 16gica principal se halla en la implementa-
cién de la relacién de secuente (IF). Distinguimos principalmente tres casos: un dtomo,
un operador n-ario proposicional y un operador modal. Cabe destacar que la version
mostrada aqui es una simplificacién que omite la construccién de trazas de ejecucion,
debido a que no es relevante.

En el caso del atomo, se accede al modelo del entorno y se verifica si en dicho esta-
do vale de acuerdo con el etiquetado. Este es uno de los casos base de la recursioén. La
evaluacion sobre las operaciones es muy sencilla, consiste en aplicar recursivamente la
funcién sobre los argumentos de la operacidn y utilizar los resultados con el operador
correspondiente a esta en Haskell. Nuevamente, las monadas facilitan la ocultacion del
estado, y permiten propagar el modelo en cada llamada recursiva. Finalmente, un ope-

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 160

EST, Concurso de Trabajos Estudiantiles 2025

rador modal requiere también la evaluacién recursiva sobre todos los vecinos de nuestro
estado actual, lo cual queda determinado por el grafo, y la secuencia de valores obtenida
es reducida mediante una operacién que depende del operador modal en cuestién.

w | |- f@(Atomic p) =
do model <- ask
let b = p ‘elem‘ validAtoms model w
return b

w | |- f@(And f1 f2) =
do t1 <- w ||- f1
t2 <- w ||- f2

return (t1 && t2)

w | |- f@e(Square f1) =
do model <- ask
ts <- mapM (||- f1) (nextStates model w)
return (and ts)

w | |- f@(Diamond f1) =
do model <- ask
ts <- mapM (||- £f1) (nextStates model w)
return (or ts)

2.3 Conclusion

Este trabajo consisti en el disefio e implementacién de un lenguaje de dominio especifi-
co para poder representar modelos y férmulas de la 16gica modal. Este se implementd
como un lenguaje embebido en Haskell para aprovechar la infraestructura y herramien-
tas que este lenguaje ya nos provee, como su sistema de tipos, funciones de alto orden,
compiladores y librerias. Ademas, la eleccién de un lenguaje funcional facilité varias
etapas del proceso por su simplicidad para representar el estado interno del programa y
el manejo de errores.

Consideramos que este trabajo presenta potencial para su aplicacién en contextos
académicos, particularmente en la ensefianza de 16gica modal y sus aplicaciones. La
naturaleza interactiva de la herramienta, combinada con su capacidad para visualizar
tanto modelos como procesos de evaluacién, la convierte en un recurso valioso para
la comprensién de conceptos abstractos que tradicionalmente resultan desafiantes para
los estudiantes. Su uso podria facilitar la resolucién de problemas pricticos median-
te la experimentacién directa con diferentes configuraciones de modelos y férmulas,
permitiendo a los estudiantes desarrollar intuicién sobre las propiedades de los siste-
mas modales. Ademads, la posibilidad de verificar axiomas y explorar correspondencias
entre propiedades de grafos y validez de férmulas ofrece un enfoque pedagdgico que
conecta la teorfa formal con representaciones visuales concretas, lo que puede resultar
especialmente beneficioso en cursos introductorios de 16gica computacional y verifica-
ci6én formal.

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 161

EST, Concurso de Trabajos Estudiantiles 2025

2.4 Trabajo futuro

La herramienta presenta a dia de hoy numerosas ramas con desarrollo pendiente, tanto
para expandir el poder expresivo como para aumentar las capacidades ya existentes.
Es claro que el potencial estd limitado a evaluaciones sobre modelos; sin embargo,
las graméticas y tipos de datos son suficientemente flexibles como para que cualquier
modificacion resulte sencilla de aplicar. Los ejemplos mds claros y adecuados son las
familias LTL y CTL (Huth and Ryan, [2004), resultantes de ampliar la familia de ope-
radores disponibles a costa de dar semantica propia a estos, pero usando el mismo tipo
de modelos utilizados en la familia modal aqui presentada.

Adicionalmente, se identifica la necesidad de mejorar significativamente la visuali-
zacion de resultados, particularmente en lo que respecta a la presentacion de trazas de
ejecucion y la representacion grafica de modelos complejos. Otras areas de desarrollo
incluyen la optimizacién del rendimiento para el manejo de modelos de gran escala, la
implementacion de pruebas automatizadas mas exhaustivas, y la extensién de la docu-
mentacion mediante casos de estudio que demuestren la aplicabilidad de la herramienta
en escenarios reales de verificacion formal.

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 162

EST, Concurso de Trabajos Estudiantiles 2025

Bibliografia

Buehler RJ (2014) Modal reasoning. Based on lectures by W. Holliday

Estivill-Castro V, Rosenblueth DA (2013) Efficient construction of kripke structures and
model checking of logic-labeled sequential finite state machines. INFORMATION
16(2(B)):1555-1560

Gibbons J (2013) Functional programming for domain-specific languages. In: Central
European Functional Programming - Summer School on Domain-Specific Langua-
ges, Springer, LNCS, vol 8606, pp 1-28, DOI 10.1007/978-3-319-15940-9_1, URL
http://link.springer.com/chapter/10.1007/978-3-319-15940-9_1

Hughes J (1989) Why Functional Programming Matters. The Computer Journal
32(2):98-107, DOI 10.1093/comjnl/32.2.98, URL https://academic.oup.com/
comjnl/article-lookup/doi/10.1093/comjnl/32.2.98

Huth MRA, Ryan MD (2004) Logic in computer science: modelling and reasoning
about systems. In: Logic in computer science: modelling and reasoning about sys-
tems, 2nd edn, Cambridge university press, Cambridge, pp 306-328

Hutton G (2016) Programming in Haskell, 2nd edn. Cambridge University Press, USA

Vardi MY (1997) Why is modal logic so robustly decidable?, URL http://www.cs.
rice.edu/~vardi, department of Computer Science, Rice University

Wadler P (1995) Monads for functional programming. In: Jeuring J, Meijer E (eds)
Advanced Functional Programming, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp 24-52

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 163

http://link.springer.com/chapter/10.1007/978-3-319-15940-9_1
https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/32.2.98
https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/32.2.98
http://www.cs.rice.edu/~vardi
http://www.cs.rice.edu/~vardi

	Evaluador de Lógica Modal embebido en Haskell

