EST, Concurso de Trabajos Estudiantiles 2025

ASL - Lenguaje embebido en Haskell para la creacion
de Animaciones y Motion Graphics

Juan Bautista Figueredo!0009-0002-6815-7090]

Universidad Nacional de Rosario, Argentina
juan.b.figueredo0O1@gmail.com

Resumen Este trabajo presenta un lenguaje de dominio especifico ASL (Anima-
tion Specification Language), disefiado para generar animaciones bidimensiona-
les.

ASL es un lenguaje interpretado, imperativo, estaticamente tipado y secuencial.
Estas caracteristicas convierten al lenguaje en una alternativa sencilla, intuitiva y
segura, para escribir animaciones de una manera rapida y eficaz.

La expresividad del lenguaje utilizado como lenguaje anfitrién, Haskell, resulté
muy conveniente para la implementacion del lenguaje. La reutilizacion de su sin-
taxis clara, sistema de tipos estdtico, entorno monadico, librerias y otras partes del
lenguaje permitieron desarrollar de manera rapida una implementacion robusta.
Los usuarios de ASL podran construir y operar imagenes y acciones para descri-
bir con ellas animaciones completas.

Keywords: Lenguaje De Dominio Especifico, Animaciones, Haskell, Lenguaje
Embebido

ASL - Haskell embedded language for Animation and
Motion Graphics creation

Abstract. This work presents ASL (Animation Specification Language), a do-
main specific language designed to generate two-dimensional animations.

ASL is an interpreted, imperative, statically typed and sequential language. These
characteristics make it a simple, intuitive and safe alternative to write animations
quickly and efficiently.

The expressiveness of the host language, Haskell, proved highly convenient for
the implementation of the language. The reutilization of its clear sintax, static
type system, monadic environment, libraries and other parts of the language al-
lowed the quick development of a robus implementation. ASL enables users to
construct and combine images and actions to describe complete animations.

Keywords: Domain specific language, Animations, Haskell, Embedded language

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 164

EST, Concurso de Trabajos Estudiantiles 2025

1 Introduccion

Desde la integracion de los graficos por computadora en el mundo creativo, los dise-
fladores de animaciones han optado por utilizar estas nuevas herramientas para poten-
ciar y facilitar la tarea de crear animaciones. De aqui surge el concepto de Motion
Graphics (Graficos en Movimiento), que si bien su definicién puede ser ambigua, re-
fiere principalmente al uso de estas animaciones generadas por computadora en sectores
como el disefio gréfico, el entretenimiento y la educacion.

En el mundo de las animaciones y la cinematografia, la unidad minima de contenido
se conoce como frame (o cuadro). Un frame es una imagen. La exposicidn consecutiva
de frames genera una ilusiéon de movimiento, y, si se varia la velocidad con la que se
exponen los distintos frames, se obtienen distintos resultados en cuanto a la suavidad
de la animacién. Una animacién con maés frames por segundo (fps, frames per second)
resulta mas suave que una con una velocidad de frames menor. La frecuencia de frames
(framerate) de una animacién moderna puede variar entre 30 y 60 fps, implicando que
para un segundo de animacion, deben existir al menos 30 frames. En la animacidn tradi-
cional, el artista debe dibujar cada uno de estos frames para poder describir de manera
correcta el movimiento que se intenta representar. Usualmente se suele dividir este tra-
bajo en dos etapas: la etapa del keyframing (definicion de frames clave, o keyframes)
y la etapa del inbetweening (definicién de frames entre keyframes) (Harold Whitaker,
1981) (Williams)|, 2001).

La primer etapa refiere a la definicién de ciertos frames claves en la animacion,
como frames que definen poses o ubicaciones particulares de los objetos a animar. Una
vez definidos los keyframes, se procede con la etapa del inbetweening, que es el proceso
de creacién de todos los frames intermedios entre los keyframes, logrando la ilusién de
movimiento.

La animacién generada por computadora introdujo un cambio significante al flujo
de trabajo de un animador: ahora las computadoras pueden encargarse de realizar la
interpolacién entre dos keyframes, atenuando la carga de trabajo del artista.

