SAEI, Simposio Argentino de Educacién en Informatica 2025

Arquitectura del Conjunto de Instrucciones Educativa
para el Inicio en la Carrera de Ingenieria en
Computacion

Thiago A. Cruz ', Hernan F. Kisiel 2, Brian E. Ryberg ', Jonathan C.
Meier !, Matias G. Krujoski !, Alicia B. Rendén !
y Roberto E. Carballo 2

! Facultad de Ingenieria, Universidad Nacional de Misiones (UNaM), Obera,
Misiones, Argentina

2 IMAM, UNaM, CONICET, FI, Grupo de Investigacion y Desarrollo en Electronica
(GIDE), Juan Manuel de Rosas #325, Obera, 3360, Misiones, Argentina.

cruzthiagoagustin664@gmail.com, hernankisiel@gmail.com,

ryberg.brian2@gmail.com, jonny.meier26@gmail.com,

matias.krujoski@fio.unam.edu.ar, alibrendon@gmail.com,

robertocarballo@fio.unam.edu.ar.

Resumen. En este trabajo se presenta el desarrollo de una arquitectura del conjunto
de instrucciones (ISA - Instruction Set Architecture), disefiada especialmente para el
uso en ambito académico de los primeros afios de la carrera de Ingenieria en
Computacion. El objetivo es proporcionar un modelo simple, que sirva como una
introduccion a los fundamentos de ISA's mas complejas que se puedan desarrollar o
estudiar a futuro, facilitando asi la comprension de conceptos basicos y un aprendizaje
general de manera progresiva a lo largo de la carrera.

Para lograr el cometido, a continuaciéon se presentan tres componentes
esenciales: la arquitectura del conjunto de instrucciones (ISA), la microarquitectura
asociada a la ISA y un simulador de codigo ensamblador, este tltimo permite tanto el
desarrollo como la prueba de codigos en lenguaje ensamblador por parte del alumno.
Estos componentes en conjunto forman un primer escalon sencillo con el cual los
estudiantes pueden introducirse al disefio de ISA's, microarquitecturas y, ademas, a la
programacion a bajo nivel.

Palabras Clave. Arquitectura del Conjunto de Instrucciones Educativo,
Microarquitectura, Codigo Ensamblador, Fundamentos de Informatica, Procesador de
un Solo Ciclo

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Pagina 284

mailto:cruzthiagoagustin664@gmail.com
mailto:hernankisiel@gmail.com
mailto:ryberg.brian2@gmail.com
mailto:jonny.meier26@gmail.com
mailto:matias.krujoski@fio.unam.edu.ar
mailto:alibrendon@gmail.com
mailto:robertocarballo@fio.unam.edu.ar

SAEI, Simposio Argentino de Educacién en Informatica 2025

1. Introduccion

Existen varios enfoques para introducir a los estudiantes al funcionamiento
de las computadoras modernas en las carreras vinculadas a las ciencias de la
computacion, pudiéndose agrupar estos en dos clasificaciones, enfoques de abajo
hacia arriba o de arriba hacia abajo (Yale N. Patt and Kevin J. Compton, 1997).

Los enfoques de abajo hacia arriba consisten en comenzar por ensefiar los
componentes de la computadora pero desde sus partes constitutivas, por lo que se
suele comenzar por presentar en primer lugar el transistor MOSFET, el cual es la base
para la construccion de circuitos CMOS y luego con estos como se construyen las
compuertas logicas, para seguir con el armado de circuitos combinacionales, circuitos
aritméticos y memorias. De esta forma se van construyendo y agrupando los distintos
niveles de abstraccidon que conforman las bases de las computadoras modernas,
llegando hasta la microarquitectura de un procesador y su Arquitectura del Conjunto
de Instrucciones (ISA — Instruction Set Architecture), e inclusive continuar con la
enseflanza de lenguajes de programacion assembly y de alto nivel. El objetivo del
enfoque de abajo hacia arriba es que el estudiante construya su conocimiento sobre lo
que ya sabe, aprendié o va aprendiendo en el transcurso del curso, minimizando los
vacios que puedan haber en el funcionamiento de cada componente y sus
interacciones (Sanjay J. Patel et al., 2023).

Los distintos niveles de abstraccion que se tienen desde el problema que se
quiere resolver usando una computadora (o redes de computadoras), hasta los
electrones que fluyen por los circuitos transistorizados de la mismas, se agrupan en lo
que se denomina la jerarquia de transformacion (Sanjay J. Patel et al., 2023), presentada en
la Fig. 1.

