

Arquitectura del Conjunto de Instrucciones Educativa
para el Inicio en la Carrera de Ingeniería en

Computación

Thiago A. Cruz ¹, Hernan F. Kisiel ², Brian E. Ryberg ¹, Jonathan C.
Meier ¹, Matías G. Krujoski ¹, Alicia B. Rendón ¹

y Roberto E. Carballo 2

¹ Facultad de Ingeniería, Universidad Nacional de Misiones (UNaM), Oberá,
Misiones, Argentina

² IMAM, UNaM, CONICET, FI, Grupo de Investigación y Desarrollo en Electrónica
(GIDE), Juan Manuel de Rosas #325, Oberá, 3360, Misiones, Argentina.

cruzthiagoagustin664@gmail.com, hernankisiel@gmail.com,
ryberg.brian2@gmail.com, jonny.meier26@gmail.com,

matias.krujoski@fio.unam.edu.ar, alibrendon@gmail.com,
robertocarballo@fio.unam.edu.ar.

Resumen. En este trabajo se presenta el desarrollo de una arquitectura del conjunto
de instrucciones (ISA - Instruction Set Architecture), diseñada especialmente para el
uso en ámbito académico de los primeros años de la carrera de Ingeniería en
Computación. El objetivo es proporcionar un modelo simple, que sirva como una
introducción a los fundamentos de ISA's más complejas que se puedan desarrollar o
estudiar a futuro, facilitando así la comprensión de conceptos básicos y un aprendizaje
general de manera progresiva a lo largo de la carrera.

Para lograr el cometido, a continuación se presentan tres componentes
esenciales: la arquitectura del conjunto de instrucciones (ISA), la microarquitectura
asociada a la ISA y un simulador de código ensamblador, este último permite tanto el
desarrollo como la prueba de códigos en lenguaje ensamblador por parte del alumno.
Estos componentes en conjunto forman un primer escalón sencillo con el cual los
estudiantes pueden introducirse al diseño de ISA's, microarquitecturas y, además, a la
programación a bajo nivel.

Palabras Clave. Arquitectura del Conjunto de Instrucciones Educativo,
Microarquitectura, Código Ensamblador, Fundamentos de Informática, Procesador de
un Solo Ciclo

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 284

mailto:cruzthiagoagustin664@gmail.com
mailto:hernankisiel@gmail.com
mailto:ryberg.brian2@gmail.com
mailto:jonny.meier26@gmail.com
mailto:matias.krujoski@fio.unam.edu.ar
mailto:alibrendon@gmail.com
mailto:robertocarballo@fio.unam.edu.ar

1.​ Introducción

Existen varios enfoques para introducir a los estudiantes al funcionamiento
de las computadoras modernas en las carreras vinculadas a las ciencias de la
computación, pudiéndose agrupar estos en dos clasificaciones, enfoques de abajo
hacia arriba o de arriba hacia abajo (Yale N. Patt and Kevin J. Compton, 1997).

Los enfoques de abajo hacia arriba consisten en comenzar por enseñar los
componentes de la computadora pero desde sus partes constitutivas, por lo que se
suele comenzar por presentar en primer lugar el transistor MOSFET, el cual es la base
para la construcción de circuitos CMOS y luego con estos cómo se construyen las
compuertas lógicas, para seguir con el armado de circuitos combinacionales, circuitos
aritméticos y memorias. De esta forma se van construyendo y agrupando los distintos
niveles de abstracción que conforman las bases de las computadoras modernas,
llegando hasta la microarquitectura de un procesador y su Arquitectura del Conjunto
de Instrucciones (ISA – Instruction Set Architecture), e inclusive continuar con la
enseñanza de lenguajes de programación assembly y de alto nivel. El objetivo del
enfoque de abajo hacia arriba es que el estudiante construya su conocimiento sobre lo
que ya sabe, aprendió o va aprendiendo en el transcurso del curso, minimizando los
vacíos que puedan haber en el funcionamiento de cada componente y sus
interacciones (Sanjay J. Patel et al., 2023).

