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Abstract. En este trabajo definimos el concepto de homogeneidad de la
actividad de las soluciones de ecuaciones diferenciales ordinarias (EDOs).
Este indicador mide la semejanza en el cambio en el tiempo que experi-
mentan las distintas variables del sistema en estudio. Mostramos ademas,
que esta medida permite establecer criterios que senalan la conveniencia
de usar esquemas de integracién numérica cldsicos basados en la dis-
cretizacién temporal o métodos basados en la cuantificaciéon de las vari-
ables de estado. Ademds, extendemos nuestro andlisis a sistemas con
presencia de discontinuidades, evaluando de qué manera afectan las mis-
mas en cada esquema de integracion numérica. Finalmente, aplicamos los
conceptos desarrollados a dos casos de estudio: un sistema de adveccion -
difusién -reaccién (correspondiente a un caso de modelo continuo) y una
red neuronal (correspondiente a un caso de modelo hibrido). Compara-
mos los resultados tedricos con los obtenidos tras realizar simulaciones
con diferentes métodos de integraciéon numérica.

Keywords: ecuaciones diferenciales ordinarias, métodos de integracion
numérica, métodos de QSS, actividad

Time Discretization vs. State Quantification:
Activity Homogeneity and Discontinuities

Abstract. In this work, we define the concept of activity homogene-
ity for the solutions of Ordinary Differential Equations (ODEs). This
indicator quantifies the similarity in the rate of change of the different
variables in the system over time. We also show that this measure pro-
vides useful criteria for determining whether it is more convenient to
use classic numerical integration methods based on time discretization
or state quantification based methods. In addition, we extend the anal-
ysis to discontinuous systems and the effects of the presence of events
in each type of numerical integration scheme. Finally, we apply the de-
veloped concepts to two case studies: an advection - diffusion - reaction
system (corresponding to a continuous model) and a neural network (cor-
responding to a hybrid model). We compare the theoretical results with
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those obtained from simulations of both systems using different numeri-
cal integration methods.

Keywords: ordinary differential equations, numeric integration meth-
ods, QSS methods, activity

1 Introduccion

Los métodos clasicos de simulaciéon de sistemas continuos representados por
EDOs se basan en la discretizacién temporal (Cellier & Kofman, 2006; Hairer &
Wanner, 1996; Hairer et al., 1993). Una alternativa a estos algoritmos la brin-
dan los métodos de cuantificacién de estados (QSS, por Quantized State Systems
(Cellier & Kofman, 2006; Kofman & Junco, 2001; Migoni et al., 2013)) que sélo
realizan pasos individuales sobre las variables de estado a medida que estas ex-
perimentan cambios significativos. Los métodos de QSS, por lo tanto, suelen ser
convenientes cuando los cambios se concentran en pocas variables de estado, es
decir, cuando la actividad (Castro & Kofman, 2015) del sistema es heterogénea.

En este trabajo definimos formalmente el concepto de homogeneidad de la
actividad de un sistema brindando una medida que permite dirimir sobre la po-
tencial conveniencia de usar un enfoque cldsico o uno basado en QSS. Este con-
cepto es ilustrado con un ejemplo de simulacién en el que variando un parametro
cambia la medida de homogeneidad y con ella la conveniencia de usar uno u otro
esquema numérico.

2 Antecedentes

2.1 Meétodos de QSS

Consideremos un sistema continuo de la formas:
% = £(x(t), u(t), x(to) = Xo (1)

donde x(t) € RY es el vector de estados y u(t) € R™ es una trayectoria conocida.
El método de QSS de primer orden (QSS1) (Kofman & Junco, 2001) resuelve
dicho sistema mediante la siguiente aproximacién:

x(t) = f(q(t), v(t)), (2)

donde q(t) € RY es el vector de estados cuantificados y v(t) € R™ es una
aproximacién seccionalmente constante de u(t). Cada componente ¢;(t) sigue
una trayectoria seccionalmente constante que sélo cambia cuando su diferencia
con el estado correspondiente z;(t) alcanza un valor AQ; llamado quantum.
Formalmente, las trayectorias estan relacionadas segun:

ai(t) = {Qi(t’f) siai(t) — qi(ty)| < AQ;

x;(t) en otro caso
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para ty < t < tp41, donde tiy1 es el primer tiempo después de t; en el cual
[24(1) — as(ti)] = AQ:.

