
ASL - Lenguaje embebido en Haskell para la creación
de Animaciones y Motion Graphics

Juan Bautista Figueredo[0009-0002-6815-7090]

Universidad Nacional de Rosario, Argentina
juan.b.figueredo01@gmail.com

Resumen Este trabajo presenta un lenguaje de dominio especı́fico ASL (Anima-
tion Specification Language), diseñado para generar animaciones bidimensiona-
les.
ASL es un lenguaje interpretado, imperativo, estáticamente tipado y secuencial.
Estas caracterı́sticas convierten al lenguaje en una alternativa sencilla, intuitiva y
segura, para escribir animaciones de una manera rápida y eficaz.
La expresividad del lenguaje utilizado como lenguaje anfitrión, Haskell, resultó
muy conveniente para la implementación del lenguaje. La reutilización de su sin-
taxis clara, sistema de tipos estático, entorno monádico, librerı́as y otras partes del
lenguaje permitieron desarrollar de manera rápida una implementación robusta.
Los usuarios de ASL podrán construir y operar imágenes y acciones para descri-
bir con ellas animaciones completas.

Keywords: Lenguaje De Dominio Especifico, Animaciones, Haskell, Lenguaje
Embebido

ASL - Haskell embedded language for Animation and
Motion Graphics creation

Abstract. This work presents ASL (Animation Specification Language), a do-
main specific language designed to generate two-dimensional animations.
ASL is an interpreted, imperative, statically typed and sequential language. These
characteristics make it a simple, intuitive and safe alternative to write animations
quickly and efficiently.
The expressiveness of the host language, Haskell, proved highly convenient for
the implementation of the language. The reutilization of its clear sintax, static
type system, monadic environment, libraries and other parts of the language al-
lowed the quick development of a robus implementation. ASL enables users to
construct and combine images and actions to describe complete animations.

Keywords: Domain specific language, Animations, Haskell, Embedded language

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 164



1 Introducción

Desde la integración de los gráficos por computadora en el mundo creativo, los dise-
ñadores de animaciones han optado por utilizar estas nuevas herramientas para poten-
ciar y facilitar la tarea de crear animaciones. De aquı́ surge el concepto de Motion
Graphics (Gráficos en Movimiento), que si bien su definición puede ser ambigua, re-
fiere principalmente al uso de estas animaciones generadas por computadora en sectores
como el diseño gráfico, el entretenimiento y la educación.

En el mundo de las animaciones y la cinematografı́a, la unidad mı́nima de contenido
se conoce como frame (o cuadro). Un frame es una imagen. La exposición consecutiva
de frames genera una ilusión de movimiento, y, si se varı́a la velocidad con la que se
exponen los distintos frames, se obtienen distintos resultados en cuanto a la suavidad
de la animación. Una animación con más frames por segundo (fps, frames per second)
resulta más suave que una con una velocidad de frames menor. La frecuencia de frames
(framerate) de una animación moderna puede variar entre 30 y 60 fps, implicando que
para un segundo de animación, deben existir al menos 30 frames. En la animación tradi-
cional, el artista debe dibujar cada uno de estos frames para poder describir de manera
correcta el movimiento que se intenta representar. Usualmente se suele dividir este tra-
bajo en dos etapas: la etapa del keyframing (definición de frames clave, o keyframes)
y la etapa del inbetweening (definición de frames entre keyframes) (Harold Whitaker,
1981) (Williams, 2001).

La primer etapa refiere a la definición de ciertos frames claves en la animación,
como frames que definen poses o ubicaciones particulares de los objetos a animar. Una
vez definidos los keyframes, se procede con la etapa del inbetweening, que es el proceso
de creación de todos los frames intermedios entre los keyframes, logrando la ilusión de
movimiento.

La animación generada por computadora introdujo un cambio significante al flujo
de trabajo de un animador: ahora las computadoras pueden encargarse de realizar la
interpolación entre dos keyframes, atenuando la carga de trabajo del artista.