Problemas

Algoritmos

Lenguajes

Arquitectura de la maquina (ISA)

Microarquitectura

Circuitos

Dispositivos
Fig. 1 Jerarquia de Transformacion (Sanjay J. Patel et al., 2020).

A diferencia de los enfoques de abajo hacia arriba, los enfoques de arriba
hacia abajo se basan en ensefiar primero a programar en un lenguaje de alto nivel, con
lo cual suele variar mucho el contenido dependiendo de qué lenguaje se ensefia. El

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Pagina 285

SAEI, Simposio Argentino de Educacién en Informatica 2025

argumento en contra del por qué no es bueno este tipo de enfoques es que el
estudiante termina memorizando y tratando de aplicar patrones que aprendié en
ejercicios previos a los problemas futuros, sin comprender el funcionamiento basico
de un procesador y la memoria, lo cual lo lleva a fracasar en la resolucion de nuevos
problemas. El argumento a favor es que el tiempo para aprender a programar podria
ser mas reducido que con un enfoque de abajo hacia arriba, sacrificando un
conocimiento profundo sobre los componentes de la computadora y su
funcionamiento.

Por lo general en los enfoques de abajo hacia arriba se suele utilizar un
modelo de maquina (descrito por su ISA) que permite al estudiante entender cémo
funciona una computadora, como es la interaccion memoria-procesador, la
programacion a bajo nivel, ya sea en cddigo maquina o el lenguaje assembly de una
maquina en particular. Los modelos utilizados generalmente son en base a
arquitecturas RISC (Reduced Instruction Set Computer, Arquitectura del Conjunto de
Instrucciones Reducida), ya que otorgan pocas instrucciones con las que el estudiante
debe familiarizarse. Estos modelos suelen estar acompafiados de herramientas para
simular la ejecucion del codigo, asi es posible escribir algoritmos y probar su
funcionamiento en un entorno de simulacion.

Dentro de los posibles modelos de maquinas mas simples para aprender el
funcionamiento de las computadoras, se encuentra una propuesta del profesor Yale
Patt, denominada LC-3 (Little Computer 3, Pequeiia Computadora 3), para la cual
defini6 una ISA educativa basada en arquitecturas RISC, con 14 instrucciones y 5
modos de direccionamiento.

Si bien la ISA propuesta por Patt Y. es simple y permite a los estudiantes
introducirse en forma mas amigable a conceptos como, codigo maquina, lenguaje
assembly, microarquitectura de un procesador, en comparacion a si lo tuvieran que
hacer con MIPS, ARM o RISC-V (enfoques utilizados en libros de los autores (Harris
S.y Harris D., 2007, 2015, 2021)), el estudio de la LC-3 requiere preestablecer las siguientes
caracteristicas de un procesador, las cuales no son tan intuitivas para un estudiante
que recién comienza:

e Esnecesario un banco de registros.

e Se debe aprender las caracteristicas de instrucciones de cargar (Load) y
guardar (Store) en 3 diferentes modos de direccionamiento: relativo al
contador de programa, indirecto y base + offset.

e Se tienen varios campos dentro de los formatos de las instrucciones, ya que
se cuenta con el opcode, las direcciones destino y fuente dentro del banco de
registros, la direccion base en un banco de registros, el bit de direccion (bit 5
en instrucciones de procesamiento), los bits inmediatos (constantes), los bits
NZP en instrucciones de salto condicional y los distintos offsets.

e Se deben aprender otras instrucciones que facilitan o permiten implementar
funcionalidades que pueden considerarse “mas avanzadas” que la
implementacion de algoritmos basicos, como el manejo de interrupciones
(instruccion RTI), llamado a subrutinas (instrucciones JSR, JSRR, RET) y
llamadas al sistema operativo (instruccion TRAP).

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Pagina 286

SAEI, Simposio Argentino de Educacién en Informatica 2025

El hecho de tener que explicar por qué se utiliza un banco de registros
presenta desafios al ensefiar estos conceptos a los estudiantes. Esto se debe a que es
necesario introducir nociones de jerarquia de memoria, cachés y pipelines, que son las
estructuras de hardware que permiten aprovechar las ventajas de incorporar bancos de
registros en las maquinas modernas y, en conjunto, son las principales responsables de
mejorar el rendimiento.

El objetivo de este trabajo es proponer un prototipo de maquina mas simple,
que opera directamente desde la memoria y con formatos de instrucciéon mas
reducidos que los de la LC-3, permitiendo lograr que en los tiempos de cursado que
tiene la materia Fundamentos de Informatica de la FIO (60 hs en un cuatrimestre),
mejore el nivel de comprension de los estudiantes en el funcionamiento de una
computadora. Con esta motivacion se propone un modelo de maquina mas simple que
la LC-3, que consista de: un acumulador, 7 instrucciones para operar, un formato
simple para cada una de estas y solo dos modos de direccionamiento.