Los distintos niveles de abstracción que se tienen desde el problema que se
quiere resolver usando una computadora (o redes de computadoras), hasta los
electrones que fluyen por los circuitos transistorizados de la mismas, se agrupan en lo
que se denomina la jerarquía de transformación (Sanjay J. Patel et al., 2023), presentada en
la Fig. 1.

Fig. 1 Jerarquía de Transformación (Sanjay J. Patel et al., 2020).

​ A diferencia de los enfoques de abajo hacia arriba, los enfoques de arriba
hacia abajo se basan en enseñar primero a programar en un lenguaje de alto nivel, con
lo cual suele variar mucho el contenido dependiendo de qué lenguaje se enseña. El

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 285

argumento en contra del por qué no es bueno este tipo de enfoques es que el
estudiante termina memorizando y tratando de aplicar patrones que aprendió en
ejercicios previos a los problemas futuros, sin comprender el funcionamiento básico
de un procesador y la memoria, lo cual lo lleva a fracasar en la resolución de nuevos
problemas. El argumento a favor es que el tiempo para aprender a programar podría
ser más reducido que con un enfoque de abajo hacia arriba, sacrificando un
conocimiento profundo sobre los componentes de la computadora y su
funcionamiento.

​ Por lo general en los enfoques de abajo hacia arriba se suele utilizar un
modelo de máquina (descrito por su ISA) que permite al estudiante entender cómo
funciona una computadora, como es la interacción memoria-procesador, la
programación a bajo nivel, ya sea en código máquina o el lenguaje assembly de una
máquina en particular. Los modelos utilizados generalmente son en base a
arquitecturas RISC (Reduced Instruction Set Computer, Arquitectura del Conjunto de
Instrucciones Reducida), ya que otorgan pocas instrucciones con las que el estudiante
debe familiarizarse. Estos modelos suelen estar acompañados de herramientas para
simular la ejecución del código, así es posible escribir algoritmos y probar su
funcionamiento en un entorno de simulación.

​ Dentro de los posibles modelos de máquinas más simples para aprender el
funcionamiento de las computadoras, se encuentra una propuesta del profesor Yale
Patt, denominada LC-3 (Little Computer 3, Pequeña Computadora 3), para la cual
definió una ISA educativa basada en arquitecturas RISC, con 14 instrucciones y 5
modos de direccionamiento.

Si bien la ISA propuesta por Patt Y. es simple y permite a los estudiantes
introducirse en forma más amigable a conceptos como, código máquina, lenguaje
assembly, microarquitectura de un procesador, en comparación a si lo tuvieran que
hacer con MIPS, ARM o RISC-V (enfoques utilizados en libros de los autores (Harris
S. y Harris D., 2007, 2015, 2021)), el estudio de la LC-3 requiere preestablecer las siguientes
características de un procesador, las cuales no son tan intuitivas para un estudiante
que recién comienza:

●​ Es necesario un banco de registros.
●​ Se debe aprender las características de instrucciones de cargar (Load) y

guardar (Store) en 3 diferentes modos de direccionamiento: relativo al
contador de programa, indirecto y base + offset.

●​ Se tienen varios campos dentro de los formatos de las instrucciones, ya que
se cuenta con el opcode, las direcciones destino y fuente dentro del banco de
registros, la dirección base en un banco de registros, el bit de dirección (bit 5
en instrucciones de procesamiento), los bits inmediatos (constantes), los bits
NZP en instrucciones de salto condicional y los distintos offsets.

●​ Se deben aprender otras instrucciones que facilitan o permiten implementar
funcionalidades que pueden considerarse “más avanzadas” que la
implementación de algoritmos básicos, como el manejo de interrupciones
(instrucción RTI), llamado a subrutinas (instrucciones JSR, JSRR, RET) y
llamadas al sistema operativo (instrucción TRAP).