Existen numerosos lenguajes de programación de uso general que posibilitan la
creación de animaciones. Entre ellos se encuentran C++, Python, Javascript, Haskell,
etc. Estos lenguajes cuentan con librerı́as especificas que permiten que el usuario realice
esta tarea, valiéndose de la infraestructura interna de cada lenguaje en particular.

El problema radica en que para poder empezar a crear estas animaciones, uno debe
primero conocer el lenguaje subyacente, hecho que ralentiza y obstaculiza la tarea
del artista. No sólo ocurre que cada lenguaje maneja de manera distinta la generación
gráfica, sino que lenguajes como Haskell, con sintaxis declarativa y paradigma no se-
cuencial, presentan dificultades extras.

ASL (Animation Specification Language) fue creado con el foco en el diseñador
de animaciones, y con el fin de facilitar el proceso de animación. Al ser un lenguaje de
dominio especı́fico, su sintaxis y semántica fueron diseñadas a medida, asemejándose lo
más posible al flujo de trabajo tradicional de animación, pero aprovechando las ventajas
que los gráficos generados por computadora ofrecen. El lenguaje propone un sistema en
donde el usuario realiza una definición de distintos objetos –como imágenes, acciones,
colores, escenas y animaciones– partiendo de unidades primitivas y combinándolas con
distintos operadores especı́ficos para cada objeto.

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 165



Para animar una imagen, se debe especificar la evolución en el movimiento de la misma:
las acciones que esta realizará y el orden en que serán realizadas. Esta idea es similar a la
generación de keyframes, donde sólo se indica el resultado esperado y no se describen
los movimientos entre dichos resultados. Este flujo de trabajo, continuo y enfocado
en el resultado visual, se asemeja más a la tarea de animar manualmente que a la de
programar.

Este último punto refleja la diferencia clave entre ASL y los demás lenguajes uti-
lizados para la creación de animaciones: la cercanı́a que un programa en ASL tiene con
la descripción explı́cita de una animación. La naturaleza secuencial del lenguaje per-
mite al usuario realizar animaciones complejas, con múltiples objetos independientes
en movimiento, en pocas lı́neas de código.

En este trabajo se presentará parte de la implementación del lenguaje, mostrando
las decisiones de diseño, representación de los datos y el uso del mismo.

El código completo en Haskell de este lenguaje de domino especı́fico se encuentra
disponible en un repositorio de GitHub1.

2 Generación de Animaciones

Programas como Adobe After Effects, comúnmente utilizados para la creación de Mo-
tion Graphics, establecen una cierta metodologı́a para esta tarea. Primero, el usuario
debe, ya sea importando desde su dispositivo o utilizando herramientas de generación
de formas nativas del programa, establecer los objetos que se utilizarán. Una vez creado
un objeto, el animador debe describir cómo este se moverá por la escena, determinando,
por ejemplo, un movimiento hacia una coordenada especı́fica en la escena de trabajo.
Para determinar este movimiento, simplemente se puede “avanzar” en la lı́nea de tiempo
y ubicar al objeto en la posición deseada (Chris Meyer, 2010).

No es difı́cil ver que se han generado dos keyframes: Uno en el cuadro donde se
introdujo el objeto y otro en donde se especificó su posición final. Al momento de
ejecutarse, el programa se encarga de generar todos los frames entre los keyframes gen-
erados. Cabe destacar que en este ejemplo, el usuario no determinó la velocidad a la
cual se debe mover el objeto, sino la posición que este debe tener al transcurrir una
porción de tiempo –indicada con el avance de la lı́nea de tiempo–. Esto deja en manos
del programa determinar la velocidad del movimiento y consecuentemente la cantidad
de frames a generar.

2.1 Imágenes, Acciones y Animaciones

En el lenguaje implementado, existen tres tipos importantes para la construcción de
animaciones: Las imágenes, las acciones y las animaciones.

Las imágenes representan los elementos que serán animados: toda animación se
realiza sobre una imagen. Las imágenes en ASL se pueden construir de manera per-
sonalizada combinando imágenes primitivas, como cı́rculos, rectángulos, triángulos y
polı́gonos regulares.