Existen numerosos lenguajes de programacion de uso general que posibilitan la
creacién de animaciones. Entre ellos se encuentran C++, Python, Javascript, Haskell,
etc. Estos lenguajes cuentan con librerias especificas que permiten que el usuario realice
esta tarea, valiéndose de la infraestructura interna de cada lenguaje en particular.

El problema radica en que para poder empezar a crear estas animaciones, uno debe
primero conocer el lenguaje subyacente, hecho que ralentiza y obstaculiza la tarea
del artista. No sélo ocurre que cada lenguaje maneja de manera distinta la generacién
gréfica, sino que lenguajes como Haskell, con sintaxis declarativa y paradigma no se-
cuencial, presentan dificultades extras.

ASL (Animation Specification Language) fue creado con el foco en el disehador
de animaciones, y con el fin de facilitar el proceso de animacidn. Al ser un lenguaje de
dominio especifico, su sintaxis y semantica fueron disefiadas a medida, asemejandose lo
mads posible al flujo de trabajo tradicional de animacién, pero aprovechando las ventajas
que los graficos generados por computadora ofrecen. El lenguaje propone un sistema en
donde el usuario realiza una definicion de distintos objetos —como iméagenes, acciones,
colores, escenas y animaciones— partiendo de unidades primitivas y combindndolas con
distintos operadores especificos para cada objeto.

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 165

EST, Concurso de Trabajos Estudiantiles 2025

Para animar una imagen, se debe especificar la evolucién en el movimiento de la misma:
las acciones que esta realizard y el orden en que serdn realizadas. Esta idea es similar a la
generacion de keyframes, donde sélo se indica el resultado esperado y no se describen
los movimientos entre dichos resultados. Este flujo de trabajo, continuo y enfocado
en el resultado visual, se asemeja mds a la tarea de animar manualmente que a la de
programar.

Este ultimo punto refleja la diferencia clave entre ASL y los demds lenguajes uti-
lizados para la creacioén de animaciones: la cercania que un programa en ASL tiene con
la descripcion explicita de una animacién. La naturaleza secuencial del lenguaje per-
mite al usuario realizar animaciones complejas, con miltiples objetos independientes
en movimiento, en pocas lineas de cédigo.

En este trabajo se presentard parte de la implementacion del lenguaje, mostrando
las decisiones de diseno, representacion de los datos y el uso del mismo.

El cédigo completo en Haskell de este lenguaje de domino especifico se encuentra
disponible en un repositorio de GitHuHH

2 Generacion de Animaciones

Programas como Adobe After Effects, cominmente utilizados para la creacién de Mo-
tion Graphics, establecen una cierta metodologia para esta tarea. Primero, el usuario
debe, ya sea importando desde su dispositivo o utilizando herramientas de generaciéon
de formas nativas del programa, establecer los objetos que se utilizardn. Una vez creado
un objeto, el animador debe describir cémo este se movera por la escena, determinando,
por ejemplo, un movimiento hacia una coordenada especifica en la escena de trabajo.
Para determinar este movimiento, simplemente se puede “avanzar” en la linea de tiempo
y ubicar al objeto en la posicion deseada (Chris Meyer, 2010).

No es dificil ver que se han generado dos keyframes: Uno en el cuadro donde se
introdujo el objeto y otro en donde se especificé su posicién final. Al momento de
ejecutarse, el programa se encarga de generar todos los frames entre los keyframes gen-
erados. Cabe destacar que en este ejemplo, el usuario no determind la velocidad a la
cual se debe mover el objeto, sino la posicién que este debe tener al transcurrir una
porcion de tiempo —indicada con el avance de la linea de tiempo—. Esto deja en manos
del programa determinar la velocidad del movimiento y consecuentemente la cantidad
de frames a generar.

2.1 Imagenes, Acciones y Animaciones

En el lenguaje implementado, existen tres tipos importantes para la construccién de
animaciones: Las imagenes, las acciones y las animaciones.

Las imagenes representan los elementos que serdn animados: toda animacién se
realiza sobre una imagen. Las imdgenes en ASL se pueden construir de manera per-
sonalizada combinando imégenes primitivas, como circulos, rectangulos, tridngulos y
poligonos regulares.

