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Abstract. El siguiente trabajo da a conocer un conjunto de elementos rela-

cionados con el Pensamiento Computacional (PC), concepto que fue utili-

zado para la elaboración de diversos materiales y talleres en el  proyecto de 

extensión universitaria “Creando Capacidades de Programación en Jóve-

nes y Docentes tanto en Secundaria como en Enseñanza Superior”, durante 

los años 2020 al 2022 y en el proyecto de extensión universitaria Red UNA 

STEM1 durante los años del 2020 al 2025. En este documento se presenta la 

información recopilada sobre la forma en que diversos autores conciben es-

te concepto, además se indican las habilidades desarrolladas por las perso-

nas participantes de los talleres realizados por el proyecto, finalmente se 

presenta un conjunto de resultados y las principales conclusiones 
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Elements of Computational Thinking Applied to a Uni-

versity Extension Projects in Costa Rica 

Resumen. The following work presents a set of elements related to Compu-

tational Thinking (CT), a concept that was used for the development of 

various materials and workshops in the university extension project "Cre-

ating Programming Capabilities in Young People and Teachers in both 

Secondary and Higher Education", during the years 2020 to 2022 and in 

the university extension project Red UNA STEM during the years 2020 to 

2025. This document presents the information collected on the way in 

which various authors conceive this concept, in addition to indicating the 

skills developed by the participants in the workshops carried out by the 

project, finally a set of results and the main conclusions are presented 

 

Palabras clave: pensamiento computacional; educación; extensión universita-

ria. 

 
1 https://sites.google.com/una.cr/redunastemcr/inicio 
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1 Introducción 

El proyecto Creando Capacidades de Programación en Jóvenes y Docentes 

tanto en Secundaria como en Enseñanza Superior de la Escuela de Informática 

de la Universidad Nacional de Costa Rica, tuvo como propósito el desarrollar 

un conjunto de talleres de programación tanto por bloques como con la pro-

gramación de circuitos. Este proyecto pudo impactar a 1191 personas de dife-

rentes zonas del país (Ver Anexo 1). Para lograr el propósito del proyecto se 

consideró importante definir la estrategia para impartir los talleres, además se 

realizó una búsqueda por medio en las bases de datos de la IEEExplore y ACM 

sobre la experiencia en talleres de programación en el mundo, de esta manera 

se encontró el concepto del Pensamiento Computacional desarrollado prime-

ramente por Wing y posteriormente por otros autores. 

Posteriormente, se formó parte del Red UNA STEM, en cual se logró no so-

lo hacer uso del material logrado, sino poder también desarrollar actividades y 

materiales en el área STEM y aplicando los elementos más importantes del 

Pensamiento Computacional. 

   Este trabajo da a conocer el marco teórico desarrollado y utilizado en el pro-

yecto con miras a que pueda ser utilizado en otros contextos y que sea un fra-

mework de trabajo con mejores prácticas que otros autores han desarrollado a 

nivel mundial. Se presenta a continuación los siguientes apartados que han 

sido desarrollado en este trabajo: elementos del pensamiento computacional, 

habilidades desarrolladas, entre otros temas. 

 

II.  Elementos del Pensamiento Computacional 

El desarrollo del pensamiento computacional es de vital importancia para cualquier 

persona, independientemente de la edad, debido a que como lo indican CSTA e ISTE, 

citados por Basogain, Olabe y Olabe [1]: 

 

El Pensamiento Computacional es un enfoque para resolver un determinado 

problema que empodera la integración de tecnologías digitales con ideas huma-

nas. No reemplaza el énfasis en creatividad, razonamiento o pensamiento críti-

co, pero refuerza esas habilidades al tiempo que realza formas de organizar el 

problema de manera que el computador pueda ayudar.  

