

Elementos del Pensamiento Computacional aplicados a

proyectos de extensión universitaria en Costa Rica

Irene Hernández Ruiz1, Carolina Gómez Fernández1
1 Universidad Nacional, Heredia, Costa Rica

{irene.hernandez.ruiz@una.ac.cr,

carolina.gomez.fernandez@una.ac.cr }

Abstract. El siguiente trabajo da a conocer un conjunto de elementos rela-

cionados con el Pensamiento Computacional (PC), concepto que fue utili-

zado para la elaboración de diversos materiales y talleres en el proyecto de

extensión universitaria “Creando Capacidades de Programación en Jóve-

nes y Docentes tanto en Secundaria como en Enseñanza Superior”, durante

los años 2020 al 2022 y en el proyecto de extensión universitaria Red UNA

STEM1 durante los años del 2020 al 2025. En este documento se presenta la

información recopilada sobre la forma en que diversos autores conciben es-

te concepto, además se indican las habilidades desarrolladas por las perso-

nas participantes de los talleres realizados por el proyecto, finalmente se

presenta un conjunto de resultados y las principales conclusiones

Keywords: computational thinking; education; university extension.

Elements of Computational Thinking Applied to a Uni-

versity Extension Projects in Costa Rica

Resumen. The following work presents a set of elements related to Compu-

tational Thinking (CT), a concept that was used for the development of

various materials and workshops in the university extension project "Cre-

ating Programming Capabilities in Young People and Teachers in both

Secondary and Higher Education", during the years 2020 to 2022 and in

the university extension project Red UNA STEM during the years 2020 to

2025. This document presents the information collected on the way in

which various authors conceive this concept, in addition to indicating the

skills developed by the participants in the workshops carried out by the

project, finally a set of results and the main conclusions are presented

Palabras clave: pensamiento computacional; educación; extensión universita-

ria.

1 https://sites.google.com/una.cr/redunastemcr/inicio

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 166

1 Introducción

El proyecto Creando Capacidades de Programación en Jóvenes y Docentes

tanto en Secundaria como en Enseñanza Superior de la Escuela de Informática

de la Universidad Nacional de Costa Rica, tuvo como propósito el desarrollar

un conjunto de talleres de programación tanto por bloques como con la pro-

gramación de circuitos. Este proyecto pudo impactar a 1191 personas de dife-

rentes zonas del país (Ver Anexo 1). Para lograr el propósito del proyecto se

consideró importante definir la estrategia para impartir los talleres, además se

realizó una búsqueda por medio en las bases de datos de la IEEExplore y ACM

sobre la experiencia en talleres de programación en el mundo, de esta manera

se encontró el concepto del Pensamiento Computacional desarrollado prime-

ramente por Wing y posteriormente por otros autores.

Posteriormente, se formó parte del Red UNA STEM, en cual se logró no so-

lo hacer uso del material logrado, sino poder también desarrollar actividades y

materiales en el área STEM y aplicando los elementos más importantes del

Pensamiento Computacional.

 Este trabajo da a conocer el marco teórico desarrollado y utilizado en el pro-

yecto con miras a que pueda ser utilizado en otros contextos y que sea un fra-

mework de trabajo con mejores prácticas que otros autores han desarrollado a

nivel mundial. Se presenta a continuación los siguientes apartados que han

sido desarrollado en este trabajo: elementos del pensamiento computacional,

habilidades desarrolladas, entre otros temas.

II. Elementos del Pensamiento Computacional

El desarrollo del pensamiento computacional es de vital importancia para cualquier

persona, independientemente de la edad, debido a que como lo indican CSTA e ISTE,

citados por Basogain, Olabe y Olabe [1]:

El Pensamiento Computacional es un enfoque para resolver un determinado

problema que empodera la integración de tecnologías digitales con ideas huma-

nas. No reemplaza el énfasis en creatividad, razonamiento o pensamiento críti-

co, pero refuerza esas habilidades al tiempo que realza formas de organizar el

problema de manera que el computador pueda ayudar.