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 286

El hecho de tener que explicar por qué se utiliza un banco de registros
presenta desafíos al enseñar estos conceptos a los estudiantes. Esto se debe a que es
necesario introducir nociones de jerarquía de memoria, cachés y pipelines, que son las
estructuras de hardware que permiten aprovechar las ventajas de incorporar bancos de
registros en las máquinas modernas y, en conjunto, son las principales responsables de
mejorar el rendimiento.

El objetivo de este trabajo es proponer un prototipo de máquina más simple,
que opera directamente desde la memoria y con formatos de instrucción más
reducidos que los de la LC-3, permitiendo lograr que en los tiempos de cursado que
tiene la materia Fundamentos de Informática de la FIO (60 hs en un cuatrimestre),
mejore el nivel de comprensión de los estudiantes en el funcionamiento de una
computadora. Con esta motivación se propone un modelo de máquina más simple que
la LC-3, que consista de: un acumulador, 7 instrucciones para operar, un formato
simple para cada una de estas y solo dos modos de direccionamiento.

El modelo propuesto presenta un inconveniente: la imposibilidad de
direccionar toda la memoria con una sola instrucción. Sin embargo, este problema se
resuelve en la LC-3, lo que permitirá al estudiante abordarlo en la materia de
Arquitectura de Computadoras. La ISA presentada en este trabajo está diseñada para
ser el punto culminante del curso de Fundamentos de Informática, impartido en el
primer año de la carrera. Parte del objetivo es que en el segundo año, la materia de
Arquitectura de Computadoras pueda retomar y expandir naturalmente los
conocimientos adquiridos, utilizando la LC-3 como una continuación lógica de lo
aprendido previamente.

A continuación se presentará la ISA educativa propuesta junto a su
microarquitectura, sumado a un simulador de programación en código assembly
específico a la misma. Debido al reciente desarrollo e implementación en la cursada
actual (2025), aún no se tienen resultados cuantificables, por lo que en las
conclusiones se comenta la experiencia de los docentes obtenida hasta el momento y
que se utilizará para medir el impacto que tiene la implementación de esta ISA en
lugar de la LC-3.

Este trabajo se encuentra organizado de la siguiente forma: 1. Introducción,
2. ISA y su microarquitectura, 3. Simulador de código ensamblador, 4. Ejemplos de
programa, 5. Conclusiones y 6. Referencias.

2.​ ISA educativa y su microarquitectura
2.1.​Conjunto de instrucciones y sus formatos

La ISA propuesta en este trabajo ha sido nombrada como ESM (Educational
Simplified Machine, Máquina Educativa Simplificada), desarrollada como una
simplificación de la LC-3 y al igual que la misma, con fines educativos.

En primera instancia del desarrollo de la ESM se planificó contar con
instrucciones de procesamiento, memoria y control de flujo de programa, ya que estos
tres tipos de instrucciones son los que se encuentran en la LC-3. La diferencia
principal con las instrucciones de la propuesta de Patt Y. es que las instrucciones de

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 287

memoria mueven datos entre memoria y el acumulador, y no entre memoria y un
banco de registros. Esto facilita la operación entre memoria y procesamiento, ya que
no se tienen que cargar registros antes de comenzar a operar, pero sacrificando
simplicidad en el programa, ya que ahora se requieren más instrucciones de memoria
para transferir datos de la misma al acumulador y viceversa.

Para mantener compatibilidad con las instrucciones de procesamiento de la
LC-3, se plantea mantener las mismas instrucciones, ADD (suma aritmética), AND y
NOT, estando la diferencia en que, debido a la estructura de acumulador con la que
trabaja la ALU (Arithmetic Logic Unit, Unidad Aritmético Lógica), se tiene un solo
operando. En la Fig. 2 se presenta la conexión simplificada de la ALU con el
acumulador.

Fig. 2 Conexión de la ALU con la Memoria y el Acumulador

Aquí se puede observar que la ISA es word addressable, ya que al cargar el
acumulador se operará sobre números de 16 bits.