 

Jeanette Wing indicó en el año 2006 [2] que el pensamiento computacional (PC) 

implica resolver problemas, diseñar sistemas y comprender el comportamiento hu-

mano, basándose en los conceptos fundamentales para la informática, posteriormente 

en el 2011 [3] aclaró que el PC es el proceso de pensamiento involucrado en formular 
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problemas, cuyas soluciones sean representadas de una manera que puedan ser efecti-

vamente llevadas a cabo por un agente de procesamiento de información. Para im-

plementar la resolución de problemas se recurre desde la informática al área de la 

programación, la cual es el conjunto de instrucciones necesarias que se le brinda a una 

máquina para poder realizar una tarea específica. 

Sze Yee Lye y Joyce Hwee Ling Koh indicaron en el año 2014 [4] que el PC se re-

fiere a derivar el proceso cognitivo de resolución de problemas, además consideraron 

que la programación de computadoras es la forma fundamental en que permite que el 

pensamiento computacional cobre vida.  

Resnick [5] junto con otros autores desarrollaron en el 2009 una definición de pen-

samiento computacional que involucra tres dimensiones claves:  

● conceptos computacionales: los conceptos que los diseñadores emplean 

mientras programan 

● prácticas computacionales: las prácticas que los diseñadores desarrollan a 

medida que programan 

● perspectivas computacionales: las perspectivas que los diseñadores forman 

sobre el mundo que los rodea y sobre sí mismos  

Es importante considerar que el PC puede ser transferido a varios tipos de proble-

mas que no involucran directamente tareas de programación como lo indica Wing [6], 

es por este motivo que uno de los recursos para el desarrollo del pensamiento compu-

tacional es el entorno de programación de Scratch.  

Para desarrollar el PC se puede hacer uso del Framework desarrollado por Brennan 

y Resnick [7]. Brennan y Resnick [8] desarrollaron un Framework en el cual se indi-

can elementos importantes como lo son: el concepto, las prácticas y las perspectivas 

del pensamiento computacional:  

● el concepto da a conocer los temas de: secuencias, bucles, eventos, paralelis-

mo, condicionales, operadores y datos  

● las prácticas de pensamiento computacional pueden ser: incremental e iterati-

vo, prueba y depuración, reutilizar y remezclar y resumen y modularización.  

● entre las perspectivas se encuentran: expresando, conectando y cuestionando.  

En la tabla 1, se mencionan algunas de las conceptualizaciones que hacen otros au-

tores acerca del pensamiento computacional.  

 

 

TABLA I  CONCEPTUALIZACIONES NO REFERENCIALES, EXPLÍCITAS Y 

COMPONENCIALES DEL PENSAMIENTO COMPUTACIONAL (PC) 

 

Autor (es) Definición 

Bers et al. (2014)[10] Variables de PC - depuración, secuencias, co-

rrespondencia, control de flujo 

Yadav et al. (2014) [11] Conceptos de PC – identificación de problemas, 

descomposición del problema, abstracción, pensa-

miento lógico, algoritmos, depuración 
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Atmatzidou y Demetriadis (2016) [12] Dimensiones de PC – abstracción, generaliza-

ción, algoritmos, descomposición, modularidad 

Atmatzidou y Demetriadis (2017) [13] Conceptos de PC - abstracción, generalización, 