! https://github.com/JTuanFigueredo-c/ASL

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 166

EST, Concurso de Trabajos Estudiantiles 2025

Las acciones se representan en el lenguaje como una transformacién en el estado
de una imagen. Las acciones se dividen en dos grupos: las de transformacion, que
modifican caracteristicas como la escala o el dngulo de rotacién, y las de traslacion,
que modifican la posicién en la escena de un imagen.

Para poder definir acciones, se cuenta con una serie de acciones primitivas, como la
accién move, que traslada la imagen a una posicién dada o la accidon scale que se utiliza
para cambiar la escala de una imagen. Estas acciones primitivas, al definirse, también
deben llevar informacién sobre la duracién de la transformacion en si. Esto permite al
ASL interpolar las velocidades en los cambios de las propiedades de la imagen.

Del mismo modo que las imégenes, las acciones cuentan con operadores especificos
para combinarlas y crear nuevos comportamientos. Algunos de estos operadores per-
miten la ejecucion en paralelo de dos acciones o la ejecucién en un bucle finito de una
accién. Cabe destacar que una accidén no estd ligada a una imagen en particular, sino
que define un movimiento genérico.

El efecto de una accién varia segtin la animacién y el estado en el que se encuentra
al ejecutarse la accién. Un ejemplo de esto es el siguiente: suponga que existe una
imagen A en el punto (0,0) y una imagen B en la posicion (10, 0), y se define una accién
x como un desplazamiento a la posicién (10,0) en 5 segundos (Move {10.0, 0.0}
5.0). Si se aplica la accién x a la imagen A, la imagen se desplazara al punto (10,0) en
5 segundos. Sin embargo, si se aplica la accién a la imagen B, la imagen permanecera
estitica durante la duracién de la accién. Esto es porque la imagen ya estaba en la
posicion especificada en la accidn, y el estado del mismo no cambia en la duracién de
la accidn.

Una animacion se define al agregar un elemento de tipo imagen a la escena definida
al inicio del programa. Mediante la expresion place se pueden especificar las propiedades
iniciales que tendrd esta imagen. Estas incluyen la posicion en la escena —Relativa
al centro geométrico de la imagen—, la escala, y el dngulo de rotacién inicial. Esta
construccién resulta en el keyframe inicial de la animacién. Las animaciones se nu-
tren de las acciones que se vinculan mediante el comando update. El cambio en las
propiedades de la animacién que estas implican se puede pensar como una definicién
de un nuevo keyframe. De este modo, a medida que se vinculan acciones a una ani-
macion, se definen distintos keyframes de la animacidn final.

2.2 Interpolacion de Inbetweens

La generacién de los inbetweens entre cada keyframe definido por la adicién de acciones
a una animacion se realiza tomando en cuenta el estado inicial, es decir, los valores de
las propiedades de la animacién a la hora de aplicar la transformacién especificada
en la accién, y el estado resultante luego de haber ejecutado la accién. Como cada
accidn tiene un tiempo de duracién asociado, se puede calcular la velocidad a la cual
se debe modificar cada caracteristica de la imagen animada para poder cumplir con la
especificacién final. Por ejemplo, si se define una accién que provoca un cambio de
escala de una imagen en un factor x durante una cantidad y de segundos, la imagen
deberd escalarse en un factor de ? por segundo.

Internamente, toda la animacion se representa mediante el uso de un tipo de dato
AnimState (figura[I) , que encapsula toda la informacion necesaria para poder graficar

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 167

EST, Concurso de Trabajos Estudiantiles 2025

cada cuadro de la animacién. Como una animacion es una secuencia de acciones, se
puede dividir la duracién final de la misma en varios segmentos de distinta duracion,
cada uno representando una accién. De este modo, una accidn se puede interpretar como
el cambio en las velocidades de cada propiedad de la animacién durante un periodo
determinado.

data AnimState = AnimState

{ pic :: Picture -- Imagen

, rot :: Float -- angulo de rotacion

, rotVel :: Float -- welocidad de rotacion

, pos :: Point -- punto actual

, posVel :: Point -- wvelocidades en T e y

, scX :: Float -- factor de escala en X

, scVelX :: Float -- welocidad de escala en X
, scY :: Float -- factor de escala en Y