1 https://github.com/JuanFigueredo-c/ASL

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 166



Las acciones se representan en el lenguaje como una transformación en el estado
de una imagen. Las acciones se dividen en dos grupos: las de transformación, que
modifican caracterı́sticas como la escala o el ángulo de rotación, y las de traslación,
que modifican la posición en la escena de un imagen.

Para poder definir acciones, se cuenta con una serie de acciones primitivas, como la
acción move, que traslada la imagen a una posición dada o la acción scale que se utiliza
para cambiar la escala de una imagen. Estas acciones primitivas, al definirse, también
deben llevar información sobre la duración de la transformación en sı́. Esto permite al
ASL interpolar las velocidades en los cambios de las propiedades de la imagen.

Del mismo modo que las imágenes, las acciones cuentan con operadores especı́ficos
para combinarlas y crear nuevos comportamientos. Algunos de estos operadores per-
miten la ejecución en paralelo de dos acciones o la ejecución en un bucle finito de una
acción. Cabe destacar que una acción no está ligada a una imagen en particular, sino
que define un movimiento genérico.

El efecto de una acción varı́a según la animación y el estado en el que se encuentra
al ejecutarse la acción. Un ejemplo de esto es el siguiente: suponga que existe una
imagen A en el punto (0,0) y una imagen B en la posición (10, 0), y se define una acción
x como un desplazamiento a la posición (10,0) en 5 segundos (Move {10.0, 0.0}
5.0). Si se aplica la acción x a la imagen A, la imagen se desplazará al punto (10,0) en
5 segundos. Sin embargo, si se aplica la acción a la imagen B, la imagen permanecerá
estática durante la duración de la acción. Esto es porque la imagen ya estaba en la
posición especificada en la acción, y el estado del mismo no cambia en la duración de
la acción.

Una animación se define al agregar un elemento de tipo imagen a la escena definida
al inicio del programa. Mediante la expresión place se pueden especificar las propiedades
iniciales que tendrá esta imagen. Estas incluyen la posición en la escena –Relativa
al centro geométrico de la imagen–, la escala, y el ángulo de rotación inicial. Esta
construcción resulta en el keyframe inicial de la animación. Las animaciones se nu-
tren de las acciones que se vinculan mediante el comando update. El cambio en las
propiedades de la animación que estas implican se puede pensar como una definición
de un nuevo keyframe. De este modo, a medida que se vinculan acciones a una ani-
mación, se definen distintos keyframes de la animación final.

2.2 Interpolación de Inbetweens

La generación de los inbetweens entre cada keyframe definido por la adición de acciones
a una animación se realiza tomando en cuenta el estado inicial, es decir, los valores de
las propiedades de la animación a la hora de aplicar la transformación especificada
en la acción, y el estado resultante luego de haber ejecutado la acción. Como cada
acción tiene un tiempo de duración asociado, se puede calcular la velocidad a la cual
se debe modificar cada caracterı́stica de la imagen animada para poder cumplir con la
especificación final. Por ejemplo, si se define una acción que provoca un cambio de
escala de una imagen en un factor x durante una cantidad y de segundos, la imagen
deberá escalarse en un factor de x

y
por segundo.

Internamente, toda la animación se representa mediante el uso de un tipo de dato
AnimState (figura 1) , que encapsula toda la información necesaria para poder graficar

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 167



cada cuadro de la animación. Como una animación es una secuencia de acciones, se
puede dividir la duración final de la misma en varios segmentos de distinta duración,
cada uno representando una acción. De este modo, una acción se puede interpretar como
el cambio en las velocidades de cada propiedad de la animación durante un perı́odo
determinado.