algoritmos, descomposición, modularidad, depura-

ción 

Looi et al. (2018) [14] Habilidades de PC – descomposición, algorit-

mos, abstracción, generalización, evaluación 

Witherspoon et al. (2018) [15] Conceptos de PC – secuencias, condicionales, 

iteración 

Tran (2019) [16] Conceptos de PC- secuencias, algoritmos, bu-

cles, depuración, condicionales 

Nam et al. (2019) [17] Formularios de PC – secuencias, solución de 

problemas 

Calderon et al. (2020) [18] Elementos de PC – abstracción, descomposi-

ción, datos, algoritmos, secuencias 

Chen et al. (2020) [19] Elementos de PC – creatividad, valores, simpli-

ficación, incrustación, simulación, transformación 

Angeli y Valanides (2020) [19] Elementos de PC – algoritmo, secuenciación, 

descomposición, depuración 

Noh y Lee (2020) [21] Componentes de PC – colección de datos, aná-

lisis de datos, estructuración, descomposición, 

modelado, algoritmo, automatización, generaliza-

ción 

Yin et al. (2020) [22] Subhabilidades de PC – descomposición, abs-

tracción, algoritmos, generalización de patrones 

Uzumcu y Bay (2020) [23] Dimensiones de PC – Comprensión de proble-

mas, diagramas de flujo, condicionales, bucles, 

paralelismo, descomposición, abstracción, patro-

nes, algoritmos, evaluaciones, depuración 

 

En la tabla 1y la tabla 2 se puede observar que hay una coincidencia entre los con-

ceptos que se enseñan con el pensamiento computacional entre ellos se puede encon-

trar la abstracción, los algoritmos y las estructuras condicionales. 

 

TABLA II DEFINICIÓN DE PENSAMIENTO COMPUTACIONAL (PC) DESDE LA 

LITERATURA DE REFERENCIA 

 

Artículo referenciado Artículos refer-

enciados 

Encuadre del pensamiento computacional 

   

Brennan y Resnick (2012) 

[8] 

14 Conceptos de PC – secuencias, bucles, 

paralelismo, eventos, condicionales, opera-

dores y datos 

  Prácticas de PC – diseño incremental e 
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iterativo, pruebas y depuración, reutilizar y 

remezclar y abstracción y modularización 

  Perspectivas de PC – expresión, conexión 

y preguntas 

Moreno – León et al (2015) 

[24] 

8 Abstracción y descomposición de pro-

blemas, pensamiento lógico, sincronización, 

paralelismo, control de flujo algorítmico, 

interactividad de usuario, representación de 

datos. También conocido como Dr. Scratch 

Román – González et al 

(2017) [25] 

6 Secuencias, bucles, condicionales, fun-

ciones y variables. También conocido como 

prueba de pensamiento computacional 

Dagiené y Sentance (2016) 

[26] 

4 Abstracción, algoritmos, descomposi-

ción, evaluación y generalización. También 

conocido como tarea Bebras 

D. Barr et al (2011) [27], 

ISTE (International Society for 

Technology in Education)  y 

CSTA (Computer Science 

Teachers Association)(2011) 

[28] 

 

2 Resolución de problemas que incorpora 

características de formulación de problemas, 

abstracción, pensamiento lógico, algoritmos, 

eficiencia, generalización y transferencia 

Csizmadia et al (2015) [29] , 

Selby y Woollard (2013) [30] 

 

2 Abstracción, descomposición, algorit-

mos, evaluación y generalización 

Weintrop et al (2016) [31] 1 Práctica de datos, simulación y modela-

do, solución de problemas, pensamiento 

sistémico  

CMCCT (Camegie Mellon 

Center for Computational Think-

ing) (n.d) [32] 

1 Abstracción, algoritmos 

 

En la tabla III , se encuentran aquellas estructuras del pensamiento computacional 

que diversos autores han utilizado. Además, puede observarse que el trabajo del pen-

samiento computacional ha tenido un gran auge desde el año 2011 y los elementos 

que han utilizado han permitido tener una gran base de conocimiento para poder ser 

replicadas. 

 

Tabla III RESUMEN DE ESTRUCTURAS DE PENSAMIENTO COMPUTACIONAL 

 Barr y 

Stephenson 

(2011) [33] 

Bren

nan y 

Resnick 

(2012) 

[8] 

Sel

by  

(20

12) 

[34] 

Gro

ver y 

Pea 

(2013) 

[35] 

Seiter y 

Foreman 

(2013) [36] 

Kale-

lioglu, 

Gülbahar y 

Kukul 

(2016) [37] 

An

geli et 

al. 

