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Abstract. En este trabajo definimos el concepto de homogeneidad de la
actividad de las soluciones de ecuaciones diferenciales ordinarias (EDOs).
Este indicador mide la semejanza en el cambio en el tiempo que experi-
mentan las distintas variables del sistema en estudio. Mostramos además,
que esta medida permite establecer criterios que señalan la conveniencia
de usar esquemas de integración numérica clásicos basados en la dis-
cretización temporal o métodos basados en la cuantificación de las vari-
ables de estado. Además, extendemos nuestro análisis a sistemas con
presencia de discontinuidades, evaluando de qué manera afectan las mis-
mas en cada esquema de integración numérica. Finalmente, aplicamos los
conceptos desarrollados a dos casos de estudio: un sistema de advección -
difusión -reacción (correspondiente a un caso de modelo continuo) y una
red neuronal (correspondiente a un caso de modelo h́ıbrido). Compara-
mos los resultados teóricos con los obtenidos tras realizar simulaciones
con diferentes métodos de integración numérica.

Keywords: ecuaciones diferenciales ordinarias, métodos de integración
numérica, métodos de QSS, actividad

Time Discretization vs. State Quantification:
Activity Homogeneity and Discontinuities

Abstract. In this work, we define the concept of activity homogene-
ity for the solutions of Ordinary Differential Equations (ODEs). This
indicator quantifies the similarity in the rate of change of the different
variables in the system over time. We also show that this measure pro-
vides useful criteria for determining whether it is more convenient to
use classic numerical integration methods based on time discretization
or state quantification based methods. In addition, we extend the anal-
ysis to discontinuous systems and the effects of the presence of events
in each type of numerical integration scheme. Finally, we apply the de-
veloped concepts to two case studies: an advection - diffusion - reaction
system (corresponding to a continuous model) and a neural network (cor-
responding to a hybrid model). We compare the theoretical results with
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those obtained from simulations of both systems using different numeri-
cal integration methods.

Keywords: ordinary differential equations, numeric integration meth-
ods, QSS methods, activity

1 Introducción

Los métodos clásicos de simulación de sistemas continuos representados por
EDOs se basan en la discretización temporal (Cellier & Kofman, 2006; Hairer &
Wanner, 1996; Hairer et al., 1993). Una alternativa a estos algoritmos la brin-
dan los métodos de cuantificación de estados (QSS, por Quantized State Systems
(Cellier & Kofman, 2006; Kofman & Junco, 2001; Migoni et al., 2013)) que sólo
realizan pasos individuales sobre las variables de estado a medida que estas ex-
perimentan cambios significativos. Los métodos de QSS, por lo tanto, suelen ser
convenientes cuando los cambios se concentran en pocas variables de estado, es
decir, cuando la actividad (Castro & Kofman, 2015) del sistema es heterogénea.

En este trabajo definimos formalmente el concepto de homogeneidad de la
actividad de un sistema brindando una medida que permite dirimir sobre la po-
tencial conveniencia de usar un enfoque clásico o uno basado en QSS. Este con-
cepto es ilustrado con un ejemplo de simulación en el que variando un parámetro
cambia la medida de homogeneidad y con ella la conveniencia de usar uno u otro
esquema numérico.

2 Antecedentes

2.1 Métodos de QSS

Consideremos un sistema continuo de la forma:

ẋ = f(x(t),u(t)), x(t0) = x0 (1)

donde x(t) ∈ RN es el vector de estados y u(t) ∈ Rm es una trayectoria conocida.
El método de QSS de primer orden (QSS1) (Kofman & Junco, 2001) resuelve
dicho sistema mediante la siguiente aproximación:

ẋ(t) = f(q(t),v(t)), (2)

donde q(t) ∈ RN es el vector de estados cuantificados y v(t) ∈ Rm es una
aproximación seccionalmente constante de u(t). Cada componente qi(t) sigue
una trayectoria seccionalmente constante que sólo cambia cuando su diferencia
con el estado correspondiente xi(t) alcanza un valor ∆Qi llamado quantum.
Formalmente, las trayectorias están relacionadas según:

qi(t) =

{
qi(tk) si |xi(t)− qi(tk)| < ∆Qi

xi(t) en otro caso
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para tk < t ≤ tk+1, donde tk+1 es el primer tiempo después de tk en el cual
|xi(t)− qi(tk)| = ∆Qi.