, scVelY :: Float -- welocidad de escala en Y
, angVel :: Float -- welocidad angular

, orbP :: Point -- Punto de giro

} deriving (Show, Eq)

Fig. 1. Definicidn del tipo AnimState

Esta l16gica se traduce directamente en la interpretacion de una accién en ASL. Un
Stepper es la representacion de una accién a nivel de AnimState. En pocas palabras, un
Stepper es una funcién que cambia alguin valor del AnimState. Esto permite pensar
a una animacién como una secuencia de pares (Duracién, Stepper) en donde, a me-
dida se avanza en el tiempo de ejecucion, se aplica la funcién Stepper al AnimState,
cambiando los pardmetros del mismo, y esperando que se cumplan otros Duracién se-
gundos para aplicar el Stepper de la accién siguiente.

type Stepper = AnimState -> AnimState

Fig. 2. Definicion del tipo Stepper

Para administrar la aplicacién de los distintos Steppers, una vez que se procesan
todas las acciones vinculadas a una animacién, se genera una funcién Render. Estas
funciones abstraen la secuencia de pares (Duracién, Stepper) y permiten determinar,
en cada instante de ejecucion de la animacion, el estado AnimState correcto a graficar.
La funcién Render toma el tiempo transcurrido desde el inicio de la animacién y un
estado actual, y determina cdmo evoluciona el mismo. Esto encapsula la l6gica de in-
terpolacién para cualquier acciéon compuesta. De esta manera, es facil ver que, para

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 168

EST, Concurso de Trabajos Estudiantiles 2025

una animacion, la funcién Render permite determinar las propiedades en cada instante,
determinando los inbetweens.

type Render = Duration -> AnimState -> AnimState

Fig. 3. Definicidn del tipo Render

Teniendo todo esto en consideracién, una animacién queda definida como un par
(AnimState, Render), es decir, el estado inicial de la animacién y la funcién que define
cémo evolucionard dicho estado a medida que avanza el tiempo de ejecucion.

Con estas definiciones, ASL implementa una estrategia de interpolacién continua
basada en keyframes y velocidades, logrando una animacién fluida y determinista a
partir de una especificacion secuencial y declarativa.

3 Implementacion del lenguaje

ASL es un lenguaje embebido en Haskell. Embeber un lenguaje en otro brinda la opor-
tunidad de aprovechar toda la infraestructura del lenguaje anfitrién. El acceso a elemen-
tos como el compilador, sistema de tipos, librerias y sintaxis definidos con anterioridad
simplifican y aceleran el desarrollo de lenguajes de dominio especifico (Gibbons,2013).

La generacién gréfica de las animaciones se logré mediante el uso de la libreria de
Haskell, Gloss (Lippmeier, |2023)). Esta libreria toma el papel de interfaz entre Haskell
y OpenGL, permitiendo la renderizacién de imdgenes y animaciones. Su eleccion se
basé en este ultimo beneficio, que significé una facilitacion para el trabajo de imple-
mentacion del ASL.

El lenguaje implementado también tiene la propiedad de ser interpretado. Esto
quiere decir que, al momento de ejecutarse un programa, todas las instrucciones deben
evaluarse a medida que se leen. El proceso por el cual pasa cada sentencia al ejecutarse
se defini6 internamente como pipeline.

El pipeline se divide en tres etapas distinguidas: el parseo, la verificacién de tipos y
la evaluacion de la expresion final. Esta seccion explica la implementacion del pipeline
principal.

3.1 Parser

La primer etapa implica el parseo de las sentencias del programa ASL. Este proceso,
permite transformar las expresiones de ASL en expresiones del lenguaje anfitrién.

Las sentencias de ASL se dividen en dos tipos, las declaraciones y los comandos.
Ambas estructuras sintdcticas se definen con los tipos de datos Decl y Comm respectiva-
mente. Las expresiones (Exp) engloban los constructores y operadores de los distintos
tipos disponibles en ASL.