data AnimState = AnimState

{ pic :: Picture -- Imagen

, rot :: Float -- angulo de rotacion

, rotVel :: Float -- velocidad de rotacion

, pos :: Point -- punto actual

, posVel :: Point -- velocidades en x e y

, scX :: Float -- factor de escala en X

, scVelX :: Float -- velocidad de escala en X

, scY :: Float -- factor de escala en Y

, scVelY :: Float -- velocidad de escala en Y

, angVel :: Float -- velocidad angular

, orbP :: Point -- Punto de giro

} deriving (Show , Eq)

Fig. 1. Definición del tipo AnimState

Esta lógica se traduce directamente en la interpretación de una acción en ASL. Un
Stepper es la representación de una acción a nivel de AnimState. En pocas palabras, un
Stepper es una función que cambia algún valor del AnimState. Esto permite pensar
a una animación como una secuencia de pares (Duración, Stepper) en donde, a me-
dida se avanza en el tiempo de ejecución, se aplica la función Stepper al AnimState,
cambiando los parámetros del mismo, y esperando que se cumplan otros Duración se-
gundos para aplicar el Stepper de la acción siguiente.

type Stepper = AnimState -> AnimState

Fig. 2. Definición del tipo Stepper

Para administrar la aplicación de los distintos Steppers, una vez que se procesan
todas las acciones vinculadas a una animación, se genera una función Render. Estas
funciones abstraen la secuencia de pares (Duración, Stepper) y permiten determinar,
en cada instante de ejecución de la animación, el estado AnimState correcto a graficar.
La función Render toma el tiempo transcurrido desde el inicio de la animación y un
estado actual, y determina cómo evoluciona el mismo. Esto encapsula la lógica de in-
terpolación para cualquier acción compuesta. De esta manera, es fácil ver que, para

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 168



una animación, la función Render permite determinar las propiedades en cada instante,
determinando los inbetweens.

type Render = Duration -> AnimState -> AnimState

Fig. 3. Definición del tipo Render

Teniendo todo esto en consideración, una animación queda definida como un par
(AnimState, Render), es decir, el estado inicial de la animación y la función que define
cómo evolucionará dicho estado a medida que avanza el tiempo de ejecución.

Con estas definiciones, ASL implementa una estrategia de interpolación continua
basada en keyframes y velocidades, logrando una animación fluida y determinista a
partir de una especificación secuencial y declarativa.

3 Implementación del lenguaje

ASL es un lenguaje embebido en Haskell. Embeber un lenguaje en otro brinda la opor-
tunidad de aprovechar toda la infraestructura del lenguaje anfitrión. El acceso a elemen-
tos como el compilador, sistema de tipos, librerı́as y sintaxis definidos con anterioridad
simplifican y aceleran el desarrollo de lenguajes de dominio especı́fico (Gibbons, 2013).

La generación gráfica de las animaciones se logró mediante el uso de la librerı́a de
Haskell, Gloss (Lippmeier, 2023). Esta librerı́a toma el papel de interfaz entre Haskell
y OpenGL, permitiendo la renderización de imágenes y animaciones. Su elección se
basó en este último beneficio, que significó una facilitación para el trabajo de imple-
mentación del ASL.

El lenguaje implementado también tiene la propiedad de ser interpretado. Esto
quiere decir que, al momento de ejecutarse un programa, todas las instrucciones deben
evaluarse a medida que se leen. El proceso por el cual pasa cada sentencia al ejecutarse
se definió internamente como pipeline.

El pipeline se divide en tres etapas distinguidas: el parseo, la verificación de tipos y
la evaluación de la expresión final. Esta sección explica la implementación del pipeline
principal.

3.1 Parser

La primer etapa implica el parseo de las sentencias del programa ASL. Este proceso,
permite transformar las expresiones de ASL en expresiones del lenguaje anfitrión.

Las sentencias de ASL se dividen en dos tipos, las declaraciones y los comandos.
Ambas estructuras sintácticas se definen con los tipos de datos Decl y Comm respectiva-
mente. Las expresiones (Exp) engloban los constructores y operadores de los distintos
tipos disponibles en ASL.