Jeanette Wing indicó en el año 2006 [2] que el pensamiento computacional (PC)

implica resolver problemas, diseñar sistemas y comprender el comportamiento hu-

mano, basándose en los conceptos fundamentales para la informática, posteriormente

en el 2011 [3] aclaró que el PC es el proceso de pensamiento involucrado en formular

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 167

problemas, cuyas soluciones sean representadas de una manera que puedan ser efecti-

vamente llevadas a cabo por un agente de procesamiento de información. Para im-

plementar la resolución de problemas se recurre desde la informática al área de la

programación, la cual es el conjunto de instrucciones necesarias que se le brinda a una

máquina para poder realizar una tarea específica.

Sze Yee Lye y Joyce Hwee Ling Koh indicaron en el año 2014 [4] que el PC se re-

fiere a derivar el proceso cognitivo de resolución de problemas, además consideraron

que la programación de computadoras es la forma fundamental en que permite que el

pensamiento computacional cobre vida.

Resnick [5] junto con otros autores desarrollaron en el 2009 una definición de pen-

samiento computacional que involucra tres dimensiones claves:

● conceptos computacionales: los conceptos que los diseñadores emplean

mientras programan

● prácticas computacionales: las prácticas que los diseñadores desarrollan a

medida que programan

● perspectivas computacionales: las perspectivas que los diseñadores forman

sobre el mundo que los rodea y sobre sí mismos

Es importante considerar que el PC puede ser transferido a varios tipos de proble-

mas que no involucran directamente tareas de programación como lo indica Wing [6],

es por este motivo que uno de los recursos para el desarrollo del pensamiento compu-

tacional es el entorno de programación de Scratch.

Para desarrollar el PC se puede hacer uso del Framework desarrollado por Brennan

y Resnick [7]. Brennan y Resnick [8] desarrollaron un Framework en el cual se indi-

can elementos importantes como lo son: el concepto, las prácticas y las perspectivas

del pensamiento computacional:

● el concepto da a conocer los temas de: secuencias, bucles, eventos, paralelis-

mo, condicionales, operadores y datos

● las prácticas de pensamiento computacional pueden ser: incremental e iterati-

vo, prueba y depuración, reutilizar y remezclar y resumen y modularización.

● entre las perspectivas se encuentran: expresando, conectando y cuestionando.

En la tabla 1, se mencionan algunas de las conceptualizaciones que hacen otros au-

tores acerca del pensamiento computacional.

TABLA I CONCEPTUALIZACIONES NO REFERENCIALES, EXPLÍCITAS Y

COMPONENCIALES DEL PENSAMIENTO COMPUTACIONAL (PC)

Autor (es) Definición

Bers et al. (2014)[10] Variables de PC - depuración, secuencias, co-

rrespondencia, control de flujo

Yadav et al. (2014) [11] Conceptos de PC – identificación de problemas,

descomposición del problema, abstracción, pensa-

miento lógico, algoritmos, depuración

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 168

Atmatzidou y Demetriadis (2016) [12] Dimensiones de PC – abstracción, generaliza-

ción, algoritmos, descomposición, modularidad

Atmatzidou y Demetriadis (2017) [13] Conceptos de PC - abstracción, generalización,

algoritmos, descomposición, modularidad, depura-

ción

Looi et al. (2018) [14] Habilidades de PC – descomposición, algorit-

mos, abstracción, generalización, evaluación

Witherspoon et al. (2018) [15] Conceptos de PC – secuencias, condicionales,

iteración

Tran (2019) [16] Conceptos de PC- secuencias, algoritmos, bu-

cles, depuración, condicionales

Nam et al. (2019) [17] Formularios de PC – secuencias, solución de

problemas

Calderon et al. (2020) [18] Elementos de PC – abstracción, descomposi-

ción, datos, algoritmos, secuencias

Chen et al. (2020) [19] Elementos de PC – creatividad, valores, simpli-

ficación, incrustación, simulación, transformación

Angeli y Valanides (2020) [19] Elementos de PC – algoritmo, secuenciación,

descomposición, depuración

Noh y Lee (2020) [21] Componentes de PC – colección de datos, aná-

lisis de datos, estructuración, descomposición,

modelado, algoritmo, automatización, generaliza-

ción

Yin et al. (2020) [22] Subhabilidades de PC – descomposición, abs-

tracción, algoritmos, generalización de patrones

Uzumcu y Bay (2020) [23] Dimensiones de PC – Comprensión de proble-

mas, diagramas de flujo, condicionales, bucles,

paralelismo, descomposición, abstracción, patro-

nes, algoritmos, evaluaciones, depuración

En la tabla 1y la tabla 2 se puede observar que hay una coincidencia entre los con-

ceptos que se enseñan con el pensamiento computacional entre ellos se puede encon-

trar la abstracción, los algoritmos y las estructuras condicionales.