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 169

EST, Concurso de Trabajos Estudiantiles 2025

-- Ezpresiones de Acciones

| Seq Exp Exp

| Par Exp Exp

| Loop Exp Int

-- Constructores de
Animaciones

| Place Exp Point Float Float

-- Variables

| Var Name

-- Color

| Color Int Int Int

deriving (Show, Eq)

data Exp = Circle Float Float Fill Exp

| Rect Float Float Float Fill
Exp
| Line Float Float Float Exp
| Triang Float Float Float
Exp

| Polygon Int Float Exp

-- Ezpresiones de Imagenes

| Stack Exp Exp

| Offset Exp Exp Point

| Bind Exp Point Exp Point

| Rot Exp Float

RSize Exp Float
: Paint Exg Exp data Comm = .
- -- Ejecuciones de Acciones
Update Name Exp

| -- E A d

| jecucion de

| Animaciones

| | Play [Name]

|

- Constructores de Acciones
Rotate Float Duration

Move Point Duration

Scale Float Float Duration
Static Duration

Orbit Point Float Duration data Decl = Decl Name Type Exp

Fig.4. Definicién de los principales constructores del lenguaje, Exp (Expresiones), Decl
(Declaraciones) y Comm (Comandos)

Para la implementacién del parser utiliz6 la libreria Happy de Haskell. Un programa
escrito en Happy permite recibir la gramédtica de un lenguaje en forma BNF (Bakus-
Naur Form) y genera un modulo de Haskell con un parser de la gramatica.

La razén de la eleccion de esta libreria para este trabajo radica en la facilidad que
presenta Happy para la generacién de un parser. Los demds enfoques, basados en com-
binadores como la libreria Parsec, brindan flexibilidad y personalizacién en la con-
struccién del analizador sintictico, pero requieren mas trabajo para ser implementado.
Por otro lado, Happy permite definir el parser basdndose en la definicién casi directa
de la sintaxis concreta del lenguaje. Esto facilita la tarea, debido a que la derivacién del
parser se realiza de manera casi automatica.

3.2 Verificacion de tipos

La segunda etapa del pipeline de procesamiento de una expresién en ASL es la verifi-
cacidén de tipos. Las sentencias de ASL estan estaticamente tipadas. Esto quiere decir
que el usuario debe especificar de manera explicita, los tipos de las variables que se
declararan.

El sistema de tipos es fundamental para la deteccién de errores semdnticos en el
momento previo a la evaluacién de la sentencia. Esta garantia permite asegurar una
correcta utilizacién del dominio de trabajo (imagenes, acciones y animaciones). Por
ejemplo, la verificacion de tipos permite evitar la incorrecta asignacién de una expresion
de acciones a una variable de imagenes, o la vinculacién de acciones a objetos que no
son animaciones.

El respaldo que brinda la verificacién de tipos sobre la correccion en la construccién
de los términos permite, una vez pasada la verificacion, descartar internamente la necesi-
dad de estos tipos. Esto permiti, en etapas siguientes del pipeline, poder tratar a cada

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 170

EST, Concurso de Trabajos Estudiantiles 2025

expresion como una expresion semanticamente correcta y por lo tanto facilitar el desar-
rollo de los evaluadores.

ASL propone cuatro tipos distintos: colores (color), imdgenes (image), acciones
(action)y animaciones (anim). Cada expresion, tanto constructores como operadores,
resultan en alguno de estos tipos. De esta manera la verificacién se implementa deter-
minando, para una sentencia dada, la valuacidon del tipo de cada una de las expresiones
que la componen. Si estas son aptas para ser operadas, y el tipo de la sentencia coincide,
luego se puede asegurar que la instruccion esta bien tipada.

tcDecl :: MonadASL m => Decl -> m ()
tcDecl (Decl t b) = expect t b

tcComm :: MonadASL m => Comm -> m ()
tcComm (Play ans) = mapM_ tcAnims ans
where tcAnims e = do eTy <- getTy (Var e)
if eTy /= AnimT
then failASL $ typeErr (Var e) AnimT
eTy
else return ()

Fig. 5. Fragmento del verificador de tipos

3.3 Evaluacion de Declaraciones y Comandos

El tercer y ultimo paso del procesamiento de las sentencias implica la evaluacién de
las expresiones ya verificadas sinticticamente por el parser y semdnticamente por el
sistema de tipos.