Dado que las trayectorias de qi(t) y de vj(t) son seccionalmente constantes,
en virtud de la Ec. (2), las derivadas ẋi(t) también lo son y, por lo tanto, los
estados xi(t) siguen trayectorias seccionalmente lineales. Debido a esta forma
particular de las trayectorias, la obtención de la solución exacta de la Ec. (2)
resulta sencilla y puede traducirse fácilmente en un algoritmo de simulación a
eventos discretos (Kofman & Junco, 2001).

La idea de QSS1 fue también extendida a métodos de orden mayor (QSS2
(Cellier & Kofman, 2006) y QSS3 (Kofman, 2006)) que comparten la definición
de la Ec.(2), pero donde los estados cuantificados siguen trayectorias seccional-
mente lineales y parabólicas respectivamente. Hay también métodos linealmente
impĺıcitos (LIQSS1, LIQSS2 y LIQSS3) que funcionan eficientemente en ciertas
clases de sistemas stiff (Migoni et al., 2013).

2.2 Actividad de orden n

El número de pasos mı́nimos que necesita un método de QSS para obtener una
trayectoria puede estimarse con el concepto de actividad (Castro & Kofman,
2015). Dada una señal xi(t), la actividad de orden n en el intervalo [t0, tf ] se
define según:

A
(n)
xi(t0,tf )

≜
∫ tf

t0

a
(n)
i (t)dτ =

∫ tf

t0

∣∣∣∣∣∣∣∣
dnxi(τ)

dτn

n!

∣∣∣∣∣∣∣∣
1/n

dτ (3)

Asumiendo que xi(t) es de orden n y qi(t) de orden n−1, suponiendo que ambas
trayectorias no se separan entre śı más que ∆Qi y que cada segmento de qi(t)
comienza igual que xi(t) hasta la derivada n − 1 (como lo hacen los métodos
QSS1-3), se puede estimar el número mı́nimo de segmentos de qi(t) según:

k
(n)
xi(t0,tf )

(∆Qi) ≈
A

(n)
xi(t0,tf )

(∆Qi)1/n
(4)

3 Resultado Principal

El concepto de actividad permite estimar el mı́nimo número de pasos que necesita
un método de QSS. En esta sección se desarrollan los conceptos de actividad
global y de homogeneidad, que permiten extender la estimación a los métodos
clásicos (de tiempo discreto) y comparar con los de QSS.

3.1 Actividad instantánea, local y global

Dado el sistema de la Ec.(1), denominaremos actividad instantánea local de orden

n de la variable xi(t) al integrando a
(n)
i (t) de la Ec. (3) y llamaremos actividad

local de orden n en el intervalo de tiempo [t0, tf ] a su integral A
(n)
i(t0,tf )

.
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Definiremos además la actividad instantánea global de orden n del sistema

de la Ec.(1) aG(t)
(n) y la actividad global A

(n)
G(t0,tf )

en el intervalo [t0, tf ] según:

A
(n)
G(t0,tf )

≜
∫ tf

t0

aG(τ)
(n)dτ ≜

∫ tf

t0

max
i

ai(t)
(n)dτ (5)

3.2 Relación entre la actividad y el número de pasos

La relación entre actividad y número de pasos en QSS puede deducirse a partir
del siguiente resultado, cuya demostración se encuentra en https://fceia.unr.edu.
ar/∼kofman/files/Dem Teo Cheb.pdf:

Theorem 1. Dada una señal xi(t) expresada por un polinomio de orden n,
existe un polinomio qi(t) de grado n−1 que verifica la condición |qi(t)−xi(t)| ≤
∆Qi en el intervalo [t0, t0 +∆t] si y sólo si

∆t ≤ 2
2n−1

n ∆Q
1
n
i

a
(n)
i (t0)

(6)

Donde a
(n)
i (t0) es la actividad instantánea local de orden n de la señal xi(t) en

t = t0.

