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Resumen. La necesidad de integracion neural-simbdlica se hace evidente a me-
dida que se abordan problemas mas complejos, y que van mas alla de tareas de
dominio limitadas como lo es la clasificacion. Los métodos de busqueda para la
extraccion de reglas de las redes neuronales funcionan enviando combinaciones
de datos de entrada que activan un conjunto de neuronas. Ordenando adecuada-
mente los pesos de entrada de una neurona, es posible acotar el espacio de bus-
queda. Con base en esta observacion, este trabajo tiene por objetivo presentar un
método para extraer el patron de reglas aprendido por una red neuronal entrenada
feedforward, analizar sus propiedades y explicar estos patrones a través del uso
de logica de primer orden (FOL).

Palabras claves: Aprendizaje Profundo, Extraccion de reglas, Inteligencia Arti-
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Abstract. The need for neural-symbolic integration becomes evident as more
complex problems are addressed, and they go beyond limited domain tasks such
as classification. Search methods for extracting rules from neural networks work
by sending input data combinations that activate a set of neurons. By properly
ordering the input weights of a neuron, it is possible to narrow down the search
space. Based on this observation, this work aims to present a method for extract-
ing the pattern of rules learned by a trained feedforward neural network, analyz-
ing its properties, and explaining these patterns through the use of first-order
logic (FOL).
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1 Introduccion

Con la mejora de la tecnologia de almacenamiento de datos, ha habido un interés cre-
ciente en extraer conocimiento de los datos. Idealmente, el conocimiento descubierto
deberia ser preciso y comprensible para el usuario. Una de las dificultades para la ex-
traccion de conocimiento preciso es que los datos que se extraen pueden tener mucho
ruido. En estos casos, las redes neuronales son una solucion viable, debido a su relati-
vamente buena tolerancia al ruido y capacidad de generalizacion (Santos, Nievola, y
Freitas 2000).

Se ha demostrado empiricamente que las redes neuronales artificiales (ANN) funcionan
bien en varios problemas de aprendizaje automatico. Las redes multicapa feedforward
entrenadas con el algoritmo backpropagation (Rumelhart et al., 1986) se consideran el
método mas eficiente en este respecto. Respuestas razonablemente satisfactorias a pre-
guntas como cuantos ejemplos se necesitan para que una red neuronal feedforward pro-
funda aprenda un concepto y cudl es la mejor arquitectura de red neuronal para un do-
minio de problema particular (dado un numero fijo de ejemplos de entrenamiento) se
encuentran disponibles, por lo que ahora es posible entrenar redes neuronales de un
modo mas eficiente. Esto hace que las redes neuronales sean una excelente herramienta
para la mineria de datos (Britos 2005), donde el enfoque es aprender las relaciones entre
los datos que se almacenan en grandes volimenes.

Sin embargo, es bien sabido que las redes neuronales suelen representar su conoci-
miento en forma de pesos numéricos e interconexiones distribuidos, lo cual hace que
este proceso no sea comprensible para el usuario. Esto representa un problema serio,
dado que el usuario no es capaz de entender la informacion a la salida de la red o razonar
acerca del proceso cognitivo. Por lo tanto, el usuario tendria que confiar ciegamente en
la respuesta dada por la red, lo cual es claramente indeseable en varios dominios de
aplicacion, (i.e., en el diagnostico médico de enfermedades mortales, donde hay vidas
en juego). Ademas, si el usuario no puede comprender ni validar conocimiento descu-
bierto, podria decidir ignorarlo, lo cual podria conducir a toma de decisiones no desea-
das.

Las redes neuronales son tipicamente cajas negras. Los célculos realizados por las ca-
pas sucesivas rara vez corresponden a pasos de razonamiento humanamente compren-
sibles, y los vectores intermedios de activaciones que se generan carecen de una seman-
tica humanamente comprensible (Nielsen et al. 2022). Entonces, debido a su estructura
anidada y no lineal las hace muy poco transparentes, es decir, no esta claro qué infor-
macion en los datos de entrada las hace llegar realmente a sus decisiones. Por lo tanto,
estos modelos suelen considerarse cajas negras.

La explicabilidad aborda el problema critico de que los humanos no pueden compren-
der directamente el comportamiento complejo de las ANNs, especialmente cuando tie-
nen numerosas capas (i.e., redes neuronales profundas o DNN por sus siglas en inglés),
o explicar su proceso de toma de decisiones subyacente. La explicabilidad en DNN es
el requisito fundamental para generar confianza con los usuarios y es la clave para su
implementacion segura, justa y exitosa en aplicaciones del mundo real. En este sentido,
existen aplicaciones como aprobacion de crédito y diagndstico médico donde es impor-
tante explicar el razonamiento de la red neuronal. La principal critica contra las redes
neuronales en tales dominios es que el proceso de toma de decisiones es dificil de en-
tender. Esto se debe a que el conocimiento en la red neuronal se almacena como
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parametros de valor real (pesos y sesgos) de la red, el conocimiento se codifica de forma
distribuida y el mapeo aprendido por la red puede ser no lineal y no monétono.