Como se explicé anteriormente, las sentencias se dividen en dos grupos fundamen-
tales: las declaraciones y los comandos. Ambos grupos tienen una semantica completa-
mente distinta y se evalian de diferente manera.

El primer grupo contiene a la gran mayoria de expresiones que se encontrardn en
un programa ASL tipo. Las declaraciones permiten al usuario definir objetos como
imagenes, acciones, animaciones, colores y escenas. La idea importante de las declara-
ciones es que alimentan el entorno del programa, agregando informacién sobre los val-
ores y los tipos de las variables definidas.

Dentro del grupo de las declaraciones, existe una distincion entre las declaraciones de
escena y las declaraciones de variables.

Una declaracidn de escena es utilizada para definir las dimensiones y color del fondo
donde una animacion se llevard a cabo. La particularidad de las declaraciones de escena
proviene del hecho que sélo puede existir una tinica declaracion de escena en un mismo
programa ASL. Lo que es mas, dicha declaracién debe ser la primer sentencia del pro-
grama. La evaluacién de una declaracion de escena implica simplemente escribir la

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 171

EST, Concurso de Trabajos Estudiantiles 2025

Scene Float Float #r,g,b -- Declaraction de escena
Name : Type = Value -- Declaraction de wvartiable

Fig. 6. Sintaxis de las declaraciones

informacién respectiva a la escena en el entorno global del programa. Esto se utiliza a
la hora de renderizar la escena con Gloss.

Las declaraciones de variable se utilizan para definir variables y asignarles un valor.
Estas expresiones permiten definir colores, imdgenes, acciones y animaciones. Cada
variable es Unica durante la ejecucién de un programa. La evaluacion de una declaraciéon
de variable representa un proceso mas complejo que la declaracién de escena.

Al momento de procesarse la declaracion, la informacién de la variable, el tipo y la
expresion se almacenan en el contexto del programa ejecutado.

La idea detrds de este proceso es traducir, eventualmente, todos los objetos desde
su representacion interna a una representacion equivalente utilizando las herramientas
que provee Gloss. Para los colores y las imagenes, este proceso puede realizarse de
manera casi directa, dado que la interfaz de Gloss provee la opcién de crear colores y
objetos gréficos de tipo Picture, como se observa en la figura[7] Para expresiones de
acciones, la traduccidn resulta en la generacion de las funciones Steppers y para las
animaciones, la generacion del estado AnimState inicial.

translateColor :: Exp -> Color
translateColor (AST.Color r g b) = makeColorI r g b 255

translatelImg :: Exp -> Picture
translateImg (Circle rad thick £fill col) =
let col’ = translateColor col
in case fill of
Full -> color col’ $ circleSolid rad
Outline -> color col’ $ thickCircle rad thick

Fig. 7. Fragmento de traduccion de expresiones de imdgenes y colores a Gloss

Para evitar tener que realizar el trabajo de traduccion para todas las declaraciones,
mds alld de si son utilizadas finalmente en una animacién que se renderizard o no, se
propuso un sistema de evaluacion de declaraciones perezosa (lazy). Esto quiere decir,
que las declaraciones de colores, imagenes, acciones y animaciones sé6lo se traduciran
en el momento en el cual se requiera su representacion de Gloss para graficarse. De
este modo, la evaluacion se retrasa, y el procesado en el pipeline de una declaracion se
reduce a encapsular la expresion en un valor artificial (Value, figura[8) y almacenarlo
en el entorno del programa, vinculdndolo con el nombre de la variable declarada.

Cabe destacar que la representacion de la evaluacion de una expresion de tipo an-
imacién, resulta en un valor An Exp [Exp]. Los argumentos del constructor An rep-

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 172

EST, Concurso de Trabajos Estudiantiles 2025

data Value = I Exp -- imagen
| Ac Exp -- accion
| An Exp [Expl -— animacion
| C Exp color

deriving (Show, Eq)

Fig. 8. Definicién del tipo Value, que encapsula la evaluacion de las declaraciones

resentan la expresion utilizada para la definicion del primer estado de la animacion,
determinado con el operador place, y una lista de expresiones. Esta dltima estd desti-
nada a almacenar todas las evaluaciones de las expresiones de acciones utilizadas para
agregar movimientos a la animacién mediante el comando update, que se analizard
mads adelante.