El modelo propuesto presenta un inconveniente: la imposibilidad de
direccionar toda la memoria con una sola instruccion. Sin embargo, este problema se
resuelve en la LC-3, lo que permitira al estudiante abordarlo en la materia de
Arquitectura de Computadoras. La ISA presentada en este trabajo esta disefiada para
ser el punto culminante del curso de Fundamentos de Informatica, impartido en el
primer afio de la carrera. Parte del objetivo es que en el segundo afio, la materia de
Arquitectura de Computadoras pueda retomar y expandir naturalmente los
conocimientos adquiridos, utilizando la LC-3 como una continuacion logica de lo
aprendido previamente.

A continuacion se presentara la ISA educativa propuesta junto a su
microarquitectura, sumado a un simulador de programacion en codigo assembly
especifico a la misma. Debido al reciente desarrollo e implementacion en la cursada
actual (2025), aun no se tienen resultados cuantificables, por lo que en las
conclusiones se comenta la experiencia de los docentes obtenida hasta el momento y
que se utilizard para medir el impacto que tiene la implementacion de esta ISA en
lugar de la LC-3.

Este trabajo se encuentra organizado de la siguiente forma: 1. Introduccion,
2. ISA y su microarquitectura, 3. Simulador de codigo ensamblador, 4. Ejemplos de
programa, 5. Conclusiones y 6. Referencias.

2. ISA educativa y su microarquitectura
2.1. Conjunto de instrucciones y sus formatos

La ISA propuesta en este trabajo ha sido nombrada como ESM (Educational
Simplified Machine, Maquina Educativa Simplificada), desarrollada como una
simplificacion de la LC-3 y al igual que la misma, con fines educativos.

En primera instancia del desarrollo de la ESM se planifico contar con
instrucciones de procesamiento, memoria y control de flujo de programa, ya que estos
tres tipos de instrucciones son los que se encuentran en la LC-3. La diferencia
principal con las instrucciones de la propuesta de Patt Y. es que las instrucciones de

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Pagina 287

SAEI, Simposio Argentino de Educacién en Informatica 2025

memoria mueven datos entre memoria y el acumulador, y no entre memoria y un
banco de registros. Esto facilita la operacion entre memoria y procesamiento, ya que
no se tienen que cargar registros antes de comenzar a operar, pero sacrificando
simplicidad en el programa, ya que ahora se requieren mas instrucciones de memoria
para transferir datos de la misma al acumulador y viceversa.

Para mantener compatibilidad con las instrucciones de procesamiento de la
LC-3, se plantea mantener las mismas instrucciones, ADD (suma aritmética), AND y
NOT, estando la diferencia en que, debido a la estructura de acumulador con la que
trabaja la ALU (A4rithmetic Logic Unit, Unidad Aritmético Ldgica), se tiene un solo
operando. En la Fig. 2 se presenta la conexién simplificada de la ALU con el
acumulador.

ALUControl

Puerto de Memoria

16 Acumulador {"16

Fig. 2 Conexion de la ALU con la Memoria y el Acumulador

Aqui se puede observar que la ISA es word addressable, ya que al cargar el
acumulador se operara sobre nimeros de 16 bits.

El formato de las instrucciones de procesamiento se presenta en la Fig. 3,
donde es posible observar el campo de opcode (13:15) (operation code, codigo de
operacion), el bit 12 que hace de bit de direccion (lo que se denomina como steering
bit) y define el modo de direccionamiento en este caso, pudiéndose utilizar el modo
relativo al contador de programa (bit 12 = 0) o inmediato (bit 12 = 1).

B ¥4 B3 2 #H 1 9 8 7 6 5 4 3 2 i 0
ADD"* 000 |0 PCoffset12
ADD* 000 |1 imm12
AND* 001 |0 PCoffset12
AND* 001 |1 imm12
NOTA* 010 (0 PCoffset12
NOTB* 010 (1|lOOOOOODOOOOOO

Fig. 3 Formato de las instrucciones de procesamiento

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Pagina 288

SAEI, Simposio Argentino de Educacién en Informatica 2025

Las instrucciones ADD y AND cuentan con dos modos de direccionamiento,
con bit 12=0 se utiliza el modo relativo al contador de programa, donde se opera el
contenido del acumulador con lo que se encuentre en la direccion PC+1+PCOffset12,
mientras que con bit12=1 se utiliza el modo inmediato, donde las instrucciones operan
el contenido del acumulador con una constante de 12 bits escrita en el campo imm12.