(2016) 

[20] 

Re-

penning, 

Basawapatna 

y Escherle 

(2016) [38] 

Abstracción  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 170



 

 

Algoritmos ✓ ✓ ✓ ✓ ✓ ✓ ✓  

Datos ✓ ✓  ✓ ✓ ✓   

Descomposición 

(desgloce) 

✓ ✓ ✓ ✓ ✓ ✓ ✓  

Paralelismo ✓ ✓  ✓ ✓ ✓   

Pruebas y depu-

ración 

✓ ✓  ✓  ✓  ✓ 

Estructuras de 

control 

✓ ✓  ✓  ✓   

Automatización      ✓  ✓ 

Generalización   ✓   ✓ ✓  

Simulación ✓  ✓   ✓   

Eventos  ✓       

Iterativo e in-

cremental 

 ✓       

Expresión, con-

exión  y preguntas 

 ✓       

Reutilización y 

remezcla 

 ✓       

Eficiencia y res-

tricciones de ren-

dimiento 

   ✓     

Procedimiento 

sistemático  

   ✓     

Conceptualiza-

ción 

     ✓   

 

III. HABILIDADES QUE SE PUEDEN GENERAR CON EL 

PENSAMIENTO COMPUTACIONAL 

Actualmente es de suma importancia que las nuevas generaciones puedan desarro-

llar un conjunto de habilidades no solo a nivel general sino desde el punto de vista de 

la programación. Para ello se presenta la tabla 4, la cual resume este tipo de habilida-

des para lo cual se desarrolló una busqueda de literatura sobre el tema. 

 

TABLA IV  HABILIDADES GENERALES Y HABILIDADES EN RELACIONADO EN 

PROGRAMACIÓN 

 

Categoría Habilidad Referencias 

 

 

Habilidades relacionadas a programación 

Solución de Problemas [40], [41], [42], [43], 

[44], [45], [46], [47], 

[48], [49], [50], [51], 

[52], [53], [54], [55] 
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Habilidad Matemática [40], [56], [42], [57], 

[38], [59], [60], [61], 

[62], [50], [52], [53], 

[54], [63], [64] 

Previo conocimiento en 

programación 

[65], [43], [66], [67], 

[68], [49], [62], [50], 

[52], [53], [64] 

Abstracción [56], [69], [44], [57], 

[70], [64] 

 

 

Habilidades educativas generales 

Conocimiento básico de 

inglés 

[71], [66], [72], [52], 

[54] 

Pensamiento crítico y ha-

bilidad de discusión 

[42], [69], [73], [57] 

Creatividad [69], [57], [55], [74] 

Gestión del tiempo [40], [70] 

 

IV. CASOS DE ÉXITO DEL PENSAMIENTO COMPUTACIONAL 

HACIENDO USO DE SCRATCH 

Se encontró en la literatura el uso de un entorno de programación llamado Scratch, 

el cual desde el año 2017 tiene una comunidad en línea que cuenta con proyectos 

creados por niños y jóvenes con edades entre los 8 y los 16 años, los cuales han com-

partido más de 2,5 millones de trabajos. Los miembros de la comunidad pueden inter-

actuar con los proyectos (probarlos o descargarlos) y además con otros miembros 

(dejar comentarios o marcar a alguien como amigo) [8] [75] 

En el año 2015 se realizó una experiencia sobre el uso de la herramienta en Chile. 

Los autores encontraron que el uso de Scratch constituye un instrumento propicio 

para el desarrollo del pensamiento lógico y algorítmico en los estudiantes, además 

presenta un ambiente que es motivador y permite la participación en la propuesta de 

soluciones a las situaciones planteadas, lo que posibilita el análisis de problemas, la 

propuesta, el desarrollo y la aplicación de soluciones lógicas y algorítmicas [76]. 