El formato de las instrucciones de procesamiento se presenta en la Fig. 3,
donde es posible observar el campo de opcode (13:15) (operation code, código de
operación), el bit 12 que hace de bit de dirección (lo que se denomina como steering
bit) y define el modo de direccionamiento en este caso, pudiéndose utilizar el modo
relativo al contador de programa (bit 12 = 0) o inmediato (bit 12 = 1).

Fig. 3 Formato de las instrucciones de procesamiento

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 288

Las instrucciones ADD y AND cuentan con dos modos de direccionamiento,
con bit 12=0 se utiliza el modo relativo al contador de programa, donde se opera el
contenido del acumulador con lo que se encuentre en la dirección PC+1+PCOffset12,
mientras que con bit12=1 se utiliza el modo inmediato, donde las instrucciones operan
el contenido del acumulador con una constante de 12 bits escrita en el campo imm12.

La instrucción NOT tiene dos modos de direccionamiento con bit 12
definiéndolos, el relativo al contador de programa (NOTA) y el modo acumulador
(NOTB), haciendo en este último NOT bit a bit sobre el contenido del acumulador
directamente.

El multiplexor en la Fig. 2 es para utilizarlo con instrucciones de memoria,
ya que se propone poder cargar el Acumulador directamente con lo que provenga de
la memoria. Para esto se utilizaría la instrucción LD, que viene del término load
(cargar). Se optó este nombre para mantener la similitud con la instrucción LD de la
LC-3, la cual a diferencia de la ESM permite cargar un registro del banco de registros
en la LC-3.

Completando las instrucciones de memoria tenemos ST, proviene de store
(guardar), el cual transfiere el contenido del acumulador a la memoria en modo
relativo al contador de programa.

Fig. 4 Formato de las instrucciones de memoria

Notar que el bit 12 en el formato presentado en la Fig. 4 cambia la dirección
de hacia dónde irían los datos, con bit 12 = 0 se lleva de memoria a acumulador, y con
bit 12 = 1 de acumulador a memoria.

En las figuras Fig. 3 y Fig. 4 el superíndice con un signo + indica que esas
instrucciones modifican los bits N, Z, P en el código de condiciones (CC), que se
utiliza para comparar con los bits NZP de la instrucción de control de flujo de
programa BR (la abreviación proviene de branch, ramificación), la cual se presenta su
formato en la Fig. 5.

Fig. 5 Formato de las instrucciones de control de flujo de programa

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 289

La instrucción BR permite cambiar la dirección del PC (contador de
programa) si existe una coincidencia en algunos de los bits NZP con los bits NZP del
código de condiciones. En caso de coincidir se accede a la siguiente instrucción en
ejecución dada por la dirección PC+1+PCOffset10; en caso contrario, a la
correspondiente a PC+1. El PC apunta a un puerto de dirección de memoria, lo cual al
leer esta se obtiene una instrucción, teniendo una capacidad de direccionamiento de
2¹⁶, por lo que el PC puede valer números expresados en 16 bits.. Leer otros puertos
de dirección de memoria mediante las instrucciones LD o ST permite obtener o
almacenar datos en la memoria. Las conexiones relevantes se detallan en la siguiente
sección, donde se presenta la microarquitectura del procesador que utiliza esta ISA
educativa.

Además de estas instrucciones para el cómputo básico de datos que se
encuentran en la memoria previo a la ejecución del programa, se agrega la instrucción
TRAP para posibilitar subrutinas del sistema operativo que atiendan system calls del
usuario, como por ejemplo captura de caracteres desde el teclado, impresión en
pantalla de caracteres, u otras tareas que el usuario quisiera delegar al sistema
operativo. Básicamente estas instrucciones funcionan como un salto incondicional, el
cual accede a las primeras posiciones de memoria para saber a que subrutina acceder
en particular. Para evitar superponer hardware complejo adicional al que ya se
presentará en la próxima sección, no se añadirá el cableado de esta instrucción en el
camino de datos, pero si se tiene en cuenta esta instrucción en el simulador de la ESM
a describirse en la sección 3.