TABLA II DEFINICIÓN DE PENSAMIENTO COMPUTACIONAL (PC) DESDE LA

LITERATURA DE REFERENCIA

Artículo referenciado Artículos refer-

enciados

Encuadre del pensamiento computacional

Brennan y Resnick (2012)

[8]

14 Conceptos de PC – secuencias, bucles,

paralelismo, eventos, condicionales, opera-

dores y datos

 Prácticas de PC – diseño incremental e

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 169

iterativo, pruebas y depuración, reutilizar y

remezclar y abstracción y modularización

 Perspectivas de PC – expresión, conexión

y preguntas

Moreno – León et al (2015)

[24]

8 Abstracción y descomposición de pro-

blemas, pensamiento lógico, sincronización,

paralelismo, control de flujo algorítmico,

interactividad de usuario, representación de

datos. También conocido como Dr. Scratch

Román – González et al

(2017) [25]

6 Secuencias, bucles, condicionales, fun-

ciones y variables. También conocido como

prueba de pensamiento computacional

Dagiené y Sentance (2016)

[26]

4 Abstracción, algoritmos, descomposi-

ción, evaluación y generalización. También

conocido como tarea Bebras

D. Barr et al (2011) [27],

ISTE (International Society for

Technology in Education) y

CSTA (Computer Science

Teachers Association)(2011)

[28]

2 Resolución de problemas que incorpora

características de formulación de problemas,

abstracción, pensamiento lógico, algoritmos,

eficiencia, generalización y transferencia

Csizmadia et al (2015) [29] ,

Selby y Woollard (2013) [30]

2 Abstracción, descomposición, algorit-

mos, evaluación y generalización

Weintrop et al (2016) [31] 1 Práctica de datos, simulación y modela-

do, solución de problemas, pensamiento

sistémico

CMCCT (Camegie Mellon

Center for Computational Think-

ing) (n.d) [32]

1 Abstracción, algoritmos

En la tabla III , se encuentran aquellas estructuras del pensamiento computacional

que diversos autores han utilizado. Además, puede observarse que el trabajo del pen-

samiento computacional ha tenido un gran auge desde el año 2011 y los elementos

que han utilizado han permitido tener una gran base de conocimiento para poder ser

replicadas.

Tabla III RESUMEN DE ESTRUCTURAS DE PENSAMIENTO COMPUTACIONAL

 Barr y

Stephenson

(2011) [33]

Bren

nan y

Resnick

(2012)

[8]

Sel

by

(20

12)

[34]

Gro

ver y

Pea

(2013)

[35]

Seiter y

Foreman

(2013) [36]

Kale-

lioglu,

Gülbahar y

Kukul

(2016) [37]

An

geli et

al.

(2016)

[20]

Re-

penning,

Basawapatna

y Escherle

(2016) [38]

Abstracción ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 170

Algoritmos ✓ ✓ ✓ ✓ ✓ ✓ ✓

Datos ✓ ✓ ✓ ✓ ✓

Descomposición

(desgloce)

✓ ✓ ✓ ✓ ✓ ✓ ✓

Paralelismo ✓ ✓ ✓ ✓ ✓

Pruebas y depu-

ración

✓ ✓ ✓ ✓ ✓

Estructuras de

control

✓ ✓ ✓ ✓

Automatización ✓ ✓

Generalización ✓ ✓ ✓

Simulación ✓ ✓ ✓

Eventos ✓

Iterativo e in-

cremental

 ✓

Expresión, con-

exión y preguntas

 ✓

Reutilización y

remezcla

 ✓

Eficiencia y res-

tricciones de ren-

dimiento

 ✓

Procedimiento

sistemático

 ✓

Conceptualiza-

ción

 ✓

III. HABILIDADES QUE SE PUEDEN GENERAR CON EL

PENSAMIENTO COMPUTACIONAL

Actualmente es de suma importancia que las nuevas generaciones puedan desarro-

llar un conjunto de habilidades no solo a nivel general sino desde el punto de vista de

la programación. Para ello se presenta la tabla 4, la cual resume este tipo de habilida-

des para lo cual se desarrolló una busqueda de literatura sobre el tema.