El segundo grupo concentra a todas las sentencias que producen alglin cambio so-
bre los objetos definidos con antelacion. Ya sea desde agregar o vincular acciones a
animaciones, a ejecutar dichas animaciones.

En ASL actualmente existen 2 comandos, el comando update y el comando play.

Sint4cticamente, el comando update se representa como un operador infijo ’<<’,
que opera una animacion y una accion. Su uso es el siguiente: Anim << Action

Permite vincular una accién a una animacion. Esto es, agregar la accion a la secuen-
cia de acciones que la animacidn ejecutara.
El comando update requiere que la animacién a operar esté definida previamente me-
diante una expresion place, y por lo tanto, el primer argumento es una variable de tipo
Anim.

La evaluacién del comando update requiere la evaluacion de la expresion de accion
a vincular. Como la animacién que recibird la accién ya fue declarada, existe una vari-
able de tipo Anim en el entorno que corresponde con la variable utilizada en el comando.
Como se explicé con anterioridad, al evaluarse dicha declaracidn, se almacena en el en-
torno un valor An Exp [Exp] vinculado al nombre de variable utilizado. Dicho esto, la
evaluacion entonces se reduce a agregar al entorno, en particular al valor asociado a la
variable de animacidn, el valor resultado de la accién a vincular mediante el comando
en si.

El comando play tiene la siguiente sintaxis: play [Animl, Anim2, ... , AnimN].

La sentencia no solo es obligatoria en cualquier programa ASL, sino que debe ser la
dltima sentencia de un programa. Este comando indica qué animaciones se ejecutardn.
El orden en el cual se escriben las animaciones dentro del comando play afecta la
forma en la que se renderizan las animaciones. Las animaciones se apilardn una sobre
otra siguiendo el orden de izquierda a derecha en el que fueron agregadas como argu-
mento al comando play. Esto es, las animaciones de la derecha estardn por encima de
las animaciones de la izquierda.

La ejecucion de este comando resulta en la ejecucion y renderizacion de las anima-
ciones definidas a lo largo del programa, y especificadas como argumento del comando.
La evaluacion este tipo sentencias se divide en dos etapas.

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 173

EST, Concurso de Trabajos Estudiantiles 2025

La primer etapa se trata sobre evaluar todas las animaciones argumento del co-
mando. Este trabajo sigue con la idea explicada en la seccién [2} Primero, se traduce,
efectivamente, todos los valores resultado de la evaluacién de cada animacién y sus
acciones vinculadas. Este proceso recursivo permite traducir a términos de Gloss to-
dos lo componentes necesarios para la generacion de la animacién. Este paso puede
pensarse como la verdadera evaluacién de los términos definidos en las declaraciones
de variables. Una vez obtenido el estado AnimState inicial y la secuencia de pares
(Duracion,Stepper), se procede a calcular y definir la funcién Render asociada a la
animacion.

La segunda etapa implica la integracioén definitiva de la interfaz provista por Gloss
para la generacion de graficas animadas. La funcién principal que propone Gloss para
la creacion de animaciones es la funcién animate. Esta funcion recibe tres argumentos,
la definici6n de la pantalla donde se animard, el color de fondo y una funcién que, dada
la cantidad de segundos desde el inicio de la animacion, retorne una imagen del tipo de
Gloss, Picture.

Los primeros argumentos, se derivan directamente del resultado de la declaracién
de escena, y dichos datos estan almacenados en el entorno.

El dltimo argumento se construye a partir de la definicién de cada funcién Render
para cada animacién definida. Cada funcién Render toma la cantidad de tiempo desde
que comenzo la respectiva animacion y retorna el AnimState resultante, mientras que
la funcién producer (producer :: AnimState -> Picture) transforma un estado
de una animacién en una imagen de Gloss. Estas imdgenes resultantes se combinaron
entre si para formar una imagen tnica mediante la funcién pictures de Gloss, que
cumple este propdsito.

El resultado de la funcién animate es la presentacién de la animacién para el
usuario.