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 169



data Exp = Circle Float Float Fill Exp
| Rect Float Float Float Fill

Exp
| Line Float Float Float Exp
| Triang Float Float Float

Exp
| Polygon Int Float Exp
-- Expresiones de Imagenes
| Stack Exp Exp
| Offset Exp Exp Point
| Bind Exp Point Exp Point
| Rot Exp Float
| RSize Exp Float
| Paint Exp Exp
-- Constructores de Acciones
| Rotate Float Duration
| Move Point Duration
| Scale Float Float Duration
| Static Duration
| Orbit Point Float Duration

-- Expresiones de Acciones
| Seq Exp Exp
| Par Exp Exp
| Loop Exp Int
-- Constructores de

Animaciones
| Place Exp Point Float Float
-- Variables
| Var Name
-- Color
| Color Int Int Int
deriving (Show , Eq)

data Comm =
-- Ejecuciones de Acciones
Update Name Exp
-- Ejecucion de

Animaciones
| Play [Name]

data Decl = Decl Name Type Exp

Fig. 4. Definición de los principales constructores del lenguaje, Exp (Expresiones), Decl

(Declaraciones) y Comm (Comandos)

Para la implementación del parser utilizó la librerı́a Happy de Haskell. Un programa
escrito en Happy permite recibir la gramática de un lenguaje en forma BNF (Bakus-
Naur Form) y genera un módulo de Haskell con un parser de la gramática.

La razón de la elección de esta librerı́a para este trabajo radica en la facilidad que
presenta Happy para la generación de un parser. Los demás enfoques, basados en com-
binadores como la librerı́a Parsec, brindan flexibilidad y personalización en la con-
strucción del analizador sintáctico, pero requieren más trabajo para ser implementado.
Por otro lado, Happy permite definir el parser basándose en la definición casi directa
de la sintaxis concreta del lenguaje. Esto facilita la tarea, debido a que la derivación del
parser se realiza de manera casi automática.

3.2 Verificación de tipos

La segunda etapa del pipeline de procesamiento de una expresión en ASL es la verifi-
cación de tipos. Las sentencias de ASL están estáticamente tipadas. Esto quiere decir
que el usuario debe especificar de manera explı́cita, los tipos de las variables que se
declararán.

El sistema de tipos es fundamental para la detección de errores semánticos en el
momento previo a la evaluación de la sentencia. Esta garantı́a permite asegurar una
correcta utilización del dominio de trabajo (imágenes, acciones y animaciones). Por
ejemplo, la verificación de tipos permite evitar la incorrecta asignación de una expresión
de acciones a una variable de imágenes, o la vinculación de acciones a objetos que no
son animaciones.

El respaldo que brinda la verificación de tipos sobre la corrección en la construcción
de los términos permite, una vez pasada la verificación, descartar internamente la necesi-
dad de estos tipos. Esto permitió, en etapas siguientes del pipeline, poder tratar a cada

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 170



expresión como una expresión semánticamente correcta y por lo tanto facilitar el desar-
rollo de los evaluadores.

ASL propone cuatro tipos distintos: colores (color), imágenes (image), acciones
(action) y animaciones (anim). Cada expresión, tanto constructores como operadores,
resultan en alguno de estos tipos. De esta manera la verificación se implementa deter-
minando, para una sentencia dada, la valuación del tipo de cada una de las expresiones
que la componen. Si estas son aptas para ser operadas, y el tipo de la sentencia coincide,
luego se puede asegurar que la instrucción está bien tipada.

tcDecl :: MonadASL m => Decl -> m ()

tcDecl (Decl _ t b) = expect t b

tcComm :: MonadASL m => Comm -> m ()

tcComm (Play ans) = mapM_ tcAnims ans

where tcAnims e = do eTy <- getTy (Var e)

if eTy /= AnimT

then failASL $ typeErr (Var e) AnimT

eTy

else return ()

Fig. 5. Fragmento del verificador de tipos

3.3 Evaluación de Declaraciones y Comandos

El tercer y último paso del procesamiento de las sentencias implica la evaluación de
las expresiones ya verificadas sintácticamente por el parser y semánticamente por el
sistema de tipos.

