Modelo de cascada inhibitoria y la variación dental en primates

  • Lucas D’Addona CONICET. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata. 122 y 60, La Plata
  • Paula N Gonzalez CONICET. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata. IGEVET - Instituto de Genética Veterinaria “Ing. Fernando N. Dulout” (UNLP CONICET), Facultad de Cs. Veterinarias, La Plata. Argentina.
  • Valeria Bernal CONICET. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata.

Resumen

En 2007 Kavanagh y colaboradores presentaron un modelo del desarrollo que permitiría dar cuenta de la variación en el tamaño relativo y el número de molares inferiores en escala inter-específica. Uno de los grupos más estudiados empleando este modelo ha sido el de los primates del Nuevo y Viejo Mundo. En este trabajo se revisan los estudios realizados hasta el presente y se discuten las limitaciones del modelo para dar cuenta de la variación morfológica observada en el grupo, en particular para la agenesia del tercer molar y las proporciones de los premolares y molares en taxa particulares. Finalmente, se consideran variables alternativas a las incluidas en el modelo cuya exploración podría contribuir a comprender los mecanismos del desarrollo que originan la variación dental en primates.

Descargas

Los datos sobre descargas todavía no están disponibles.

Citas

Ahn Y, Sanderson BW, Klein OD, Krumlauf R (2010) Inhibition of Wnt signaling by Wise (Sostdc1) and negative feedback from Shh controls tooth number and patterning. Development 137:3221–3231.

Arthur W (2004) The effect of development on the direction of evolution: toward a twenty-first century consensus. EvolDev 6(4):282–288

Asahara M (2013) Unique inhibitory cascade pattern of molars in canids contributing to their potential to evolutionary plasticity of diet. EcolEvol 3:278–285.

Bernal V, Gonzalez PN, Perez SI (2013) Developmental processes, evolvability and dental diversification of new world monkeys. J EvolBiol 40: 532-541.

Bertl MH, Bertl K, Wagner M, Gahleitner A, Stavropoulos A, Ulm C, Mitteroecker P (2016) Second premolar agenesisis associated with mandibular form: a geometric morphometric analysis of mandibular cross-sections. Int J Oral Sci. 8: 254–260.

Boughner JC, Dean MC (2004) Does space in the jaw influence the timing of molar crown initiation? A model using baboons (Papioanubis) and great apes (Pan troglodytes, Pan paniscus). J Hum Evol 46:255–277.

Cai J, Cho SW, Kim JY, Lee MJ, Cha YG, Jung HS (2007) Patterning the size and number of tooth and its cusps. DevBiol 304:499–507.

Carter KE, Worthington S (2016) The evolution of anthropoid molar proportions. BMC EvolBiol 16:110-128.

Cho SW, Sungwook K, Woolley TE, Leel MJ, Baker RE, Kiml EJ, Shin JS, Tickle C, Maini PK, Jungl HS (2011) Interactions between Shh, Sostdc1 and Wnt signaling and a new feedback loop for spatial patterning of the teeth. Development 138:1807-1816.

D´Addona LA, Gonzalez PN, Bernal V (2016) Variabilidad de las proporciones molares en poblaciones humanas: un abordaje empleando modelos del desarrollo y experimentales. Rev Arg Antrop Biol. 18(1)1:13.

Evans AR, Daly ES, Catlett KK, Paul KS, King SJ, Skinner MM, Nesse HP, Hublin JJ, Townsend GC, Schwartz GT, Jernvall J (2016) A simple rule governs the evolution and development of hominin tooth size. Nature 530: 477-493.

Gómez-Robles A (2016) Palaeoanthropology: what teeth tell us. Nature 530:425-426.

Hall BK(2003)Evo-Devo: evolutionary developmental mechanisms. Int J DevBiol 47:491-495.

Halliday TJD, GoswamiA(2013) Testing the inhibitory cascade model in Mesozoic and Cenozoic mammalian forms. BMC EvolBiol 13:79-90.