En la Fig. 6 se muestra el formato de esta, en el cual “trapvect10” nos
indicará de qué subrutina se trata, siendo en esta ISA x23 para la entrada de un
carácter y x21 para imprimir un carácter en consola (manteniendo estas direcciones de
TRAP de la misma forma que se realiza en la LC-3).

Fig. 6 Formato de las instrucciones de interrupción de programa

2.2.​Microarquitectura

Para la microarquitectura del procesador se considera que toda la instrucción
se ejecuta en un solo ciclo de reloj (lo que se conoce como procesador de un solo
ciclo), pudiendo mapear cada instrucción de la ISA en forma directa al hardware que
las ejecuta, obteniéndose la representación de la Fig. 7.

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 290

Fig. 7 Microarquitectura del procesador con implementación en un solo ciclo de reloj

Para comparar la simplicidad de la microarquitectura de la ESM con la de la
LC-3, que también se implementa en un solo ciclo de reloj (siendo en realidad un
subconjunto de la ISA educativa de la LC-3 que se aborda en la asignatura de
Fundamentos de Informática), en la Fig. 8 se presentan el camino de datos y la unidad
de control de la LC-3 con las siguientes instrucciones: ADD, AND, NOT, LD, ST,
LDI, STI, LDR, STR, LEA, BR y JMP.

Fig. 8 Microarquitectura del subconjunto de instrucciones de la LC-3 con

implementación en un solo ciclo de reloj

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 291

3.​ Simulador de código ensamblador

Para cumplir con el objetivo mencionado al principio, también es necesario
crear una APP en la cual los estudiantes puedan experimentar con la programación
con código ensamblador (David Salomon et al.,1993). Para ello se añaden las siguientes
pseudo instrucciones de ensamblador a la APP para poder manipular parámetros
como la ubicación en memoria y la reserva de datos, que se vuelven necesarias a la
hora de buscar un flujo dinámico de programación:

●​ .ORIG: Define la dirección inicial de memoria desde donde comenzará la
ejecución del programa. Esta directiva especifica la ubicación de carga del
programa en la memoria

●​ .BLKW: Reserva espacio en memoria para futuros datos sin asignar un valor
inicial, para su posterior utilización en el código al guardar datos calculados
previamente.

●​ .FILL: Se emplea para almacenar un valor constante en una ubicación de
memoria antes de que el código sea ensamblado. Este valor puede ser un
número literal, una dirección de memoria o cualquier constante definida en el
código fuente.

●​ .END: Indica el final del programa, señalando que no existen más
instrucciones ni datos a procesar, lo que indica al ensamblador que debe
cesar su procesamiento.

El desarrollo del simulador requiere tres componentes esenciales: un
analizador léxico (implementado en LEX (Lesk, M. E. and E. Schmidt, 1975)), encargado de
identificar los elementos léxicos del código; un analizador sintáctico (implementado
en YACC (Johnson, Stephen C., 1975)), responsable de verificar la correcta estructuración
de las instrucciones; y, por último, una interfaz gráfica de usuario (GUI) (realizada en
python utilizando la librería tkinter (Tkinter - the Python interface for Tk, 2025)), que facilite
la interacción con el usuario y proporcione un entorno intuitivo para la programación
y depuración del código ensamblador.

Resulta necesario establecer un mecanismo que permita una correcta
integración de los lenguajes basados en el lenguaje C (LEX;YACC) con la interfaz
escrita en Python. Para lograr esta vinculación, se optó por el uso de Shared Libraries
(Program Library HOWTO, 2024) (lib.dll en Windows (Creating a Resource-Only DLL, 2024) y
lib.so en Linux (Robert A. Gingell, 1998) permitiendo así la compatibilidad en ambos
sistemas operativos), estas permiten compilar los analizadores como bibliotecas
dinámicas y cargarlas desde Python. Para esta tarea, se emplean módulos como ctypes
y cffi, los cuales facilitan la llamada a funciones escritas en C desde el entorno de
ejecución de Python.