Como se explicó anteriormente, las sentencias se dividen en dos grupos fundamen-
tales: las declaraciones y los comandos. Ambos grupos tienen una semántica completa-
mente distinta y se evalúan de diferente manera.

El primer grupo contiene a la gran mayorı́a de expresiones que se encontrarán en
un programa ASL tipo. Las declaraciones permiten al usuario definir objetos como
imágenes, acciones, animaciones, colores y escenas. La idea importante de las declara-
ciones es que alimentan el entorno del programa, agregando información sobre los val-
ores y los tipos de las variables definidas.
Dentro del grupo de las declaraciones, existe una distinción entre las declaraciones de
escena y las declaraciones de variables.

Una declaración de escena es utilizada para definir las dimensiones y color del fondo
donde una animación se llevará a cabo. La particularidad de las declaraciones de escena
proviene del hecho que sólo puede existir una única declaración de escena en un mismo
programa ASL. Lo que es más, dicha declaración debe ser la primer sentencia del pro-
grama. La evaluación de una declaración de escena implica simplemente escribir la

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 171



Scene Float Float #r,g,b -- Declaracion de escena

Name : Type = Value -- Declaracion de variable

Fig. 6. Sintaxis de las declaraciones

información respectiva a la escena en el entorno global del programa. Esto se utiliza a
la hora de renderizar la escena con Gloss.

Las declaraciones de variable se utilizan para definir variables y asignarles un valor.
Estas expresiones permiten definir colores, imágenes, acciones y animaciones. Cada
variable es única durante la ejecución de un programa. La evaluación de una declaración
de variable representa un proceso más complejo que la declaración de escena.

Al momento de procesarse la declaración, la información de la variable, el tipo y la
expresión se almacenan en el contexto del programa ejecutado.

La idea detrás de este proceso es traducir, eventualmente, todos los objetos desde
su representación interna a una representación equivalente utilizando las herramientas
que provee Gloss. Para los colores y las imágenes, este proceso puede realizarse de
manera casi directa, dado que la interfaz de Gloss provee la opción de crear colores y
objetos gráficos de tipo Picture, como se observa en la figura 7. Para expresiones de
acciones, la traducción resulta en la generación de las funciones Steppers y para las
animaciones, la generación del estado AnimState inicial.

translateColor :: Exp -> Color

translateColor (AST.Color r g b) = makeColorI r g b 255

translateImg :: Exp -> Picture

translateImg (Circle rad thick fill col) =

let col ’ = translateColor col

in case fill of

Full -> color col ’ $ circleSolid rad

Outline -> color col ’ $ thickCircle rad thick

Fig. 7. Fragmento de traducción de expresiones de imágenes y colores a Gloss

Para evitar tener que realizar el trabajo de traducción para todas las declaraciones,
más allá de si son utilizadas finalmente en una animación que se renderizará o no, se
propuso un sistema de evaluación de declaraciones perezosa (lazy). Esto quiere decir,
que las declaraciones de colores, imágenes, acciones y animaciones sólo se traducirán
en el momento en el cual se requiera su representación de Gloss para graficarse. De
este modo, la evaluación se retrasa, y el procesado en el pipeline de una declaración se
reduce a encapsular la expresión en un valor artificial (Value, figura 8) y almacenarlo
en el entorno del programa, vinculándolo con el nombre de la variable declarada.

Cabe destacar que la representación de la evaluación de una expresión de tipo an-
imación, resulta en un valor An Exp [Exp]. Los argumentos del constructor An rep-

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 172



data Value = I Exp -- imagen

| Ac Exp -- accion

| An Exp [Exp] -- animacion

| C Exp -- color

deriving (Show , Eq)

Fig. 8. Definición del tipo Value, que encapsula la evaluación de las declaraciones

resentan la expresión utilizada para la definición del primer estado de la animación,
determinado con el operador place, y una lista de expresiones. Esta última está desti-
nada a almacenar todas las evaluaciones de las expresiones de acciones utilizadas para
agregar movimientos a la animación mediante el comando update, que se analizará
más adelante.