Otro caso de estudio es el presentado por Armoni, Meerbaum-Salant y Ben-Ari, 

quienes analizaron la transición de estudiar informática con el entorno visual de Scra-

tch a estudiar informática con un lenguaje de programación de texto profesional como 

C # o Java en la escuela secundaria. “Descubrimos que el conocimiento y la experien-

cia de programación de los estudiantes que habían aprendido Scratch facilitaron 

enormemente el aprendizaje del material más avanzado en la escuela secundaria: se 

necesitaba menos tiempo para aprender nuevos temas, había menos dificultades de 

aprendizaje y lograron niveles cognitivos más altos de comprensión de la mayoría 

conceptos” [77]  

Bustillo Bayón  [78] observó que la inclusión del programa Scratch en la educa-

ción primaria facilita la incorporación de nuevas técnicas de aprendizaje, metodolo-

gías de enseñanza y recursos. Los estudiantes del Magisterio de Vitoria-Gasteiz, ubi-
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cado en España realizaron diferentes experiencias referentes al lenguaje de programa-

ción, lo que habilitó la posibilidad de incluir la herramienta como una de las prácticas 

que aplican los docentes a la hora de enseñar, además permitió que la herramienta 

Scratch ayudara a que los profesores aprendieran, experimentaran y observaran los 

resultados que este tipo de actividades generó en sus estudiantes. 

El Ministerio de Educación de Colombia [79], incorporó al programa de matemáti-

cas la herramienta Scratch, con el fin de enriquecer el desarrollo del pensamiento 

lógico matemático de forma divertida y solucionando problemas. El proyecto se desa-

rrolló con niños de tercer grado de primaria de las escuelas públicas, donde se realiza-

ron actividades interactivas sobre las figuras geométricas.  

En un estudio realizado por Vázquez y Ferrer  [80]  de la Universidad Española a 

Distancia se crearon experiencias educativas con alumnos de bachillerato, donde hi-

cieron videojuegos en el aula utilizando Scratch, obteniendo como resultado de la 

experiencia estudiantes con la capacidad de diseñar y crear videojuegos complejos 

con diferentes módulos de programación, aumentando así sus destrezas técnicas y 

promoviendo una mayor creatividad en el proceso de enseñanza - aprendizaje, además 

se obtuvo como beneficio, que los profesores pudieron orientar sus clases desde una 

perspectiva más creativa.  

López menciona [81] que el éxito en la aplicación de actividades en clase que favo-

recen el pensamiento algorítmico se debe a que programar con Scratch no es lo mis-

mo que resolver problemas con Scratch, debido a que los estudiantes deben activar 

estrategias cognitivas, así como usar recursos y conceptos del pensamiento compu-

tacional para poder resolverlos. 

V. ESTRATEGIAS UTILIZADAS 

El proyecto realizó talleres con las herramientas Scratch, Scratch Jr y Tinkercad 

utilizando los componentes Arduino y micro:bit. Para el desarrollo de los talleres se 

analizó la información extraída de la tabla 3, en cuál se trabajó con: la abstracción, 

algoritmos, fatos, descomposición, pruebas, e iterativo.  

En los talleres ser hizo énfasis en los siguientes puntos: 

● impartir talleres de programación para la resolución de problemas informáti-

cos. 

● Conocer diversos entornos de programación, incluyendo creación de cuentas 

de usuario, áreas de trabajo, componentes, entre otros. 

● Generar capacidades en las personas participantes para que puedan efectuar 

modificaciones en los proyectos realizados en los talleres. 

● Realizar una evaluación de los talleres para conocer la percepción de los par-

ticipantes  

VI. CONCLUSIONES 

Se logró en los talleres poner en práctica los conceptos del pensamiento compu-

tacional.  
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Es muy importante la creación de un marco teórico rubusto para poder aplicar los 

conocimientos en diferentes ambientes. Además, es importante poder conocer de las 

experiencias de otros casos en el mundo, ya que se puede replicar los trabajos, tropi-

calizarlos y aprender de la experiencia con otros colegas 
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