Dado que las trayectorias de ¢;(t) y de v;(t) son seccionalmente constantes,
en virtud de la Ec. (2), las derivadas @;(¢) también lo son y, por lo tanto, los
estados x;(t) siguen trayectorias seccionalmente lineales. Debido a esta forma
particular de las trayectorias, la obtencién de la solucién exacta de la Ec. (2)
resulta sencilla y puede traducirse facilmente en un algoritmo de simulacién a
eventos discretos (Kofman & Junco, 2001).

La idea de QSS1 fue también extendida a métodos de orden mayor (QSS2
(Cellier & Kofman, 2006) y QSS3 (Kofman, 2006)) que comparten la definicién
de la Ec.(2), pero donde los estados cuantificados siguen trayectorias seccional-
mente lineales y parabdlicas respectivamente. Hay también métodos linealmente
implicitos (LIQSS1, LIQSS2 y LIQSS3) que funcionan eficientemente en ciertas
clases de sistemas stiff (Migoni et al., 2013).

2.2 Actividad de orden n

El niimero de pasos minimos que necesita un método de QSS para obtener una
trayectoria puede estimarse con el concepto de actividad (Castro & Kofman,
2015). Dada una senal z;(t), la actividad de orden n en el intervalo [tg,tf] se
define segun:

d"z;(7) 1/n
W s (7w Y e
Axi(to,tf):/to a; (t)dT:/tO —& | dr (3)

n!

Asumiendo que x;(t) es de orden n y ¢;(t) de orden n — 1, suponiendo que ambas
trayectorias no se separan entre s{ mds que AQ; y que cada segmento de ¢;(t)
comienza igual que z;(t) hasta la derivada n — 1 (como lo hacen los métodos
QSS1-3), se puede estimar el nimero minimo de segmentos de g;(t) segin:

(n)

A
(AQ) ~ i @

(n)
’ (2Q) "

z;i(to,ty)

3 Resultado Principal

El concepto de actividad permite estimar el minimo nimero de pasos que necesita
un método de QSS. En esta seccién se desarrollan los conceptos de actividad
global y de homogeneidad, que permiten extender la estimacion a los métodos
clésicos (de tiempo discreto) y comparar con los de QSS.

3.1 Actividad instantanea, local y global

Dado el sistema de la Ec.(1), denominaremos actividad instantdnea local de orden
(n)

n de la variable z;(t) al integrando a,; ’(¢) de la Ec. (3) y llamaremos actividad
n)

local de orden n en el intervalo de tiempo [to,?f] a su integral Ai(t0 e
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Definiremos ademas la actividad instantanea global de orden n del sistema
de la Ec.(1) ag(t)™ y la actividad global A( Gtorts) 0 el intervalo [to,ty] segun:

tr ty
A(C?()to,tf) = /t ag(r)™dr £ /t max a;(t)™dr (5)
0 0

3.2 Relacién entre la actividad y el nimero de pasos

La relacién entre actividad y nimero de pasos en QSS puede deducirse a partir
del siguiente resultado, cuya demostracion se encuentra en https://fceia.unr.edu.
ar/~kofman/files/Dem_Teo_Cheb.pdf:

Theorem 1. Dada una senal x;(t) expresada por un polinomio de orden n,
existe un polinomio g;(t) de grado n—1 que verifica la condicidn |q;(t) —z;(t)| <
AQ; en el intervalo [to,to + At] si y sdlo si

(6)

Donde az(-") (to) es la actividad instantdnea local de orden n de la senal x;(t) en
t =to.

De esta manera, en un método tipo QSS de orden n, el nimero de segmentos
de ¢;(t) necesarios para aproximar a x;(t) sin desviarse mds que AQ); se puede
estimar a partir de la Ec.(6) como

(n)
k(n) ~ ACEz[tO ty] (7)
ilto,ts] = 2n 1
ot (AQ)+

y el niimero de pasos totales en una simulacién serd mayor a:

N (n)
£

(n) ﬂh[toatf]
ss ~ )k ~ Z BT (8)
QSS[to,ts] p zifto,ty] AQZ)

Aplicando este razonamiento para un método cldsico de paso variable que
compara una férmula de orden n — 1 con una de orden n (tal que la diferencia
en cada variable sea menor que la tolerancia AQ), resulta

(n)
50 ~ AG[tOvtf] (9)
DTlto,ts] ~ o2n—1 1
Hotsl ™ 92 L (AQ)*

3.3 Factor de Homogeneidad
Definimos el factor de homogeneidad de la actividad segun:

N 4(n)
(n) a 2= 1Am1[t0,tf]

Mot N- A(C?[io,tf]
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Este factor resulta siempre 1/n < H < 1. La condicién H ~ 1 implica que la ac-
tividad instanténea es similar en todas las variables (actividad homogénea). Por
otro lado, H = 1/n implica que la actividad instantdnea de todas las variables
excepto de una es cercana a cero (actividad heterogénea).