3.4 Entorno y Moénadas

El niicleo de la implementacion del lenguaje se apoya sobre el uso de ménadas para el
correcto manejo de un entorno interno global mutable y efectos secundarios como la
propagacion de errores en tiempo de ejecucion (Hutton, 2016).

La ménada principal, MASL, se define como la composicién de tres ménadas. Estas son:

Lamoénada StateT permite manejar los cambios que se realicen sobre el entorno, en
este caso modelado con el tipo Env. En este, se almacenan tanto las variables declaradas
a lo largo del programa como los valores finales de los procesamientos de las escenas y
las animaciones.

La ménada ExceptT brinda la posibilidad de capturar y propagar los posibles er-
rores generados durante la interpretacion de las sentencias, como el uso de variables
no definidas o el incorrecto uso de tipos. Esta capa es clave a la hora de brindar una
garantia con respecto a la consistencia del estado del programa.

Por dltimo, la ménada I0 habilita la posibilidad de generar los efectos secundarios
necesarios para la visualizacion de las animaciones generadas con Gloss.

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 174

EST, Concurso de Trabajos Estudiantiles 2025

data Env = Env

{ vars :: [(Name, (Type, Value))]
, cantVars :: Int

, scene :: Scene

, anims :: [(AnimState, Render)]

}

Fig. 9. Entorno principal Env
type MASL = StateT Env (ExceptT Error IO)

Fig. 10. Definicién de ménada MASL

4 Conclusion y Trabajos Futuros

Este trabajo tuvo como objetivo desarrollar ASL, un lenguaje de dominio especifico
embebido en Haskell orientado a la creacién de animaciones bidimensionales. A lo
largo de su desarrollo, se logré definir una sintaxis clara, un sistema de tipos estético,
una semdéntica operacional segura y, mediante la utilizacién de la libreria Gloss, una
representacion grafica fluida. El lenguaje fue desarrollado como trabajo practico final
para la materia Andlisis de Lenguajes de Programacion, lo que acoté el alcance del
lenguaje a los contenidos de la materia. No obstante, la implementacion del lenguaje
permitid no solo asentar los conocimientos aprendidos, sino que sentd las bases para su
evolucion hacia un proyecto de mayor envergadura.

En este sentido, existen diversas lineas de trabajo futuro que pueden mejorar tanto la
experiencia del usuario como la calidad en la ejecucién de las animaciones. Entre estos
trabajos se encuentra la adicién de métodos para descargar en formatos como .mp4 o
.gif las animaciones especificadas, la implementacién de animaciones interactivas con
entrada de sefales externas que modifiquen su comportamiento en tiempo de ejecucion,
y la ampliacién de la sintaxis y del sistema de renderizado para soportar animaciones
en tres dimensiones.

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 175

EST, Concurso de Trabajos Estudiantiles 2025

Bibliografia

Chris Meyer TM (2010) Creating Motion Graphics with After Effects, 5th Edition.
Routledge

Gibbons J (2013) Functional programming for domain-specific languages. In: ZsA3k
V, HorvA;th Z, CsatA3 L (eds) Central European Functional Programming - Summer
School on Domain-Specific Languages, Springer, LNCS, vol 8606, pp 1-28, DOI 10.
1007/978-3-319-15940-9_1, URL http://link.springer.com/chapter/10.
1007/978-3-319-15940-9_1

Harold Whitaker JH (1981) Timing for Animation. Focal Press, Oxford

Hutton G (2016) Programming in Haskell, 2nd edn. Cambridge University Press, USA

Lippmeier B (2023) gloss: Painless 2d vector graphics, animations and simulations.
URL https://hackage.haskell.org/package/gloss

Williams R (2001) The Animator’s Survival Kit: A Manual of Methods, Principles,
and Formulas for Classical, Computer, Games, Stop Motion, and Internet Animators.

Faber and Faber

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Pagina 176

http://link.springer.com/chapter/10.1007/978-3-319-15940-9_1
http://link.springer.com/chapter/10.1007/978-3-319-15940-9_1
https://hackage.haskell.org/package/gloss

	ASL - Lenguaje embebido en Haskell para la creación de Animaciones y Motion Graphics