Hallgrímsson B, Jamniczky H, Young NM, Rolian C, Parsons TE, Boughner JC, Marcucio RS (2009) Deciphering the palimpsest: studying the relationship between morphological integration and phenotypic covariation. EvolBiol 36:355–376

Hendrikse JL, Parsons TE, Hallgrímsson B (2007) Evolvability as the proper focus of evolutionary developmental biology.EvolDev 9(4):393–401

Hluskoa LJ, Schmitta CA, Monsona TA, Brasila MF, Mahaney MC (2016) The integration of quantitative genetics, paleontology, and neontology reveals genetic underpinnings of primate dental evolution. ProcNatlAcadSci USA. En prensa.

Houle D, Govindaraju DR, Omholt S(2010) Phenomics: the next challenge. Nat Rev Genet 11:855-866

Kavanagh KD, Evans AR, JernvallJ(2007) Predicting evolutionary patterns of mammalian teeth from development. Nature 449:427-432.

Kavanagh KD, Shoval O, Winslow BB, Alon U, Leary BP, Kan A, Tabin CJ (2013) Developmental bias in the evolution of phalanges. ProcNatlAcadSci USA 110(45): 18190-18195.

Labonne G, Laffont R, Renvoise E, Jebrane A, Labruere C, Chateau-Smith C, Navarro N, Montuire S (2012) When less means more: evolutionary and developmental hypotheses in rodent molars. J EvolBiol 25(10)2102–2111.

Morita W, Morimoto N, Ohshima H(2016) Exploring metameric variation in human molars: a morphological study using morphometric mapping. J Anat. 29(3):343-55.

Plikus MV, Zeichner-David M, Mayer JA, Reyna J, Bringas P, Thewissen JG, Snead ML, Chai Y, Chuong CM(2005) Morphoregulation of teeth: modulating the number, size, shape and differentiation by tuning Bmp activity. EvolDev 7:440–457.

Polly PD (2007) Evolutionary biology: development with a bite. Nature 449:413-415.

Renvoisé E, Evans AR, Jebrane A, Labruère C, LaffontR,Montuire S (2009) Evolution of mammal tooth patterns: new insights from a developmental prediction model. Evolution 63(5):1327-1340.

Ribeiro MM, De Andrade SC, De Souza AP, Line SRP (2013)The role of modularity in the evolution of primate postcanine dental formula: integrating jaw space with patterns of dentition. AnatRec 296:622–629

Salazar-Ciudad I, Jernvall J (2010)A computational model of teeth and the developmental origins of morphological variation. Nature 464:583-586.

Sanchez-Villagra MR(2010) Suture closure as a paradigm to study late growth in Recent and fossil mammals: a case study with giant deer and dwarf deer skulls. J VertebrPaleontol 30(6):1895–1898.

Schroer K, Wood B (2014) Modeling the dental development of fossil hominins through the inhibitory cascade. J Anat 226:150-162.

Scott JE (2015) Lost and found: The third molars of Callimico goeldii and the evolution of the callitrichine postcanine dentition. J Hum Evol 83: 65-73.

Swindler DR (2002) Primate dentition. An introduction to the teeth of non-human primates. Cambridge University Press, Cambridge, United Kingdom.

Wilson LAB, Madden RH, Kay RF, Sánchez-Villagra MR (2012) Testing a developmental model in the fossil record: Molar proportions in South American ungulates. Paleobiology 38:308–321.

Young NM, Winslow B, Takkellapati S, Kavanagh K (2015) Shared rules of development predict patterns of evolution in vertebrate segmentation.Nature 6:6690-6697.

Yuan GH, Zhang L, Zhang YD, Fan MW, Bian Z, Chen Z (2008) Mesenchyme is responsible for tooth suppression in the mouse lower diastema. J Dent Res 87(4):386-390.
Publicado
2018-09-11
Cómo citar
D’Addona, L., Gonzalez, P., & Bernal, V. (2018). Modelo de cascada inhibitoria y la variación dental en primates. Revista Ciencias Morfológicas, 19(2), 29-36. Recuperado a partir de https://revistas.unlp.edu.ar/Morfol/article/view/5901
Sección
Trabajos Originales