Suponiendo que AQ; = AQ y dividiendo las Ecs.(8) y (9), resulta 7w

x[to,tf] —

k) /N k]gn%[tm +,)- Cada paso de un método cldsico actualiza las N variables

QSS[to,tf]
de estado mientras que cada paso de un método tipo QSS actualiza r; < N

variables (la variable que cambia m4s las derivadas que se ven afectadas por dicho
cambio, lo cual depende de qué tan ralo sea el sistema). Por lo tanto, llamando r
al numero medio de variables que afecta cada una de ellas, la condicién H -7 < 1
indicard que seria conveniente actualizar individualmente las variables de estado
(QSS) mientras que H - > 1 indicara lo contrario.

El anélisis anterior muestra que cuando la solucién es homogénea H ~ 1
siempre convendrd usar métodos cldsicos. Por otro lado, cuando la solucién sea
heterogénea, convendra usar QSS siempre y cuando el factor r sea chico (es decir,
que el sistema sea ralo).

4 Ejemplo ilustrativo

Consideramos la discretizacién con el método de lineas de una ecuacién de Ad-
veccién-Difusion-Reaccion:

Uz(t) — Ui_l(t) T D. ui+1(t) — 2’[1,2 + ui—l(t)

() = —4- Ax Ax?

+ R (ui(t)? — ui(t)*)

coni=1,...,N; N =10; Az = 1; A = 1 y con dos escenarios, uno dominado
por la reaccién (Esc.1: D = 0.1 y R = 1000) y otro por la difusién (Esc.2: D = 2
y R =0.1). Las Figs. la y 1b ilustran las trayectorias en ambos escenarios.

Las actividades instantaneas locales y globales correspondientes de orden 2,
calculadas segtin las Ecs. (3) y (5), se muestran en las Figs. 1c y 1d. Puede verse
que en el primer caso la actividad global es siempre similar a una actividad
local mientras las restantes son cercanas a cero, mientras que en el segundo caso
las actividades locales son parejas. En consecuencia, el factor de homogeneidad
calculado segin la Ec.(10) es H; = 0.1091 (cercano a 1/N) y Hy = 0.561 (mds
préximo a 1). Teniendo en cuenta que un cambio en en estado provoca cambios
en r = 3 derivadas, los productos Hy - r = 0.3279 y Hs - r = 1.6827 indican
que conviene usar métodos tipo QSS en el primer escenario (Esc.1) y métodos
clésicos en el segundo (Esc.2).

Esto fue corroborado simulando ambos escenarios con los métodos de LIQSS2
y una versién de paso variable de la regla trapezoidal para distintos valores de
tolerancia. El ntimero teérico minimo de pasos y actualizaciones segun las Ecs.
(8) y (9) v los valores observados luego de simular ambos escenarios se reportan
en la Tabla 1.
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Modelo de Adveccion-Difusion-Reaccion- N=10 Modelo de Adveccion-Difusion-Reaccion- N=10
T T T T 1
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(a) Trayectorias Esc. 1 (b) Trayectorias Esc. 2

Actividad Instantanea Local y Global de orden 2 Actividad Instantanea Local y Global de orden 2
25 T T

a(t) s ag(t)

Tiempo Tiempo

(c¢) Actividad Esc. 1 (detalle) (d) Actividad Esc. 2 (detalle)

Fig. 1: Trayectorias y actividades de cada escenario

En esta tabla, podemos observar que aunque los los valores tedricos del
nimero de pasos minimo requerido siempre son menores que los pasos efecti-
vamente necesarios en la simulacién, en todos los casos son valores que se en-
cuentran en el mismo orden de magnitud. Esto ocurre, ya que ninguno de los dos
métodos de integracién numérica utilizados estan optimizados para realizar las
aproximaciones segin el Teorema 1. Podemos observar como en el Escenario 1,
a pesar de que las cantidades de pasos requeridos por ambos métodos es similar,
debido a la heterogeneidad de la actividad del sistema (la tasa de cambio de las
variables en el tiempo no es similar sumado a que un cambio en una variable sélo
afecta a dos variables y no a todas), resulta mds conveniente la simulacién con
LIQSS2 como se comprueba en la cantidad total de actualizaciones necesarias en
cada caso. Por otro lado, al ser el Escenario 2 mas homogéneo(la tasa de cambio
de todas las variables es mds similar a lo largo del tiempo), tanto la cantidad
de pasos, como la cantidad de actualizaciones de la regla trapezoidal resultan
valores menores que los obtenidos en el caso de LIQSS2.