TABLA IV HABILIDADES GENERALES Y HABILIDADES EN RELACIONADO EN

PROGRAMACIÓN

Categoría Habilidad Referencias

Habilidades relacionadas a programación

Solución de Problemas [40], [41], [42], [43],

[44], [45], [46], [47],

[48], [49], [50], [51],

[52], [53], [54], [55]

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 171

Habilidad Matemática [40], [56], [42], [57],

[38], [59], [60], [61],

[62], [50], [52], [53],

[54], [63], [64]

Previo conocimiento en

programación

[65], [43], [66], [67],

[68], [49], [62], [50],

[52], [53], [64]

Abstracción [56], [69], [44], [57],

[70], [64]

Habilidades educativas generales

Conocimiento básico de

inglés

[71], [66], [72], [52],

[54]

Pensamiento crítico y ha-

bilidad de discusión

[42], [69], [73], [57]

Creatividad [69], [57], [55], [74]

Gestión del tiempo [40], [70]

IV. CASOS DE ÉXITO DEL PENSAMIENTO COMPUTACIONAL

HACIENDO USO DE SCRATCH

Se encontró en la literatura el uso de un entorno de programación llamado Scratch,

el cual desde el año 2017 tiene una comunidad en línea que cuenta con proyectos

creados por niños y jóvenes con edades entre los 8 y los 16 años, los cuales han com-

partido más de 2,5 millones de trabajos. Los miembros de la comunidad pueden inter-

actuar con los proyectos (probarlos o descargarlos) y además con otros miembros

(dejar comentarios o marcar a alguien como amigo) [8] [75]

En el año 2015 se realizó una experiencia sobre el uso de la herramienta en Chile.

Los autores encontraron que el uso de Scratch constituye un instrumento propicio

para el desarrollo del pensamiento lógico y algorítmico en los estudiantes, además

presenta un ambiente que es motivador y permite la participación en la propuesta de

soluciones a las situaciones planteadas, lo que posibilita el análisis de problemas, la

propuesta, el desarrollo y la aplicación de soluciones lógicas y algorítmicas [76].

Otro caso de estudio es el presentado por Armoni, Meerbaum-Salant y Ben-Ari,

quienes analizaron la transición de estudiar informática con el entorno visual de Scra-

tch a estudiar informática con un lenguaje de programación de texto profesional como

C # o Java en la escuela secundaria. “Descubrimos que el conocimiento y la experien-

cia de programación de los estudiantes que habían aprendido Scratch facilitaron

enormemente el aprendizaje del material más avanzado en la escuela secundaria: se

necesitaba menos tiempo para aprender nuevos temas, había menos dificultades de

aprendizaje y lograron niveles cognitivos más altos de comprensión de la mayoría

conceptos” [77]

Bustillo Bayón [78] observó que la inclusión del programa Scratch en la educa-

ción primaria facilita la incorporación de nuevas técnicas de aprendizaje, metodolo-

gías de enseñanza y recursos. Los estudiantes del Magisterio de Vitoria-Gasteiz, ubi-

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 172

cado en España realizaron diferentes experiencias referentes al lenguaje de programa-

ción, lo que habilitó la posibilidad de incluir la herramienta como una de las prácticas

que aplican los docentes a la hora de enseñar, además permitió que la herramienta

Scratch ayudara a que los profesores aprendieran, experimentaran y observaran los

resultados que este tipo de actividades generó en sus estudiantes.

El Ministerio de Educación de Colombia [79], incorporó al programa de matemáti-

cas la herramienta Scratch, con el fin de enriquecer el desarrollo del pensamiento

lógico matemático de forma divertida y solucionando problemas. El proyecto se desa-

rrolló con niños de tercer grado de primaria de las escuelas públicas, donde se realiza-

ron actividades interactivas sobre las figuras geométricas.