La instruccion NOT tiene dos modos de direccionamiento con bit 12
definiéndolos, el relativo al contador de programa (NOTA) y el modo acumulador
(NOTB), haciendo en este ultimo NOT bit a bit sobre el contenido del acumulador
directamente.

El multiplexor en la Fig. 2 es para utilizarlo con instrucciones de memoria,
ya que se propone poder cargar el Acumulador directamente con lo que provenga de
la memoria. Para esto se utilizaria la instruccion LD, que viene del término load
(cargar). Se optd este nombre para mantener la similitud con la instruccion LD de la
LC-3, la cual a diferencia de la ESM permite cargar un registro del banco de registros
en la LC-3.

Completando las instrucciones de memoria tenemos ST, proviene de store
(guardar), el cual transfiere el contenido del acumulador a la memoria en modo
relativo al contador de programa.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LD* 011 |0 PCoffsetl2

ST 011 |1 PCoffsetl2

Fig. 4 Formato de las instrucciones de memoria

Notar que el bit 12 en el formato presentado en la Fig. 4 cambia la direccion
de hacia donde irian los datos, con bit 12 = 0 se lleva de memoria a acumulador, y con
bit 12 = 1 de acumulador a memoria.

En las figuras Fig. 3 y Fig. 4 el superindice con un signo + indica que esas
instrucciones modifican los bits N, Z, P en el c6digo de condiciones (CC), que se
utiliza para comparar con los bits NZP de la instruccion de control de flujo de
programa BR (la abreviacion proviene de branch, ramificacion), la cual se presenta su
formato en la Fig. 5.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BR 100 [N|Z|P PCoffset10

Fig. 5 Formato de las instrucciones de control de flujo de programa

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Pagina 289

SAEI, Simposio Argentino de Educacién en Informatica 2025

La instruccion BR permite cambiar la direccion del PC (contador de
programa) si existe una coincidencia en algunos de los bits NZP con los bits NZP del
codigo de condiciones. En caso de coincidir se accede a la siguiente instruccion en
ejecucion dada por la direccion PC+1+PCOffset10; en caso contrario, a la
correspondiente a PC+1. El PC apunta a un puerto de direccion de memoria, lo cual al
leer esta se obtiene una instruccién, teniendo una capacidad de direccionamiento de
21% por lo que el PC puede valer nimeros expresados en 16 bits.. Leer otros puertos
de direccion de memoria mediante las instrucciones LD o ST permite obtener o
almacenar datos en la memoria. Las conexiones relevantes se detallan en la siguiente
seccion, donde se presenta la microarquitectura del procesador que utiliza esta ISA
educativa.

Ademas de estas instrucciones para el computo basico de datos que se
encuentran en la memoria previo a la ejecucion del programa, se agrega la instruccion
TRAP para posibilitar subrutinas del sistema operativo que atiendan system calls del
usuario, como por ejemplo captura de caracteres desde el teclado, impresion en
pantalla de caracteres, u otras tareas que el usuario quisiera delegar al sistema
operativo. Basicamente estas instrucciones funcionan como un salto incondicional, el
cual accede a las primeras posiciones de memoria para saber a que subrutina acceder
en particular. Para evitar superponer hardware complejo adicional al que ya se
presentard en la préxima seccion, no se afadira el cableado de esta instruccion en el
camino de datos, pero si se tiene en cuenta esta instruccion en el simulador de la ESM
a describirse en la seccion 3.

En la Fig. 6 se muestra el formato de esta, en el cual “trapvectl0” nos
indicarda de qué subrutina se trata, siendo en esta ISA x23 para la entrada de un
caracter y x21 para imprimir un caracter en consola (manteniendo estas direcciones de
TRAP de la misma forma que se realiza en la LC-3).

15 14 13 12 11 10 9o 8 7 6 5 4 3 2 1 0

TRAP 111 (0f0]|0 trapvect10

Fig. 6 Formato de las instrucciones de interrupcion de programa

2.2. Microarquitectura

Para la microarquitectura del procesador se considera que toda la instruccion
se ejecuta en un solo ciclo de reloj (lo que se conoce como procesador de un solo
ciclo), pudiendo mapear cada instruccion de la ISA en forma directa al hardware que
las ejecuta, obteniéndose la representacion de la Fig. 7.