El segundo grupo concentra a todas las sentencias que producen algún cambio so-
bre los objetos definidos con antelación. Ya sea desde agregar o vincular acciones a
animaciones, a ejecutar dichas animaciones.

En ASL actualmente existen 2 comandos, el comando update y el comando play.
Sintácticamente, el comando update se representa como un operador infijo ’<<’,

que opera una animación y una acción. Su uso es el siguiente: Anim << Action

Permite vincular una acción a una animación. Esto es, agregar la acción a la secuen-
cia de acciones que la animación ejecutará.
El comando update requiere que la animación a operar esté definida previamente me-
diante una expresión place, y por lo tanto, el primer argumento es una variable de tipo
Anim.

La evaluación del comando update requiere la evaluación de la expresión de acción
a vincular. Como la animación que recibirá la acción ya fue declarada, existe una vari-
able de tipo Anim en el entorno que corresponde con la variable utilizada en el comando.
Como se explicó con anterioridad, al evaluarse dicha declaración, se almacena en el en-
torno un valor An Exp [Exp] vinculado al nombre de variable utilizado. Dicho esto, la
evaluación entonces se reduce a agregar al entorno, en particular al valor asociado a la
variable de animación, el valor resultado de la acción a vincular mediante el comando
en sı́.

El comando play tiene la siguiente sintaxis: play [Anim1, Anim2, ... , AnimN].
La sentencia no solo es obligatoria en cualquier programa ASL, sino que debe ser la
última sentencia de un programa. Este comando indica qué animaciones se ejecutarán.
El orden en el cual se escriben las animaciones dentro del comando play afecta la
forma en la que se renderizan las animaciones. Las animaciones se apilarán una sobre
otra siguiendo el orden de izquierda a derecha en el que fueron agregadas como argu-
mento al comando play. Esto es, las animaciones de la derecha estarán por encima de
las animaciones de la izquierda.

La ejecución de este comando resulta en la ejecución y renderización de las anima-
ciones definidas a lo largo del programa, y especificadas como argumento del comando.
La evaluación este tipo sentencias se divide en dos etapas.

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 173



La primer etapa se trata sobre evaluar todas las animaciones argumento del co-
mando. Este trabajo sigue con la idea explicada en la sección 2. Primero, se traduce,
efectivamente, todos los valores resultado de la evaluación de cada animación y sus
acciones vinculadas. Este proceso recursivo permite traducir a términos de Gloss to-
dos lo componentes necesarios para la generación de la animación. Este paso puede
pensarse como la verdadera evaluación de los términos definidos en las declaraciones
de variables. Una vez obtenido el estado AnimState inicial y la secuencia de pares
(Duracion,Stepper), se procede a calcular y definir la función Render asociada a la
animación.

La segunda etapa implica la integración definitiva de la interfaz provista por Gloss
para la generación de gráficas animadas. La función principal que propone Gloss para
la creación de animaciones es la función animate. Esta función recibe tres argumentos,
la definición de la pantalla donde se animará, el color de fondo y una función que, dada
la cantidad de segundos desde el inicio de la animación, retorne una imagen del tipo de
Gloss, Picture.

Los primeros argumentos, se derivan directamente del resultado de la declaración
de escena, y dichos datos están almacenados en el entorno.

El último argumento se construye a partir de la definición de cada función Render

para cada animación definida. Cada función Render toma la cantidad de tiempo desde
que comenzó la respectiva animación y retorna el AnimState resultante, mientras que
la función producer (producer :: AnimState -> Picture) transforma un estado
de una animación en una imagen de Gloss. Estas imágenes resultantes se combinaron
entre sı́ para formar una imagen única mediante la función pictures de Gloss, que
cumple este propósito.

El resultado de la función animate es la presentación de la animación para el
usuario.