5 Sistemas con discontinuidades

Para considerar las discontinuidades, debemos modificar las definiciones de ac-
tividad instantdnea local y actividad instantinea. En el caso de la actividad in-
stantdnea local, en todos los instantes de tiempo en el que no ocurra ningin
evento que afecte la senal, seguird estando definida por el integrando al(.n) (t) de
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LIQSS2 Regla Trapezoidal
Abs. Pasos Actualizaciones Pasos Actualizaciones
Tol. er,u.rno ca er}l?no Real er}l%no Real er,umo Real
Tedrico Tedrico Tedrico Tedrico

1E-2| 68 157 | 204 471 62 225 | 620 2250
Esc. 1|11E-3| 215 354 | 645 1062 196 628 | 1960 6280
1E-4| 678 945| 2034 2835 620 1870] 6200 18700
1E-2| 56 408 | 168 1224 10 37 100 370
Esc. 2[1E-3| 177 619 531 1857 32 102 | 320 1020
1E-4] 560 1084 1680 3252 100 305 | 1000 3050
Table 1: Nro. minimo tedrico y real de pasos y actualizaciones requerido por
diferentes métodos numéricos

la Ec. (3), pero en los instantes de tiempo en los que ocurra un evento, la activi-
dad instantdnea local aEn)(t) se establece en cero. Suponiendo que durante un
perfodo de simulacién (tg,ts) ocurren k eventos en los instantes ¢y, s, ..., t; que
EZ)()»tf)
(to,tr) debe calcularse integrando sobre cada subintervalo (to,t1), (t1,t2), ... ,
(tk—1,tk), (tr,ty), donde la senal permanece continua, y luego sumando dichos

resultados, como lo indica la Ec. (11).

afectan a la variable x;(t), la actividad local A de esta senal en el intervalo

k+1

tj
A 22 [ atr)ar )
j=1"ti-1

donde tk+1 = tf.
Mientras que tanto la actividad instantdnea global ag (t)(”), como la actividad

global AgL()tO’ £ seguiran definidas segin las Ec. (5) .

De esta manera, para calcular la totalidad de pasos requeridos por un al-
goritmo para completar una simulacién en un intervalo (to,%s), debemos sumar
tanto los pasos necesarios para aproximar las sefiales continuas, como los pasos
debido a la ocurrencia de eventos.

Suponiendo que ocurren d discontinuidades en el intervalo (to,tf) y con-
siderando las Ecs.(8) y (9), indicaremos a continuacién el niimero minimo de pa-
sos requeridos por un método de integracién numérica para simular un sistema
durante el intervalo indicado y la cantidad minima de actualizaciones requeridas
(considerando que ante la ocurrencia de un evento los métodos de cuantificacién
de estados sélo actualizardn las ry variables afectadas por el evento, mientras
que un método tradicional de discretizacién temporal, actualiza las N variables
presentes en el sistema):

— Cuantificacién de estados:
Minimo nimero de pasos:

(n)
E s (AQ) + d (12)
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Minimo ntmero de actualizaciones:
(n)
uQSS(tO,tf)(AQ)+d'Td (13)

— Discretizacién temporal:
Minimo nimero de pasos:

(n)
kDT (t,1,)(AQ) +d (14)
Minimo ntumero de actualizaciones:
u(g}%(to’tf)(AQ) +d-N (15)

Para analizar cudl de estas opciones tiene menor costo computacional, debemos
considerar ahora la siguiente relacién:

(n)
UQ3S(to,ty) (AQ) +d - Ta

ugg(tOMAQ) +d-N

(16)

De donde puede concluirse en primer lugar que si ugss < upr (es decir H -r; <
1), la presencia de discontinuidades no va a afectar la conveniencia del uso de
un esquema de cuantificacién de estados, sino que cuanto menor sea rg, mas
ventajosa va a ser esta opcion.