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 292

Finalmente, todos los archivos mencionados se integran en un archivo
principal denominado ESM.py, el cual tiene la función de unificar los distintos
módulos dentro de la interfaz gráfica y gestionar las llamadas a las funciones
implementadas en YACC para la ejecución del código ensamblador. Además, ESM.py
se encarga del preprocesamiento del código, eliminando los elementos que pueden
alterar la simulación o funcionamiento del mismo (como espacios en blanco,
comentarios y saltos de líneas).

En cuanto al manejo de los TRAP se implementan como interrupciones
manejadas por dispositivos de I/O, de manera que el usuario no puede observar la
tarea del sistema operativo al atender el respectivo TRAP, solamente podrá ver que el
programa continúa ejecutando cuando se provee el carácter en el teclado, o cuando se
logra imprimir en pantalla.

Se adjunta el repositorio en el cual se encuentra el código fuente del
simulador junto a los instaladores de la versión 19.4 del mismo.

https://github.com/thiagocruz664/ESM-Simulator

Cabe recalcar que esta no es la versión final y está sujeta a futuras
actualizaciones, las cuales se distribuirán por GitHub.

4.​ Ejemplos de programa

Con el objetivo de ilustrar el funcionamiento de la aplicación desarrollada, se
implementaron dos programas sencillos que permiten demostrar la ejecución de las
instrucciones definidas en la arquitectura del conjunto de instrucciones educativa
diseñada. El primer programa ejecuta la operación lógica XOR entre dos valores y el
segundo realiza la multiplicación de dos números positivos de un dígito ingresados
por teclado.

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 293

https://github.com/thiagocruz664/ESM-Simulator

Fig. 9 Código de ejemplo 1

Fig. 10 Simulación de código de ejemplo 1

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 294

Fig. 11 Código de ejemplo 2

Fig. 12 Simulación de código de ejemplo 2

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 295

5.​ Conclusiones

Se ha presentado una arquitectura del conjunto de instrucciones (ISA) de un
procesador educativo, denominada como ESM (Educational Simplified Machine),
para ser utilizada en el curso de Fundamentos de Informática de la Carrera de
Ingeniería en Computación de la FIO. La ISA contiene 7 instrucciones, 3 de
procesamiento, 2 de memoria, 1 de salto condicional y 1 de system call con 2 vectores
de interrupción respectivos, con las que es posible formular cualquier algoritmo
simple de forma práctica, esperando que facilite la comprensión de las características
de una ISA a estudiantes que recién se inician en la carrera.

Se contrastó la microarquitectura del procesador propuesto con el que surge
del subconjunto de la LC-3 con la que se enseñó hasta el año 2024 en la materia
Fundamentos de Informática. Si bien resulta significativamente más reducida la
cantidad de conexiones, se puede apreciar que características como el contador de
programa, memoria e interfaz con extensión de signo con la ALU siguen
manteniéndose en el camino de datos, por lo que se puede considerar un paso previo
en la comprensión de la microarquitectura de ISA’s más complejos.

Se diseñó una GUI intuitiva en la cual los alumnos pueden desarrollar y
testear código ensamblador, logrando comprender los conceptos más básicos de la
programación a bajo nivel.

Con un conjunto de instrucciones simples y pedagógicas, una
microarquitectura definida y un simulador funcional, la ESM pudo integrarse al cierre
de la cursada de Fundamentos de Informática como una herramienta didáctica. Su uso
permitió desarrollar al completo una ISA capaz de realizar cualquier tipo de cómputo,
sin la necesidad de abordar temas complejos que llevan más tiempo del disponible
para dictarlos correctamente sin asumir u obviar diversos conceptos. A impresión de
los docentes, esto ayudó a transmitir los conceptos básicos de una manera más simple
y comprensible para los alumnos presentes en el cursado.