En un estudio realizado por Vázquez y Ferrer [80] de la Universidad Española a

Distancia se crearon experiencias educativas con alumnos de bachillerato, donde hi-

cieron videojuegos en el aula utilizando Scratch, obteniendo como resultado de la

experiencia estudiantes con la capacidad de diseñar y crear videojuegos complejos

con diferentes módulos de programación, aumentando así sus destrezas técnicas y

promoviendo una mayor creatividad en el proceso de enseñanza - aprendizaje, además

se obtuvo como beneficio, que los profesores pudieron orientar sus clases desde una

perspectiva más creativa.

López menciona [81] que el éxito en la aplicación de actividades en clase que favo-

recen el pensamiento algorítmico se debe a que programar con Scratch no es lo mis-

mo que resolver problemas con Scratch, debido a que los estudiantes deben activar

estrategias cognitivas, así como usar recursos y conceptos del pensamiento compu-

tacional para poder resolverlos.

V. ESTRATEGIAS UTILIZADAS

El proyecto realizó talleres con las herramientas Scratch, Scratch Jr y Tinkercad

utilizando los componentes Arduino y micro:bit. Para el desarrollo de los talleres se

analizó la información extraída de la tabla 3, en cuál se trabajó con: la abstracción,

algoritmos, fatos, descomposición, pruebas, e iterativo.

En los talleres ser hizo énfasis en los siguientes puntos:

● impartir talleres de programación para la resolución de problemas informáti-

cos.

● Conocer diversos entornos de programación, incluyendo creación de cuentas

de usuario, áreas de trabajo, componentes, entre otros.

● Generar capacidades en las personas participantes para que puedan efectuar

modificaciones en los proyectos realizados en los talleres.

● Realizar una evaluación de los talleres para conocer la percepción de los par-

ticipantes

VI. CONCLUSIONES

Se logró en los talleres poner en práctica los conceptos del pensamiento compu-

tacional.

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 173

Es muy importante la creación de un marco teórico rubusto para poder aplicar los

conocimientos en diferentes ambientes. Además, es importante poder conocer de las

experiencias de otros casos en el mundo, ya que se puede replicar los trabajos, tropi-

calizarlos y aprender de la experiencia con otros colegas

Referencias

1. Basogain, X., Olabe, M. A., & Olabe, J. C. (2015). Pensamiento computacional a través

de la programación: paradigma de aprendizaje. Revista de Educación a Distancia

(RED), 46.

2. Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.

3. Wing, J. (2011). Research notebook: Computational thinking: what and why? The ink:

The magazine of the Carnegie Mellon University School of Computer Science.

4. Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational

thinking through programming: what is next for K–12? Computers in Human Behavior, 41.

5. Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., & Brennan,

K. (2009). Scratch: Programming for all. Communications of the ACM, 52(11).

6. Wing, J. (1881). Computational thinking and thinking about computing. Philosophical

Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 366.

7. Brennan, K., Valverde, A., Prempeh, J., Roque, R., & Chung, M. (2011). More than code:

the significance of social interactions in young people's development as interactive media

creators. In T.

8. Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the de-

velopment of computational thinking. In Proceedings of the 2012 Annual Meeting of the

American Educational Research Association, Vancouver, Canada.

9. Ezeamuzie, N., & Leung, J. (2021). Computational thinking through an empirical lens: a

systematic review of literature. Journal of Educational Computing Research.

10. Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational think-

ing and tinkering: exploration of an early childhood robotics curriculum. Computers & Edu-

cation, 72, 145–157.

11. Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational

thinking in elementary and secondary teacher education. ACM Transactions on Computing

Education, 14(1).

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 174

12. Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking

skills through educational robotics: a study on age and gender relevant differences. Robotics

and Autonomous Systems, 75, 661–670.

13. Atmatzidou, S., & Demetriadis, S. (2017). A didactical model for educational robotics

activities: a study on improving skills through strong or minimal guidance. In Educational

Robotics in the Makers Era (pp. 58–72).

14. Looi, C.-K., How, M.-L., Longkai, W., Seow, P., & Liu, L. (2018). Analysis of linkages

between an unplugged activity and the development of computational thinking. Computer

Science Education, 28(3), 255–279.

15. Witherspoon, E. B., Schunn, C. D., Higashi, R. M., & Shoop, R. (2018). Attending to

structural programming features predicts differences in learning and motivation. Journal of

Computer Assisted Learning, 34(2), 115–128.

16. Tran, Y. (2019). Computational thinking equity in elementary classrooms: what third-

grade students know and can do. Journal of Educational Computing Research, 57(1), 3–31.