3.4 Entorno y Mónadas

El núcleo de la implementación del lenguaje se apoya sobre el uso de mónadas para el
correcto manejo de un entorno interno global mutable y efectos secundarios como la
propagación de errores en tiempo de ejecución (Hutton, 2016).
La mónada principal, MASL, se define como la composición de tres mónadas. Estas son:

La mónada StateT permite manejar los cambios que se realicen sobre el entorno, en
este caso modelado con el tipo Env. En este, se almacenan tanto las variables declaradas
a lo largo del programa como los valores finales de los procesamientos de las escenas y
las animaciones.

La mónada ExceptT brinda la posibilidad de capturar y propagar los posibles er-
rores generados durante la interpretación de las sentencias, como el uso de variables
no definidas o el incorrecto uso de tipos. Esta capa es clave a la hora de brindar una
garantı́a con respecto a la consistencia del estado del programa.

Por último, la mónada IO habilita la posibilidad de generar los efectos secundarios
necesarios para la visualización de las animaciones generadas con Gloss.

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 174



data Env = Env

{ vars :: [(Name , (Type , Value))]

, cantVars :: Int

, scene :: Scene

, anims :: [(AnimState , Render)]

}

Fig. 9. Entorno principal Env

type MASL = StateT Env (ExceptT Error IO)

Fig. 10. Definición de mónada MASL

4 Conclusión y Trabajos Futuros

Este trabajo tuvo como objetivo desarrollar ASL, un lenguaje de dominio especı́fico
embebido en Haskell orientado a la creación de animaciones bidimensionales. A lo
largo de su desarrollo, se logró definir una sintaxis clara, un sistema de tipos estático,
una semántica operacional segura y, mediante la utilización de la librerı́a Gloss, una
representación gráfica fluida. El lenguaje fue desarrollado como trabajo práctico final
para la materia Análisis de Lenguajes de Programación, lo que acotó el alcance del
lenguaje a los contenidos de la materia. No obstante, la implementación del lenguaje
permitió no solo asentar los conocimientos aprendidos, sino que sentó las bases para su
evolución hacia un proyecto de mayor envergadura.

En este sentido, existen diversas lı́neas de trabajo futuro que pueden mejorar tanto la
experiencia del usuario como la calidad en la ejecución de las animaciones. Entre estos
trabajos se encuentra la adición de métodos para descargar en formatos como .mp4 o
.gif las animaciones especificadas, la implementación de animaciones interactivas con
entrada de señales externas que modifiquen su comportamiento en tiempo de ejecución,
y la ampliación de la sintaxis y del sistema de renderizado para soportar animaciones
en tres dimensiones.

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 175



Bibliografı́a

Chris Meyer TM (2010) Creating Motion Graphics with After Effects, 5th Edition.
Routledge

Gibbons J (2013) Functional programming for domain-specific languages. In: ZsÃ³k
V, HorvÃ¡th Z, CsatÃ³ L (eds) Central European Functional Programming - Summer
School on Domain-Specific Languages, Springer, LNCS, vol 8606, pp 1–28, DOI 10.
1007/978-3-319-15940-9 1, URL http://link.springer.com/chapter/10.

1007/978-3-319-15940-9_1

Harold Whitaker JH (1981) Timing for Animation. Focal Press, Oxford
Hutton G (2016) Programming in Haskell, 2nd edn. Cambridge University Press, USA
Lippmeier B (2023) gloss: Painless 2d vector graphics, animations and simulations.

URL https://hackage.haskell.org/package/gloss

Williams R (2001) The Animator’s Survival Kit: A Manual of Methods, Principles,
and Formulas for Classical, Computer, Games, Stop Motion, and Internet Animators.
Faber and Faber

EST, Concurso de Trabajos Estudiantiles 2025

Memorias de las 54 JAIIO - EST - ISSN: 2451-7496 - Página 176

http://link.springer.com/chapter/10.1007/978-3-319-15940-9_1
http://link.springer.com/chapter/10.1007/978-3-319-15940-9_1
https://hackage.haskell.org/package/gloss

	ASL - Lenguaje embebido en Haskell para la creación de Animaciones y Motion Graphics