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Pagina 290

SAEI, Simposio Argentino de Educacién en Informatica 2025

ALUControl
EN_ACC
15:13 R MUX1
NZP Ug'“atd “'e MUX2
12 ontrol MUX3
MUX4
MUXL ¢ [MEM
CI‘.K NI‘EM

EN
Al RD1

16 A2 RD2

CLK

16 woz

Contador
de
Programa

Pc)

Acumulador

Memoria

16
1
16

16

Fig. 7 Microarquitectura del procesador con implementacion en un solo ciclo de reloj

Para comparar la simplicidad de la microarquitectura de la ESM con la de la
LC-3, que también se implementa en un solo ciclo de reloj (siendo en realidad un
subconjunto de la ISA educativa de la LC-3 que se aborda en la asignatura de
Fundamentos de Informatica), en la Fig. 8 se presentan el camino de datos y la unidad
de control de la LC-3 con las siguientes instrucciones: ADD, AND, NOT, LD, ST,
LDI, STL LDR, STR, LEA, BR y JMP.

N,Z,P,
Opcode| Unidad Sefiales de
NZP de control
(5] Control
CLK
Cll.K | CII.K
PC V' WE
: 21 kot lsR1oBaseRr(s:6) R{ V‘éEm
A2 RD2— |SR2(20) A2 RD2M]
A3 RD3| .
n DR/SR (11:9
4 —WD4
L

A3 ’
I wWD3
Banco de registros,
Imm5 (4:0)

PCoffset9 (3:0)

offset6 (

Fig. 8 Microarquitectura del subconjunto de instrucciones de la LC-3 con
implementacion en un solo ciclo de reloj

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Pagina 291

SAEI, Simposio Argentino de Educacién en Informatica 2025

3. Simulador de codigo ensamblador

Para cumplir con el objetivo mencionado al principio, también es necesario
crear una APP en la cual los estudiantes puedan experimentar con la programacion
con codigo ensamblador (David Salomon et al.,1993). Para ello se afaden las siguientes
pseudo instrucciones de ensamblador a la APP para poder manipular parametros
como la ubicacion en memoria y la reserva de datos, que se vuelven necesarias a la
hora de buscar un flujo dindmico de programacion:

o ORIG: Define la direccion inicial de memoria desde donde comenzara la
ejecucion del programa. Esta directiva especifica la ubicacion de carga del
programa en la memoria

e BLKW: Reserva espacio en memoria para futuros datos sin asignar un valor
inicial, para su posterior utilizacion en el codigo al guardar datos calculados
previamente.

e FILL: Se emplea para almacenar un valor constante en una ubicacion de
memoria antes de que el cddigo sea ensamblado. Este valor puede ser un
numero literal, una direccion de memoria o cualquier constante definida en el
codigo fuente.

e END: Indica el final del programa, sefialando que no existen mas
instrucciones ni datos a procesar, lo que indica al ensamblador que debe
cesar su procesamiento.

El desarrollo del simulador requiere tres componentes esenciales: un
analizador 1éxico (implementado en LEX (Lesk, M. E. and E. Schmidt, 1975)), encargado de
identificar los elementos 1éxicos del cddigo; un analizador sintactico (implementado
en YACC (Johnson, Stephen C., 1975)), responsable de verificar la correcta estructuracion
de las instrucciones; y, por tltimo, una interfaz grafica de usuario (GUI) (realizada en
python utilizando la libreria tkinter (Tkinter - the Python interface for Tk, 2025)), que facilite
la interaccion con el usuario y proporcione un entorno intuitivo para la programacion
y depuracion del codigo ensamblador.

Resulta necesario establecer un mecanismo que permita una correcta
integracion de los lenguajes basados en el lenguaje C (LEX;YACC) con la interfaz
escrita en Python. Para lograr esta vinculacion, se optd por el uso de Shared Libraries
(Program Library HOWTO, 2024) (Hb.dll en Windows (Creating a Resource-Only DLL, 2024) y
lib.so en Linux (Robert A. Gingell, 1998) permitiendo asi la compatibilidad en ambos
sistemas operativos), estas permiten compilar los analizadores como bibliotecas
dinamicas y cargarlas desde Python. Para esta tarea, se emplean modulos como ctypes
y cffi, los cuales facilitan la llamada a funciones escritas en C desde el entorno de
ejecucion de Python.

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Pagina 292

SAEI, Simposio Argentino de Educacién en Informatica 2025

Finalmente, todos los archivos mencionados se integran en un archivo
principal denominado ESM.py, el cual tiene la funcién de unificar los distintos
modulos dentro de la interfaz grafica y gestionar las llamadas a las funciones
implementadas en YACC para la ejecucion del codigo ensamblador. Ademas, ESM.py
se encarga del preprocesamiento del cddigo, eliminando los elementos que pueden
alterar la simulacién o funcionamiento del mismo (como espacios en blanco,
comentarios y saltos de lineas).