De esta manera, en un método tipo QSS de orden n, el número de segmentos
de qi(t) necesarios para aproximar a xi(t) sin desviarse más que ∆Qi se puede
estimar a partir de la Ec.(6) como

k
(n)
xi[t0,tf ]

≈
A

(n)
xi[t0,tf ]

2
2n−1

n · (∆Qi)
1
n

(7)

y el número de pasos totales en una simulación será mayor a:

k
(n)
QSS[t0,tf ]

≈
N∑
i=1

k
(n)
xi[t0,tf ]

≈
N∑
i=1

A
(n)
xi[t0,tf ]

2
2n−1

n · (∆Qi)
1
n

(8)

Aplicando este razonamiento para un método clásico de paso variable que
compara una fórmula de orden n − 1 con una de orden n (tal que la diferencia
en cada variable sea menor que la tolerancia ∆Q), resulta

k
(n)
DT[t0,tf ]

≈
A

(n)
G[t0,tf ]

2
2n−1

n · (∆Q)
1
n

(9)

3.3 Factor de Homogeneidad

Definimos el factor de homogeneidad de la actividad según:

H
(n)
x[t0,tf ]

≜

∑N
i=1 A

(n)
xi[t0,tf ]

N ·A(n)
G[t0,tf ]

(10)
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Este factor resulta siempre 1/n ≤ H ≤ 1. La condición H ≈ 1 implica que la ac-
tividad instantánea es similar en todas las variables (actividad homogénea). Por
otro lado, H ≈ 1/n implica que la actividad instantánea de todas las variables
excepto de una es cercana a cero (actividad heterogénea).

Suponiendo que ∆Qi = ∆Q y dividiendo las Ecs.(8) y (9), resulta H
(n)
x[t0,tf ]

=

k
(n)
QSS[t0,tf ]

/Nk
(n)
DT[t0,tf ]

. Cada paso de un método clásico actualiza las N variables

de estado mientras que cada paso de un método tipo QSS actualiza ri ≤ N
variables (la variable que cambia más las derivadas que se ven afectadas por dicho
cambio, lo cual depende de qué tan ralo sea el sistema). Por lo tanto, llamando r
al numero medio de variables que afecta cada una de ellas, la condición H ·r < 1
indicará que seŕıa conveniente actualizar individualmente las variables de estado
(QSS) mientras que H · r > 1 indicará lo contrario.

El análisis anterior muestra que cuando la solución es homogénea H ≈ 1
siempre convendrá usar métodos clásicos. Por otro lado, cuando la solución sea
heterogénea, convendrá usar QSS siempre y cuando el factor r sea chico (es decir,
que el sistema sea ralo).

4 Ejemplo ilustrativo

Consideramos la discretización con el método de ĺıneas de una ecuación de Ad-
vección-Difusión-Reacción:

u̇i(t) = −A ·
ui(t)− ui−1(t)

∆x
+D · ui+1(t)− 2ui + ui−1(t)

∆x2
+R · (ui(t)

2 − ui(t)
3)

con i = 1, . . . , N ; N = 10; ∆x = 1; A = 1 y con dos escenarios, uno dominado
por la reacción (Esc.1: D = 0.1 y R = 1000) y otro por la difusión (Esc.2: D = 2
y R = 0.1). Las Figs. 1a y 1b ilustran las trayectorias en ambos escenarios.

Las actividades instantáneas locales y globales correspondientes de orden 2,
calculadas según las Ecs. (3) y (5), se muestran en las Figs. 1c y 1d. Puede verse
que en el primer caso la actividad global es siempre similar a una actividad
local mientras las restantes son cercanas a cero, mientras que en el segundo caso
las actividades locales son parejas. En consecuencia, el factor de homogeneidad
calculado según la Ec.(10) es H1 = 0.1091 (cercano a 1/N) y H2 = 0.561 (más
próximo a 1). Teniendo en cuenta que un cambio en en estado provoca cambios
en r = 3 derivadas, los productos H1 · r = 0.3279 y H2 · r = 1.6827 indican
que conviene usar métodos tipo QSS en el primer escenario (Esc.1) y métodos
clásicos en el segundo (Esc.2).

Esto fue corroborado simulando ambos escenarios con los métodos de LIQSS2
y una versión de paso variable de la regla trapezoidal para distintos valores de
tolerancia. El número teórico mı́nimo de pasos y actualizaciones según las Ecs.
(8) y (9) y los valores observados luego de simular ambos escenarios se reportan
en la Tabla 1.
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(d) Actividad Esc. 2 (detalle)