17. Nam, K. W., Kim, H. J., & Lee, S. (2019). Connecting plans to action: the effects of a

card-coded robotics curriculum and activities on Korean kindergartners. Asia-Pacific Edu-

cation Researcher, 28(5), 387–397.

18. Calderon, A. C., Skillicorn, D., Watt, A., & Perham, N. (2020). A double dissociative

study into the effectiveness of computational thinking. Education and Information Technol-

ogies, 25(2), 1181–1192.

19. Chen, G., He, Y., & Yang, T. (2020). An ISMP approach for promoting design innova-

tion capability and its interaction with personal characters. IEEE Access.

20. Angeli, C., & Valanides, N. (2019). Developing young children's computational thinking

with educational robotics: an interaction effect between gender and scaffolding strate-

gy. Computers in Human Behavior.

21. Noh, J., & Lee, J. (2019). Effects of robotics programming on the computational think-

ing and creativity of elementary school students. Educational Technology Research and De-

velopment, 68(1), 463–484.

22. Yin, Y., Hadad, R., Tang, X., & Lin, Q. (2019). Improving and assessing computational

thinking in maker activities: the integration with physics and engineering learning. Journal

of Science Education and Technology, 1–26.

23. Uzumcu, O., & Bay, E. (2020). The effect of computational thinking skill program de-

sign developed according to interest driven creator theory on prospective teach-

ers. Education and Information Technologies.

24. Moreno-León, J., Robles, G., & Román-González, M. (2015). Dr. Scratch: automatic

analysis of Scratch projects to assess and foster computational thinking. RED-Revista de

Educación a Distancia, 46, 1–23.

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 175

25. Román-González, M., Pérez-González, J.-C., & Jiménez-Fernández, C. (2017). Which

cognitive abilities underlie computational thinking? criterion validity of the computational

thinking test. Computers in Human Behavior, 72, 678–691.

26. Dagienė, V., & Sentance, S. (2016). It’s computational thinking! Bebras tasks in the cur-

riculum. In A. Brodnik & F. Tort (Eds.), Informatics in schools: improvement of informatics

knowledge and perception (pp. 28–39).

27. Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: a digital age skill

for everyone. Learning Leading with Technology, 38(6), 20–23.

28. International Society for Technology in Education, & Computer Science Teachers Asso-

ciation. (2011). Operational definition of computational thinking for K–12 education.

29. Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., & Woollard,

J. (2015). Computational thinking: a guide for teachers.

30. Selby, C., & Woollard, J. (2013). Computational thinking: the developing definition.

31. Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U.

(2016). Defining computational thinking for mathematics and science classrooms. Journal of

Science Education and Technology, 25(1), 127–147.

32. Carnegie Mellon Center for Computational Thinking. (n.d.). What is computational

thinking?

33 Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K–12: what is in-

volved and what is the role of the computer science education community? ACM In-

roads, 2(1), 48–54.

34. Selby, C., & Woollard, J. (2013). Computational thinking: the developing definition.

35. Grover, S., & Pea, R. (2013). Computational thinking in K–12: a review of the state of

the field. Educational Researcher, 42(1), 38–43.

36. Seiter, L., & Foreman, B. (2013). Modeling the learning progressions of computational

thinking of primary grade students. In Proceedings of the Ninth Annual International ACM

Conference on International Computing Education Research.

37. Kalelioğlu, F. (2015). A new way of teaching programming skills to K–12 students:

Code.org. Computers in Human Behavior, 52, 200–210.

38. Repenning, A., Webb, D. C., Koh, K. H., Nickerson, H., Miller, S. B., Brand, C., Hors-

es, I. H. M., Basawapatna, A., Gluck, F., Grover, R., Gutierrez, K., & Repenning, N. (2015).

Scalable game design: a strategy to bring systemic computer science education to schools

through game design and simulation creation. ACM Transactions on Computing Educa-

tion, 15(2), 1–31.

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 176

39. Medeiros, R. P., Ramalho, G. L., & Falcão, T. P. (2019). A systematic literature review

on teaching and learning introductory programming in higher education. IEEE Transac-

tions on Education, 62(2), 77–90.

40. Watson, C., & Li, F. W. B. (2014). Failure rates in introductory programming revisited.

In Conference on Innovation and Technology in Computer Science Education, Uppsala,

Sweden (pp. 39–44).