Luego, si ugss > upr, podemos tener distintas situaciones. Si el nimero de
eventos es chico (d — 0) en comparacién al nimero de pasos necesarios para
aproximar la parte continua de las sefiales, el cociente de la Ec. (16) va a tender
a uggs/upr = H - r; y podria tenerse en cuenta el andlisis de la homogeneidad
del sistema sin discontinuidades de la seccion anterior. En caso contrario, si el
nimero de discontinuidades es grande (d — 00), el cociente de la Ec. (16) va a
tender a le'_?\‘;, que siempre es menor a 1.

Por otro lado, cuando la ocurrencia de un evento afecta sélo a un pequeno
nimero de variables (rq < N), aumenta la heterogeneidad en la actividad del
sistema, situacién en la cudl es més conveniente el uso de métodos basados en
la cuantificacién de estados. Por el contrario, cuanto mas se acerque el nimero
de variables afectadas al nimero total de variables (r4 — N), es probable que
los métodos cldsicos (discretizacién temporal) sigan siendo la opcién mds conve-
niente de utilizar.

5.1 Ejemplo de aplicacién con discontinuidades

Para ejemplificar un sistema que combina dindmicas continuas con eventos dis-
cretos presentamos el caso de una red neuronal. Para representar el compor-
tamiento de cada neurona utilizamos el modelo de integraciéon y disparo con
fugas (LIF') como los utilizados en Schmidt et al., 2018 y Bergonzi et al., 2023,
donde las sinapsis son representadas por saltos instantdneos y un decaimiento
exponencial. Las variables de estado presentes en el modelo son el potencial de
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membrana V (t) y la corriente sindptica Is(t), cuya dindmica estd descrita por
las siguientes ecuaciones diferenciales:

Y

5 (17)
W _ V) -E L@
dt T Cm

donde 75 es la constante de tiempo de corriente postsindptica, Er es el po-
tencial de fuga , 7, es la constante de tiempo de la membrana y C,, es la
capacitancia de la membrana. I, representa una corriente externa inyectada di-
rectamente en la neurona, que se considerard en este trabajo como tinica entrada
constante de cada neurona.

Modelamos N, = 1,000 neuronas interconectadas, de las cuales 800 son del
tipo excitatorio y las restantes 200 inhibitorias. Cada neurona recibe impulsos
de entrada de m = 10 conexiones sindpticas seleccionadas de manera aleatoria,
de las cuales 80% son desde neuronas excitatorias y 20% inhibitorias. Cada vez
que una neurona alcanza el umbral de disparo @, se genera un pico de actividad
(spike) y el potencial de membrana V() se restablece al potencial de reposo
V.. En las neuronas que reciben estas spikes, se actualiza la corriente sindptica
como:

L(tT) « L)+ AT2 I,(t) + J (18)

donde J es la intensidad sinédptica excitatoria correspondiente a la neurona que
emitié el spike.

Las figuras 2a y 2b muentran la evolucién de las variables de estado de un
grupo de neuronas pertenecientes a la red, simulada durante un periodo de 0.25
segundos utilizando el software QSS Solver, considerando una corriente externa
de entrada I, = 751nA para todas las neuronas.

Neural Network Model - Synaptic Current States

Neural Network Model - Membrane Potential States

— V1] |
—vi2l
-45 V(3]
— v 1h

- ‘
'“7 A — l f\ Lk ks b

f&% Fol
RULLLE

0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25
time time

——
—

Vil

(a) Evolucién del potencial de mem- (b) Evolucién de la corriente sindptica
brana para un grupo de neuronas para un grupo de neuonas
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Para analizar como impacta la presencia de discontinuidades en la simulacién
de un sistema, proponemos 3 escenarios con diferente densidades de eventos, lo
que logramos variando el valor de la corriente de entrada I., ya que cuanto mayor
sea la misma, mds grande serd la frecuencia de disparos de cada neurona.

Para cada valor de I. € {751nA;800nA;1000nA}, realizamos simulaciones
utilizando LIQSS2 and CVODE, , variando ademds la tolerancia (AQ € {1E —
1,1E —2,1F — 3}). Consideramos los mismos pardmetros que los propuestos en
Bergonzi et al., 2023 para las Ecs. (17)-(18). En cada caso ademads, calculamos
las actividades locales y globales como también los factores de homogeneidad.
Para finalmente estimar el nimero de pasos teérico minimo que requerira cada
tipo de método para completar las simulaciones. Estos resultados se presentan
en las columnas de la izquierda de la tabla 2. Mientras que en las columnas de
la derecha se muestran el nimero de discontinuidades obtenidas en la solucién
de referencia y en las simulaciones con diferentes tolerancias.