En cuanto al manejo de los TRAP se implementan como interrupciones
manejadas por dispositivos de 1/0, de manera que el usuario no puede observar la
tarea del sistema operativo al atender el respectivo TRAP, solamente podra ver que el
programa continta ejecutando cuando se provee el caracter en el teclado, o cuando se
logra imprimir en pantalla.

Se adjunta el repositorio en el cual se encuentra el codigo fuente del
simulador junto a los instaladores de la version 19.4 del mismo.

https:/gith m/thi z664/ESM-Simulator

Cabe recalcar que esta no es la version final y estd sujeta a futuras
actualizaciones, las cuales se distribuiran por GitHub.

4. Ejemplos de programa

Con el objetivo de ilustrar el funcionamiento de la aplicacion desarrollada, se
implementaron dos programas sencillos que permiten demostrar la ejecucion de las
instrucciones definidas en la arquitectura del conjunto de instrucciones educativa
disenada. El primer programa ejecuta la operacion logica XOR entre dos valores y el
segundo realiza la multiplicaciéon de dos numeros positivos de un digito ingresados
por teclado.

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Pagina 293

https://github.com/thiagocruz664/ESM-Simulator

SAEI, Simposio Argentino de Educacién en Informatica 2025

.ORIG x2000

0x2000 NOTA NUM1
0x2001 AND NUM2
0x2002 NOTB

0x2003 ST TEMP1
0x2004 NOTA NUM2Z
0x2005 AND NUM1
0x2006 NOTB

0x2007 ST TEMP2
0x2008 LD TEMP1
0x2009 AND TEMP2
0x200A NOTB

0x200B ST RESULT
0x200C BR nzp RESULT
0x200D NUM1 .FILL #2
Ox200E NUMZ2 .FILL #5
0x200F TEMP1 .BLKW
0x2010 TEMPZ .BLKW
0x2011 RESULT .BLKW
.END

Fig. 9 Codigo de ejemplo 1

B @

ra—

2900

201

g

0

w04

wsar

2308

e

20t

w0

e

wisde

@00 W

wiGE

] TEWe

b TEWRD

w21 RES

el

s
Lim
nsssklacs exitcsemente .
prograsa Registro; 0
Estado: E
PC 2012

Fig. 10 Simulacion de codigo de ejemplo 1

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Pagina 294

- Ao @

Conuola

SAEI, Simposio Argentino de Educacién en Informatica 2025

LORIG %2000

0x2000 TRAP x23
Ox2001 ADD #-48
0x2002 ST NUM1
0x2003 TRAP x23
Ox2004 ADD #-48
0x2005 ST NUMZ2
0x2006 LD NUMZ
0x2007 ST CONT
0x2008 REDO LD CONT
0x2009 ADD #-1
0x2008 ST COMNT
0x200B LD RESULT
0x200C ADD NUM1
0x200D ST RESULT
0x200E LD COMNT
0x200F BR p REDO
0x2010 LD RESULT
0x2011 ADD #48
0x2012 TRAP x21
0x2013 BR nzp SALTAR
0x2014 NUML BLKW
0x2015 NUMZ BLEW
0x2016 RESULT .BLEW
0x2017 CONT BLKW
0x2018 SALTAR .BLKW
.END

Fig. 11 Cédigo de ejemplo 2

bl B @ o

EemplobdutiphcerDiodhem ot Femisns
x2008 A
x001 ™
w0 ST
X200 TRAP X1
T x00s Al asd
Ll STz
w008 0
3 oer T cont
= o amo 2 cont
e ABE -1
o asas o1 cont
I = ST
S w200 ADD MM
. =] STEESIY
=00% WD CORT
g i p REDS
013 w0 s
PR AD0 848
3wz A i
= w013 BR nzp SALTAR
Oa
Lerprar
Registro: 54
Estado: P
PC: 2019

Fig. 12 Simulacion de codigo de ejemplo 2

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Pagina 295

SAEI, Simposio Argentino de Educacién en Informatica 2025

5. Conclusiones

Se ha presentado una arquitectura del conjunto de instrucciones (ISA) de un
procesador educativo, denominada como ESM (Educational Simplified Machine),
para ser utilizada en el curso de Fundamentos de Informatica de la Carrera de
Ingenieria en Computacion de la FIO. La ISA contiene 7 instrucciones, 3 de
procesamiento, 2 de memoria, 1 de salto condicional y 1 de system call con 2 vectores
de interrupcion respectivos, con las que es posible formular cualquier algoritmo
simple de forma practica, esperando que facilite la comprension de las caracteristicas
de una ISA a estudiantes que recién se inician en la carrera.