Se espera poder cuantificar los resultados a partir de analizar datos de las
evaluaciones en exámenes finales anteriores y posteriores a Julio del 2025, y con esto
determinar si la tasa de aprobación ha mejorado con la implementación de la ESM en
el cursado. A espera de estos resultados cuantificables, las primeras impresiones de
los docentes han sido positivas y sugieren que el desarrollo avanza en la dirección
correcta.

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 296

6.​ Referencias

Lesk, M. E. and E. Schmidt (1975). Lex – A Lexical Analyzer Generator. Computing Science
Technical Report No. 39, Bell Laboratories, Murray Hill, New Jersey.

Johnson, Stephen C. (1975). Yacc: Yet Another Compiler Compiler. Computing Science
Technical Report No. 32, Bell Laboratories, Murray hill, New Jersey.

Robert A. Gingell, Meng Lee, Xuong T. Dang and Mary S. Weeks (1988). Shared Libraries in
SunOS. Sun Microsystems, Inc. 2550 Garcia Ave. Mountain View, CA 94043.

David Salomon (1993). Assemblers and Loaders. The Chicago Manual of Style.

Yale N. Patt and Kevin J. Compton (1997), Introduction to Computing --The Correct
(Bottom-up) Approach, Department of Electrical Engineering & Computer Science University
of Michigan, Ann Arbor.

Program Library HOWTO, https://tldp.org/HOWTO/Program-Library-HOWTO, last access
2024/11/24.

S. Harris and D. Harris (2007). Digital Design and Computer Architecture. Morgan Kaufmann.

John. L. Hennessy and David. A. Patterson (2012). Computer Architecture: A Quantitative
Approach fifth edition. Morgan Kaufmann.

Paxson, Vern, Will Estes and John Millaway (2015). Lexical Analysis with Flex. University of
California, Berkeley.

Donnelly, Charles and Richard Stallman (2015). Bison. Free Software Foundation.

S. Harris and D. Harris (2015) Digital design and computer architecture: arm edition. Morgan
Kaufmann.

Creating a Resource-Only DLL Microsoft Developer Network Library,
https://learn.microsoft.com/en-us/cpp/build/creating-a-resource-only-dll, last access
2024/11/24.

S. Harris and D. Harris (2021) Digital Design and Computer Architecture: RISC-V Edition.
Morgan Kaufmann.

Tkinter - the Python interface for Tk, https://python-course.eu/tkinter, last access 2025/10/02.

Biblioteca de vínculos dinámicos (DLL) Microsoft Developer Network Library,
https://learn.microsoft.com/es-es/troubleshoot/windows-client/setup-upgrade-and-drivers/dyna
mic-link-library, last access 2025/02/23.

Sanjay J. Patel and Yale. N. Patt (2023). Introduction to Computing Systems: from bits & gates
to C/C++ & beyond. McGraw-Hill Education