Segmentos de polinomios Discontinuidades

I. | Tol. LIQSS2 CVODE> Solucién de
[nA]|Abs.|Nro. Min.| Resultado |[Nro. Min.| Resultado | referencia |LIQSS2|CVODE;
Tedrico |de simulacién| Tedrico |de simulacién

1E-1| 1.15E+5| 1.60E+5 |547E+3| 9.57E+3 4956 4543
751 |1E-2| 3.55E+5| 4.51E+45 | 7.04E43| 1.08E+44 4741 4500 4864
1E-3| 1.11E+6 | 1.41E46 1.20E+4 | 1.28E+4 4705 4753
1E-1| 2.10E+5| 2.09E+5 |8.98E+3| 1.52E+4 7545 7548
800 [1E-2| 6.49E+5 | 7.63E+5 1.17E+4 | 1.69E+4 7707 7742 7710
1E-3| 2.03E+6 | 2.32E+6 |2.05E+4| 2.08E+4 7750 7725
1E-1| 3.05E+5| 3.05E+5 1.60E+4 | 2.85E+4 14318 | 14292
1000|1E-2| 9.33E4+5| 1.15E46 1.92E+4 | 3.00E+4 14531 14479 | 14493
1E-3| 2.92E+6 | 3.49E+4+6 | 2.92E+4| 3.55E+4 14530 | 14521

Table 2: Numero de pasos minimo tedrico y simulados de distintos métodos
numéricos

En este modelo, el comportamiento de cada neurona esté representado por 2
variables de estado, por lo que el sistema estd compuesto por 2000 variables de
estado y el rango para el valor de H serda [ﬁ; 1]. En los tres escenarios anal-
izados los valores de H estan mas cerca del limite inferior, lo que es consistente
con el comportamiento heterogéneo de las neuronas del sistema.

En la Tabla 3 mostramos la comparacién del resultado teérico de H - r;,
uoss+d-rg sim updatesggg+dqQss Td

upr+d-N sim updatespr+dpr-N °

A partir de la Tabla 2, podemos observar que los resultados tedricos estima-
dos para el niimero minimo de pasos requeridos para completar la simulacién
de la red neuronal son consistentes con los pasos que efectivamente realizaron
los distintos métodos. La misma conclusién surge al comparar los resultados
de las ultimas dos columnas de la Tabla 3 que muestran la relaciéon entre las

actualizaciones requeridas por cada método calculada tedricamente y obtenida

y el resultado de simulacién
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Resultados Tedricos Resultados de Simulacién
. ugss + d - rq|sim updates,gg + sim dQssra
Escenario| AQ H® Ty : Q .

upt +d- N | sim updates,r + sim dpr N
1EF -1 0.025 0.020
I. =751|1E —2| 0.152 0.053 0.044
1E -3 0.094 0.112
1E -1 0.027 0.016
I. =800 |1E — 2| 0.158 0.058 0.048
1F -3 0.101 0.114
1F -1 0.023 0.013
I. = 1000|1F — 2| 0.198 0.052 0.041
1E -3 0.102 0.101

Table 3: Relacién de los costos computacionales de un método basado en cuan-
tificacion de estados y uno de discretizacién temporal obtenidos tedricamente y
por simulacion

efectivamente tras las simulaciones. Este cociente resulta menor que el resultado
tedrico de H - r;, cuyo valor ya era menor a 1 debido a que ry < N. Esta idea
se alinea con la mayor conveniencia de usar de un esquema de cuantificacion de
estados, como también el hecho de que la cantidad de actualizaciones requeri-
das por un método de tipo QSS es menor que la requerida por un método de
discretizaciéon temporal.

6 Conclusiones y Trabajo Futuro

Definimos formalmente el concepto de homogeneidad de la actividad de las
soluciones de una EDO, factor que permite establecer la conveniencia de usar
métodos de integracién clasicos o de tipo QSS. Mostramos ademéds su uso en un
ejemplo ilustrativo corroborando los resultados tedricos obtenidos. Extendimos
el andlisis tedrico considerando modelos que combinan dindmicas continuas y
discretas por la presencia de eventos, lo que luego comparamos con resultados
de simulacién obtenidos en un ejemplo de aplicacién.

A futuro resta extender el concepto para considerar la actividad relativa que
permita acotar por debajo el nimero de pasos cuando se realiza control sobre el
error relativo.
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