Se contrastd la microarquitectura del procesador propuesto con el que surge
del subconjunto de la LC-3 con la que se ensefid hasta el afio 2024 en la materia
Fundamentos de Informatica. Si bien resulta significativamente mas reducida la
cantidad de conexiones, se puede apreciar que caracteristicas como el contador de
programa, memoria e interfaz con extension de signo con la ALU siguen
manteniéndose en el camino de datos, por lo que se puede considerar un paso previo
en la comprension de la microarquitectura de ISA’s mas complejos.

Se disefi6 una GUI intuitiva en la cual los alumnos pueden desarrollar y
testear codigo ensamblador, logrando comprender los conceptos mas basicos de la
programacion a bajo nivel.

Con un conjunto de instrucciones simples y pedagogicas, una
microarquitectura definida y un simulador funcional, la ESM pudo integrarse al cierre
de la cursada de Fundamentos de Informatica como una herramienta didactica. Su uso
permiti6 desarrollar al completo una ISA capaz de realizar cualquier tipo de computo,
sin la necesidad de abordar temas complejos que llevan mas tiempo del disponible
para dictarlos correctamente sin asumir u obviar diversos conceptos. A impresion de
los docentes, esto ayudo a transmitir los conceptos basicos de una manera mas simple
y comprensible para los alumnos presentes en el cursado.

Se espera poder cuantificar los resultados a partir de analizar datos de las
evaluaciones en examenes finales anteriores y posteriores a Julio del 2025, y con esto
determinar si la tasa de aprobacion ha mejorado con la implementacion de la ESM en
el cursado. A espera de estos resultados cuantificables, las primeras impresiones de
los docentes han sido positivas y sugieren que el desarrollo avanza en la direccion
correcta.

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Pagina 296

SAEI, Simposio Argentino de Educacién en Informatica 2025

6. Referencias

Lesk, M. E. and E. Schmidt (1975). Lex — A Lexical Analyzer Generator. Computing Science
Technical Report No. 39, Bell Laboratories, Murray Hill, New Jersey.

Johnson, Stephen C. (1975). Yacc: Yet Another Compiler Compiler. Computing Science
Technical Report No. 32, Bell Laboratories, Murray hill, New Jersey.

Robert A. Gingell, Meng Lee, Xuong T. Dang and Mary S. Weeks (1988). Shared Libraries in
SunOS. Sun Microsystems, Inc. 2550 Garcia Ave. Mountain View, CA 94043.

David Salomon (1993). Assemblers and Loaders. The Chicago Manual of Style.

Yale N. Patt and Kevin J. Compton (1997), Introduction to Computing --The Correct
(Bottom-up) Approach, Department of Electrical Engineering & Computer Science University
of Michigan, Ann Arbor.

Program Library HOWTO, https:/tldp.org/HOWTO/Program-Library-HOWTO, last access
2024/11/24.

S. Harris and D. Harris (2007). Digital Design and Computer Architecture. Morgan Kaufmann.

John. L. Hennessy and David. A. Patterson (2012). Computer Architecture: A Quantitative
Approach fifth edition. Morgan Kaufmann.

Paxson, Vern, Will Estes and John Millaway (2015). Lexical Analysis with Flex. University of
California, Berkeley.

Donnelly, Charles and Richard Stallman (2015). Bison. Free Software Foundation.

S. Harris and D. Harris (2015) Digital design and computer architecture: arm edition. Morgan
Kaufmann.

Creating a Resource-Only DLL Microsoft Developer Network Library,
https://learn.microsoft.com/en-us/cpp/build/creating-a-resource-only-dll, last access
2024/11/24.

S. Harris and D. Harris (2021) Digital Design and Computer Architecture: RISC-V_Edition.
Morgan Kaufmann.

Tkinter - the Python interface for Tk, https://python-course.cu/tkinter, last access 2025/10/02.

Biblioteca de vinculos dinamicos (DLL) Microsoft Developer Network Library,
https://learn.microsoft.com/es-es/troubleshoot/windows-client/setup-upgrade-and-drivers/dyna
mic-link-library, last access 2025/02/23.