Fig. 1: Trayectorias y actividades de cada escenario

En esta tabla, podemos observar que aunque los los valores teóricos del
número de pasos mı́nimo requerido siempre son menores que los pasos efecti-
vamente necesarios en la simulación, en todos los casos son valores que se en-
cuentran en el mismo orden de magnitud. Esto ocurre, ya que ninguno de los dos
métodos de integración numérica utilizados están optimizados para realizar las
aproximaciones según el Teorema 1. Podemos observar como en el Escenario 1,
a pesar de que las cantidades de pasos requeridos por ambos métodos es similar,
debido a la heterogeneidad de la actividad del sistema (la tasa de cambio de las
variables en el tiempo no es similar sumado a que un cambio en una variable sólo
afecta a dos variables y no a todas), resulta más conveniente la simulación con
LIQSS2 como se comprueba en la cantidad total de actualizaciones necesarias en
cada caso. Por otro lado, al ser el Escenario 2 más homogéneo(la tasa de cambio
de todas las variables es más similar a lo largo del tiempo), tanto la cantidad
de pasos, como la cantidad de actualizaciones de la regla trapezoidal resultan
valores menores que los obtenidos en el caso de LIQSS2.

5 Sistemas con discontinuidades

Para considerar las discontinuidades, debemos modificar las definiciones de ac-
tividad instantánea local y actividad instantánea. En el caso de la actividad in-
stantánea local, en todos los instantes de tiempo en el que no ocurra ningún

evento que afecte la señal, seguirá estando definida por el integrando a
(n)
i (t) de
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LIQSS2 Regla Trapezoidal

Abs. Pasos Actualizaciones Pasos Actualizaciones
Tol. Mı́nimo

Real
Mı́nimo

Real
Mı́nimo

Real
Mı́nimo

Real
Teórico Teórico Teórico Teórico

Esc. 1
1E-2 68 157 204 471 62 225 620 2250
1E-3 215 354 645 1062 196 628 1960 6280
1E-4 678 945 2034 2835 620 1870 6200 18700

Esc. 2
1E-2 56 408 168 1224 10 37 100 370
1E-3 177 619 531 1857 32 102 320 1020
1E-4 560 1084 1680 3252 100 305 1000 3050

Table 1: Nro. mı́nimo teórico y real de pasos y actualizaciones requerido por
diferentes métodos numéricos

la Ec. (3), pero en los instantes de tiempo en los que ocurra un evento, la activi-

dad instantánea local a
(n)
i (t) se establece en cero. Suponiendo que durante un

peŕıodo de simulación (t0, tf ) ocurren k eventos en los instantes t1, t2, ..., tk que

afectan a la variable xi(t), la actividad local A
(n)
i(t0,tf )

de esta señal en el intervalo

(t0, tf ) debe calcularse integrando sobre cada subintervalo (t0, t1), (t1, t2), ... ,
(tk−1, tk), (tk, tf ), donde la señal permanece continua, y luego sumando dichos
resultados, como lo indica la Ec. (11).

A
(n)
i(t0,tf )

≜
k+1∑
j=1

∫ tj

tj−1

ai(τ)
(n)dτ (11)

donde tk+1 = tf .
Mientras que tanto la actividad instantánea global aG(t)

(n), como la actividad

global A
(n)
G(t0,tf )

, seguirán definidas según las Ec. (5) .

De esta manera, para calcular la totalidad de pasos requeridos por un al-
goritmo para completar una simulación en un intervalo (t0, tf ), debemos sumar
tanto los pasos necesarios para aproximar las señales continuas, como los pasos
debido a la ocurrencia de eventos.

Suponiendo que ocurren d discontinuidades en el intervalo (t0, tf ) y con-
siderando las Ecs.(8) y (9), indicaremos a continuación el número mı́nimo de pa-
sos requeridos por un método de integración numérica para simular un sistema
durante el intervalo indicado y la cantidad mı́nima de actualizaciones requeridas
(considerando que ante la ocurrencia de un evento los métodos de cuantificación
de estados sólo actualizarán las rd variables afectadas por el evento, mientras
que un método tradicional de discretización temporal, actualiza las N variables
presentes en el sistema):

– Cuantificación de estados:
Mı́nimo número de pasos:

k
(n)
QSS(t0,tf )

(∆Q) + d (12)
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Mı́nimo número de actualizaciones:

u
(n)
QSS(t0,tf )

(∆Q) + d · rd (13)

– Discretización temporal:
Mı́nimo número de pasos:

k
(n)
DT (t0,tf )

(∆Q) + d (14)

Mı́nimo número de actualizaciones:

u
(n)
DT (t0,tf )

(∆Q) + d ·N (15)

Para analizar cuál de estas opciones tiene menor costo computacional, debemos
considerar ahora la siguiente relación:

u
(n)
QSS(t0,tf )

(∆Q) + d · rd

u
(n)
DT (t0,tf )

(∆Q) + d ·N
(16)

De donde puede concluirse en primer lugar que si uQSS < uDT (es decir H · ri <
1), la presencia de discontinuidades no va a afectar la conveniencia del uso de
un esquema de cuantificación de estados, sino que cuanto menor sea rd, más
ventajosa va a ser esta opción.