41. Santos, A., Gomes, A., & Mendes, A. (2013). A taxonomy of exercises to support indi-

vidual learning paths in initial programming learning. In Front. Educ. Conf. (FIE), Oklaho-

ma City, OK, USA (pp. 87–93).

42. Gomes, A., & Mendes, A. (2014). A teacher’s view about introductory programming

teaching and learning: difficulties, strategies and motivations. In Front. Educ. Conf. (FIE),

Madrid, Spain (pp. 1–8).

43. Ateeq, M., Habib, H., Umer, A., & Rehman, M. U. (2015). C++ or Python? Which one

to begin with: a learner’s perspective. Teach. Learn. Comput. Eng. (LaTiCE).

44. Holvikivi, J. (2010). Conditions for successful learning of programming skills. In Key

Competencies in the Knowledge Society (IFIP Advances in Information and Communica-

tion Technology [AICT], 324, 155–164.

45. Ma, L., Ferguson, J., Roper, M., & Wood, M. (2011). Investigating and improving the

models of programming concepts held by novice programmers. Computer Science Educa-

tion, 21(1), 57–80.

46. Tavares, O. D. L., de Menezes, C. S., & de Nevado, R. A. (2012). Pedagogical architec-

tures to support the process of teaching and learning of computer programming. In Front.

Educ. Conf. (FIE), Seattle, WA, USA (pp. 1–6).

47. Thota, N. (2014). Programming course design: a phenomenographic approach to learn-

ing and teaching. In Teach. Learn. Comput. Eng. (LaTiCE), Kuching, Malaysia (pp. 125–

132).

48. Kranch, D. A. (2011). Teaching the novice programmer: a study of instructional se-

quences and perception. Education and Information Technologies, 17(3), 291–313.

49. Lishinski, A., Yadav, A., Enbody, R., & Good, J. (2016). The influence of problem solv-

ing abilities on students’ performance on different assessment tasks in CS1. In 47th ACM

Technical Symposium on Computer Science Education, Memphis, TN, USA (pp. 329–334).

50. Silva-Maceda, G., Arjona-Villicaña, P. D., & Castillo-Barrera, F. E. (2016). More time

or better tools? A large-scale retrospective comparison of pedagogical approaches to teach

programming. IEEE Transactions, 59(4), 274–281.

51. Uysal, M. P. (2014). Improving first computer programming experiences: the case of

adapting a Web-supported and well-structured problem-solving method to a traditional

course. Contemporary Educational Technology, 5(3), 198–217.

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 177

52. Alturki, R. A. (2014). Measuring and improving student performance in an introductory

programming course. Informatics in Education, 15(2), 183–204.

53. Hoskey, A., & Maurino, P. S. M. (2011). Beyond introductory programming: success

factors for advanced programming. Information Systems Education Journal, 9(5), 61–70.

54. Apiola, M., & Tedre, M. (2012). New perspectives on the pedagogy of programming in

a developing country context. Computer Science Education, 22(3), 285–313.

55. Shuhidan, S., Hamilton, M., & D’Souza, D. (2010). Instructor perspectives of multiple-

choice questions in summative assessment for novice programmers. Computer Science Edu-

cation, 20(3), 229–259.

56. Gomes, A. J., & Mendes, A. J. (2010). A study on student performance in first year CS

courses. In ITiCSE, Ankara, Turkey (pp. 113–117).

57. Ambrósio, A. P., Costa, F. M., Almeida, L., Franco, A., & Macedo, J. (2011). Identify-

ing cognitive abilities to improve CS1 outcome. In Front. Educ. Conf. (FIE), Rapid City,

SD, USA (pp. F3G-1–F3G-7).

58. Yousoof, M., & Sapiyan, M. (2015). Optimizing instruction for learning computer pro-

gramming—A novel approach, in Intelligence in the Era of Big Data. ICSIIT 2015 (Com-

munications in Computer and Information Science), 516, 128–139.

59. Apiola, M., Moisseinen, N., & Tedre, M. (2012). Results from an action research ap-

proach for designing CS1 learning environments in Tanzania. In Front. Educ. Conf. (FIE),

Seattle, WA, USA (pp. 1–6).