Sanjay J. Patel and Yale. N. Patt (2023). Intr tion t mputin tems: from bit;
to C/C++ & beyond. McGraw-Hill Education

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Pagina 297

https://epaperpress.com/lexandyacc/download/lex.pdf
https://epaperpress.com/lexandyacc/download/yacc.pdf
https://www.cs.cornell.edu/courses/cs414/2001FA/sharedlib.pdf
https://www.cs.cornell.edu/courses/cs414/2001FA/sharedlib.pdf
https://www.davidsalomon.name/assem.advertis/asl.pdf
https://peer.asee.org/introduction-to-computing-the-correct-bottom-up-approach.pdf
https://peer.asee.org/introduction-to-computing-the-correct-bottom-up-approach.pdf
https://tldp.org/HOWTO/Program-Library-HOWTO
https://allbooksfordownloading.wordpress.com/wp-content/uploads/2017/01/digital-design-and-computer-architecture-by-david-and-sarah-harris.pdf
https://acs.pub.ro/~cpop/SMPA/Computer%20Architecture%20A%20Quantitative%20Approach%20(5th%20edition).pdf
https://acs.pub.ro/~cpop/SMPA/Computer%20Architecture%20A%20Quantitative%20Approach%20(5th%20edition).pdf
https://epaperpress.com/lexandyacc/download/flex.pdf
https://www.gnu.org/software/bison/manual/bison.pdf
https://drive.google.com/file/d/1_wO3SsV3BKgmueRaXsLg_zQ6XGNTeAIU/view
https://learn.microsoft.com/en-us/cpp/build/creating-a-resource-only-dll
https://mrce.in/ebooks/Digital%20Design%20&%20Computer%20Architecture%20RISC-V%20Edition.pdf
https://python-course.eu/tkinter
https://learn.microsoft.com/es-es/troubleshoot/windows-client/setup-upgrade-and-drivers/dynamic-link-library
https://learn.microsoft.com/es-es/troubleshoot/windows-client/setup-upgrade-and-drivers/dynamic-link-library
https://icourse.club/uploads/files/96a2b94d4be48285f2605d843a1e6db37da9a944.pdf
https://icourse.club/uploads/files/96a2b94d4be48285f2605d843a1e6db37da9a944.pdf

	Arquitectura del Conjunto de Instrucciones Educativa para el Inicio en la Carrera de Ingeniería en Computación
	1.​Introducción
	2.​ISA educativa y su microarquitectura
	2.1.​Conjunto de instrucciones y sus formatos
	2.2.​Microarquitectura

	3.​Simulador de código ensamblador
	4.​Ejemplos de programa
	5.​Conclusiones
	6.​Referencias
	Lesk, M. E. and E. Schmidt (1975). Lex – A Lexical Analyzer Generator. Computing Science Technical Report No. 39, Bell Laboratories, Murray Hill, New Jersey.
	Johnson, Stephen C. (1975). Yacc: Yet Another Compiler Compiler. Computing Science Technical Report No. 32, Bell Laboratories, Murray hill, New Jersey.
	Robert A. Gingell, Meng Lee, Xuong T. Dang and Mary S. Weeks (1988). Shared Libraries in SunOS. Sun Microsystems, Inc. 2550 Garcia Ave. Mountain View, CA 94043.
	David Salomon (1993). Assemblers and Loaders. The Chicago Manual of Style.
	Yale N. Patt and Kevin J. Compton (1997), Introduction to Computing --The Correct (Bottom-up) Approach, Department of Electrical Engineering & Computer Science University of Michigan, Ann Arbor.
	Program Library HOWTO, https://tldp.org/HOWTO/Program-Library-HOWTO, last access 2024/11/24.
	S. Harris and D. Harris (2007). Digital Design and Computer Architecture. Morgan Kaufmann.
	John. L. Hennessy and David. A. Patterson (2012). Computer Architecture: A Quantitative Approach fifth edition. Morgan Kaufmann.
	Paxson, Vern, Will Estes and John Millaway (2015). Lexical Analysis with Flex. University of California, Berkeley.
	Donnelly, Charles and Richard Stallman (2015). Bison. Free Software Foundation.
	S. Harris and D. Harris (2015) Digital design and computer architecture: arm edition. Morgan Kaufmann.
	Creating a Resource-Only DLL Microsoft Developer Network Library, https://learn.microsoft.com/en-us/cpp/build/creating-a-resource-only-dll, last access 2024/11/24.
	S. Harris and D. Harris (2021) Digital Design and Computer Architecture: RISC-V Edition. Morgan Kaufmann.
	Tkinter - the Python interface for Tk, https://python-course.eu/tkinter, last access 2025/10/02.
	Biblioteca de vínculos dinámicos (DLL) Microsoft Developer Network Library, https://learn.microsoft.com/es-es/troubleshoot/windows-client/setup-upgrade-and-drivers/dynamic-link-library, last access 2025/02/23.
	Sanjay J. Patel and Yale. N. Patt (2023). Introduction to Computing Systems: from bits & gates to C/C++ & beyond. McGraw-Hill Education