Luego, si uQSS > uDT , podemos tener distintas situaciones. Si el número de
eventos es chico (d → 0) en comparación al número de pasos necesarios para
aproximar la parte continua de las señales, el cociente de la Ec. (16) va a tender
a uQSS/uDT = H · ri y podŕıa tenerse en cuenta el análisis de la homogeneidad
del sistema sin discontinuidades de la sección anterior. En caso contrario, si el
número de discontinuidades es grande (d → ∞), el cociente de la Ec. (16) va a
tender a d·rd

d·N , que siempre es menor a 1.
Por otro lado, cuando la ocurrencia de un evento afecta sólo a un pequeño

número de variables (rd < N), aumenta la heterogeneidad en la actividad del
sistema, situación en la cuál es más conveniente el uso de métodos basados en
la cuantificación de estados. Por el contrario, cuanto más se acerque el número
de variables afectadas al número total de variables (rd → N), es probable que
los métodos clásicos (discretización temporal) sigan siendo la opción más conve-
niente de utilizar.

5.1 Ejemplo de aplicación con discontinuidades

Para ejemplificar un sistema que combina dinámicas cont́ınuas con eventos dis-
cretos presentamos el caso de una red neuronal. Para representar el compor-
tamiento de cada neurona utilizamos el modelo de integración y disparo con
fugas (LIF) como los utilizados en Schmidt et al., 2018 y Bergonzi et al., 2023,
donde las sinapsis son representadas por saltos instantáneos y un decaimiento
exponencial. Las variables de estado presentes en el modelo son el potencial de
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membrana V (t) y la corriente sináptica Is(t), cuya dinámica está descrita por
las siguientes ecuaciones diferenciales:

dIs
dt

= −Is(t)

τs
+ Ie

dV

dt
= −V (t)− EL

τm
+

Is(t)

Cm

(17)

donde τs es la constante de tiempo de corriente postsináptica, EL es el po-
tencial de fuga , τm es la constante de tiempo de la membrana y Cm es la
capacitancia de la membrana. Ie representa una corriente externa inyectada di-
rectamente en la neurona, que se considerará en este trabajo como única entrada
constante de cada neurona.

Modelamos Ne = 1, 000 neuronas interconectadas, de las cuales 800 son del
tipo excitatorio y las restantes 200 inhibitorias. Cada neurona recibe impulsos
de entrada de m = 10 conexiones sinápticas seleccionadas de manera aleatoria,
de las cuales 80% son desde neuronas excitatorias y 20% inhibitorias. Cada vez
que una neurona alcanza el umbral de disparo θ, se genera un pico de actividad
(spike) y el potencial de membrana V (t) se restablece al potencial de reposo
Vr. En las neuronas que reciben estas spikes, se actualiza la corriente sináptica
como:

Is(t
+)← Is(t) +∆I ≜ Is(t) + J (18)

donde J es la intensidad sináptica excitatoria correspondiente a la neurona que
emitió el spike.

Las figuras 2a y 2b muentran la evolución de las variables de estado de un
grupo de neuronas pertenecientes a la red, simulada durante un peŕıodo de 0.25
segundos utilizando el software QSS Solver, considerando una corriente externa
de entrada Ie = 751nA para todas las neuronas.
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Para analizar cómo impacta la presencia de discontinuidades en la simulación
de un sistema, proponemos 3 escenarios con diferente densidades de eventos, lo
que logramos variando el valor de la corriente de entrada Ie, ya que cuanto mayor
sea la misma, más grande será la frecuencia de disparos de cada neurona.

Para cada valor de Ie ∈ {751nA; 800nA; 1000nA}, realizamos simulaciones
utilizando LIQSS2 and CVODE2 , variando además la tolerancia (∆Q ∈ {1E −
1, 1E − 2, 1E − 3}). Consideramos los mismos parámetros que los propuestos en
Bergonzi et al., 2023 para las Ecs. (17)-(18). En cada caso además, calculamos
las actividades locales y globales como también los factores de homogeneidad.
Para finalmente estimar el número de pasos teórico mı́nimo que requerirá cada
tipo de método para completar las simulaciones. Estos resultados se presentan
en las columnas de la izquierda de la tabla 2. Mientras que en las columnas de
la derecha se muestran el número de discontinuidades obtenidas en la solución
de referencia y en las simulaciones con diferentes tolerancias.