SAEI, Simposio Argentino de Educación en Informática 2025

Memorias de las 54 JAIIO - SAEI - ISSN: 2451-7496 - Página 297

https://epaperpress.com/lexandyacc/download/lex.pdf
https://epaperpress.com/lexandyacc/download/yacc.pdf
https://www.cs.cornell.edu/courses/cs414/2001FA/sharedlib.pdf
https://www.cs.cornell.edu/courses/cs414/2001FA/sharedlib.pdf
https://www.davidsalomon.name/assem.advertis/asl.pdf
https://peer.asee.org/introduction-to-computing-the-correct-bottom-up-approach.pdf
https://peer.asee.org/introduction-to-computing-the-correct-bottom-up-approach.pdf
https://tldp.org/HOWTO/Program-Library-HOWTO
https://allbooksfordownloading.wordpress.com/wp-content/uploads/2017/01/digital-design-and-computer-architecture-by-david-and-sarah-harris.pdf
https://acs.pub.ro/~cpop/SMPA/Computer%20Architecture%20A%20Quantitative%20Approach%20(5th%20edition).pdf
https://acs.pub.ro/~cpop/SMPA/Computer%20Architecture%20A%20Quantitative%20Approach%20(5th%20edition).pdf
https://epaperpress.com/lexandyacc/download/flex.pdf
https://www.gnu.org/software/bison/manual/bison.pdf
https://drive.google.com/file/d/1_wO3SsV3BKgmueRaXsLg_zQ6XGNTeAIU/view
https://learn.microsoft.com/en-us/cpp/build/creating-a-resource-only-dll
https://mrce.in/ebooks/Digital%20Design%20&%20Computer%20Architecture%20RISC-V%20Edition.pdf
https://python-course.eu/tkinter
https://learn.microsoft.com/es-es/troubleshoot/windows-client/setup-upgrade-and-drivers/dynamic-link-library
https://learn.microsoft.com/es-es/troubleshoot/windows-client/setup-upgrade-and-drivers/dynamic-link-library
https://icourse.club/uploads/files/96a2b94d4be48285f2605d843a1e6db37da9a944.pdf
https://icourse.club/uploads/files/96a2b94d4be48285f2605d843a1e6db37da9a944.pdf

	Arquitectura del Conjunto de Instrucciones Educativa para el Inicio en la Carrera de Ingeniería en Computación
	1.​Introducción
	2.​ISA educativa y su microarquitectura
	2.1.​Conjunto de instrucciones y sus formatos
	2.2.​Microarquitectura

	3.​Simulador de código ensamblador
	4.​Ejemplos de programa
	5.​Conclusiones
	6.​Referencias
	Lesk, M. E. and E. Schmidt (1975). Lex – A Lexical Analyzer Generator. Computing Science Technical Report No. 39, Bell Laboratories, Murray Hill, New Jersey.
	Johnson, Stephen C. (1975). Yacc: Yet Another Compiler Compiler. Computing Science Technical Report No. 32, Bell Laboratories, Murray hill, New Jersey.
	Robert A. Gingell, Meng Lee, Xuong T. Dang and Mary S. Weeks (1988). Shared Libraries in SunOS. Sun Microsystems, Inc. 2550 Garcia Ave. Mountain View, CA 94043.
	David Salomon (1993). Assemblers and Loaders. The Chicago Manual of Style.
	Yale N. Patt and Kevin J. Compton (1997), Introduction to Computing --The Correct (Bottom-up) Approach, Department of Electrical Engineering & Computer Science University of Michigan, Ann Arbor.
	Program Library HOWTO, https://tldp.org/HOWTO/Program-Library-HOWTO, last access 2024/11/24.
	S. Harris and D. Harris (2007). Digital Design and Computer Architecture. Morgan Kaufmann.
	John. L. Hennessy and David. A. Patterson (2012). Computer Architecture: A Quantitative Approach fifth edition. Morgan Kaufmann.
	Paxson, Vern, Will Estes and John Millaway (2015). Lexical Analysis with Flex. University of California, Berkeley.
	Donnelly, Charles and Richard Stallman (2015). Bison. Free Software Foundation.
	S. Harris and D. Harris (2015) Digital design and computer architecture: arm edition. Morgan Kaufmann.
	Creating a Resource-Only DLL Microsoft Developer Network Library, https://learn.microsoft.com/en-us/cpp/build/creating-a-resource-only-dll, last access 2024/11/24.
	S. Harris and D. Harris (2021) Digital Design and Computer Architecture: RISC-V Edition. Morgan Kaufmann.
	Tkinter - the Python interface for Tk, https://python-course.eu/tkinter, last access 2025/10/02.
	Biblioteca de vínculos dinámicos (DLL) Microsoft Developer Network Library, https://learn.microsoft.com/es-es/troubleshoot/windows-client/setup-upgrade-and-drivers/dynamic-link-library, last access 2025/02/23.
	Sanjay J. Patel and Yale. N. Patt (2023). Introduction to Computing Systems: from bits & gates to C/C++ & beyond. McGraw-Hill Education