60. Gomes, A., & Mendes, A. J. (2010). Studies and proposals about initial programming

learning. In Front. Educ. Conf. (FIE), Washington, DC, USA (pp. 1–6).

61. Giraffa, L. M. M., Moraes, M. C., & Uden, L. (2013). Teaching object-oriented pro-

gramming in first-year undergraduate courses supported by virtual classrooms. In 2nd Inter-

national Workshop on Learning Technology in Education Cloud (pp. 15–26).

62. Petersen, A., Craig, M., Campbell, J., & Tafliovich, A. (2016). Revisiting why students

drop. In CS1 in Proc. 16th Koli Calling International Conference on Computing Education

Research (pp. 71–80).

63. Ott, C., Robins, A., Haden, P., & Shephard, K. (2015). Illustrating performance indica-

tors and course characteristics to support students’ self-regulated learning. In CS1 Comput.

Sci. Educ., 25(2), 174–198.

64. Robins, A. (2010). Learning edge momentum: a new account of outcomes. In CS1 Com-

put. Sci. Educ., 20(1), 37–71.

65. Tafliovich, A., Campbell, J., & Petersen, A. (2013). A student perspective on prior expe-

rience in CS1. In SIGCSE 44th ACM Technical Symposium on Computer Science Educa-

tion, Denver, CO, USA (pp. 239–244).

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 178

66. Horton, D., & Craig, M. (2015). Drop, fail, pass, continue: persistence in CS1 and be-

yond in traditional and inverted delivery. In SIGCSE, Kansas City, MO, USA (pp. 235–

240).

67. Porter, L., & Zingaro, D. (2014). Importance of early performance. In CS1: Two con-

flicting assessment stories, in Proc. SIGCSE, Atlanta, GA, USA (pp. 295–300).

68. Koulouri, T., Lauria, S., & Macredie, R. D. (2014). Teaching introductory programming:

a quantitative evaluation of different approaches. ACM Transactions on Computing Educa-

tion, 14(4), Article 26.

69. Brito, M. A., & de Sá-Soares, F. (2014). Assessment frequency in introductory computer

programming disciplines. ACM Comput. Human Behav., 30, 623–628.

70. Bati, T. B., Gelderblom, H., & van Biljonc, J. (2014). A blended learning approach for

teaching computer programming: design for large classes in Sub-Saharan Africa. Computer

Science Education, 24(1), 71–99.

71. Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. (2005). A study of the difficulties of

novice programmers. ACM SIGCSE Bulletin, 37(3), 14–18.

72. Yousoof, M., & Sapiyan, M. (2015). Optimizing instruction for learning computer pro-

gramming—A novel approach, in Intelligence in the Era of Big Data. ICSIIT 2015 (Com-

munications in Computer and Information Science), 516, 128–139.

73. Eltegani, N., & Butgereit, L. (2015). Attributes of students engagement in fundamental

programming learning. In Comput. Control Netw. Electron. Embedded Syst. Eng.

(ICCNEEE), Khartoum, Sudan (pp. 101–106).

74. Shell, D. F. (2014). Improving learning of computational thinking using computational

creativity exercises in a college CSI computer science course for engineers. In Front. Educ.

Conf. (FIE), Madrid, Spain (pp. 1–7).

75. Brennan, K., Resnick, M., & Monroy-Hernandez, A. (2010). Making projects, making

friends: online community as catalyst for interactive media creation. New Directions for

Youth Development, 75–83.

76. Vidal, C. L., Cabezas, C., Parra, H. J., & López, L. P. (2015). Practical experiences for

using the programming language Scratch to develop algorithmic thinking of students in

Chile.

77. Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). Desde cero hasta la progra-

mación real. Transacciones de ACM sobre educación en computación.

78. Bustillo Bayón, J. (2015). Formación del profesorado con Scratch: análisis de la escasa

incidencia en el aula.

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 179

79. Bolaños, M., Cuero, E., & Villalobos, N. (2017). Uso de Scratch como herramienta para

el desarrollo de la competencia matemática.

80. Vázquez, E., & Ferrer, D. (2015). La creación de videojuegos con Scratch en Educación

Secundaria. Communication Papers, 63–73.

81. López, J. C. (2014). Actividades de aula con Scratch que favorecen el uso del pensa-

miento algorítmico.

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 180