Segmentos de polinomios Discontinuidades
Ie Tol. LIQSS2 CVODE2 Solución de

[nA] Abs. Nro. Mı́n. Resultado Nro. Mı́n. Resultado referencia LIQSS2 CVODE2

Teórico de simulación Teórico de simulación

751
1E-1 1.15E+5 1.60E+5 5.47E+3 9.57E+3

4741
4956 4543

1E-2 3.55E+5 4.51E+5 7.04E+3 1.08E+4 4500 4864
1E-3 1.11E+6 1.41E+6 1.20E+4 1.28E+4 4705 4753

800
1E-1 2.10E+5 2.09E+5 8.98E+3 1.52E+4

7707
7545 7548

1E-2 6.49E+5 7.63E+5 1.17E+4 1.69E+4 7742 7710
1E-3 2.03E+6 2.32E+6 2.05E+4 2.08E+4 7750 7725

1000
1E-1 3.05E+5 3.05E+5 1.60E+4 2.85E+4

14531
14318 14292

1E-2 9.33E+5 1.15E+6 1.92E+4 3.00E+4 14479 14493
1E-3 2.92E+6 3.49E+6 2.92E+4 3.55E+4 14530 14521

Table 2: Número de pasos mı́nimo teórico y simulados de distintos métodos
numéricos

En este modelo, el comportamiento de cada neurona está representado por 2
variables de estado, por lo que el sistema está compuesto por 2000 variables de
estado y el rango para el valor de H será [ 1

2000 ; 1]. En los tres escenarios anal-
izados los valores de H están más cerca del ĺımite inferior, lo que es consistente
con el comportamiento heterogéneo de las neuronas del sistema.

En la Tabla 3 mostramos la comparación del resultado teórico de H · ri,
uQSS+d·rd
uDT+d·N y el resultado de simulación

sim updatesQSS+dQSS ·rd
sim updatesDT+dDT ·N .

A partir de la Tabla 2, podemos observar que los resultados teóricos estima-
dos para el número mı́nimo de pasos requeridos para completar la simulación
de la red neuronal son consistentes con los pasos que efectivamente realizaron
los distintos métodos. La misma conclusión surge al comparar los resultados
de las últimas dos columnas de la Tabla 3 que muestran la relación entre las
actualizaciones requeridas por cada método calculada teóricamente y obtenida
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Resultados Teóricos Resultados de Simulación

Escenario ∆Q H(2) · ri
uQSS + d · rd
uDT + d ·N

sim updatesQSS + sim dQSSrd

sim updatesDT + sim dDTN

Ie = 751
1E − 1

0.152
0.025 0.020

1E − 2 0.053 0.044
1E − 3 0.094 0.112

Ie = 800
1E − 1

0.158
0.027 0.016

1E − 2 0.058 0.048
1E − 3 0.101 0.114

Ie = 1000
1E − 1

0.198
0.023 0.013

1E − 2 0.052 0.041
1E − 3 0.102 0.101

Table 3: Relación de los costos computacionales de un método basado en cuan-
tificación de estados y uno de discretización temporal obtenidos teóricamente y
por simulación

efectivamente tras las simulaciones. Este cociente resulta menor que el resultado
teórico de H · ri, cuyo valor ya era menor a 1 debido a que rd < N . Esta idea
se alinea con la mayor conveniencia de usar de un esquema de cuantificación de
estados, como también el hecho de que la cantidad de actualizaciones requeri-
das por un método de tipo QSS es menor que la requerida por un método de
discretización temporal.

6 Conclusiones y Trabajo Futuro

Definimos formalmente el concepto de homogeneidad de la actividad de las
soluciones de una EDO, factor que permite establecer la conveniencia de usar
métodos de integración clásicos o de tipo QSS. Mostramos además su uso en un
ejemplo ilustrativo corroborando los resultados teóricos obtenidos. Extendimos
el análisis teórico considerando modelos que combinan dinámicas continuas y
discretas por la presencia de eventos, lo que luego comparamos con resultados
de simulación obtenidos en un ejemplo de aplicación.

A futuro resta extender el concepto para considerar la actividad relativa que
permita acotar por debajo el número de pasos cuando se realiza control sobre el
error relativo.
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