En este punto cabria cuestionar por qué se deben usar redes neuronales cuando la com-
prensibilidad es un tema importante. La razén es que la precision predictiva también es
muy importante y las redes neuronales tienen un sesgo inductivo apropiado para mu-
chos dominios de aprendizaje automatico (R. Krishnan, Sivakumar, y Bhattacharya
1999).

Las precisiones predictivas obtenidas con las redes neuronales suelen ser significativa-
mente mas altas que las obtenidas con otros paradigmas de aprendizaje. Investigaciones
recientes sobre la comprension del funcionamiento de una red neuronal entrenada se ha
centrado en la extraccion de reglas simbolicas ((AmirHosseini y Hosseini 2019; Csis-
zér, Csiszar, y Dombi 2020; Mahdavifar y Ghorbani 2020)).

La tarea de extraccion de reglas puede verse como una tarea de busqueda o como una
tarea de aprendizaje (Montavon et al. 2017), donde para el enfoque de busqueda, las
reglas se extraen a nivel de las neuronas individuales (ocultas y de salida) en la red,
observando sus pesos y sesgos (R. Krishnan et al. 1999).

En tal sentido, uno de los principales problemas con el enfoque de busqueda es como
restringir el espacio de busqueda para las posibles combinaciones de reglas. En este
articulo se presenta un nuevo método para restringir este espacio de biisqueda y se ana-
lizan algunas propiedades de este método.

En la Seccién 2, se plantea una discusion sobre la importancia que tienen los datos para
estos algoritmos. En la Seccion 3 se discuten aspectos relevantes sobre la necesidad de
métodos explicables. En la Seccion 4 se plantea el alcancel del método propuesto.

En la Seccion 5 se explica el problema de la extraccion de reglas. En la Seccion 6 se
explica el algoritmo AREBI para la extraccion de reglas y se analizan sus propiedades
en la Seccion 7. La Seccion 8 presenta un breve resumen sobre el trabajo relacionado.
La Seccion 9 presenta las conclusiones del trabajo y se concluye el documento con la
Seccion 10 donde se plantean lineas de investigacion para trabajo futuro.

2 La importancia de los datos en el aprendizaje y la ciencia

El proceso de aprendizaje humano es un viaje complejo a través de la observacion y la
experiencia del mundo, viaje del cual recopilamos datos de propiedades, a veces facil-
mente cuantificables en su aprehension, otras, de tinte mas subjetivo (lo propiamente
cualitativo). El adjetivo “humano” que califica al acto de aprender, requiere una preci-
sion anterior que ronda en lo subjetivo, es decir en ese quien conoce. La persona que
conoce el mundo interviene modificando algo, propio, de terceros, la materia, la cultura
y la natura.

Hasta ahora, nada de lo dicho escapa a la moralidad o ética de los actos humanos, que
buscan verdad cientifica y bondad, es decir que no dafie y que aporte un valor diferen-
cial virtuoso. Conocer, investigar tendran implicancias morales, porque todo lo que de
la voluntad humana dependa es moral.

A partir de la observacion, como humanos que conocemos el mundo, relacionamos
eventos con los datos de esas propiedades. Es a partir de experiencias repetitivas a partir
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de las cuales podemos determinar algunos patrones que relacionan eventos con datos y
eventos con eventos mismos. En el caso del descubrimiento cientifico, estos patrones y
relaciones se formalizan en leyes y ecuaciones, los datos se formalizan en propiedades
y variables, y las observaciones se formalizan en mediciones de eventos, que pueden
ser acciones o propiedades en si mismas. Leyes y ecuaciones, propias de la ciencia, nos
permiten realizar predicciones y facilitan la transmision del procedimiento de aprendi-
zaje de una forma muy compacta, con la minima cantidad de informacion. Sin embargo,
el proceso clésico de aprendizaje en ciencias es un proceso lento que requiere mucha
experiencia observacional, para descubrir las principales variables involucradas y su
influencia en los eventos para una cantidad probablemente enorme de combinaciones
posibles, perdiendo con frecuencia variables relevantes no previstas. Ademas, el enfo-
que cientifico clasico se basa en hipoétesis y, por lo tanto, esta sesgado por ellas.

El método cientifico se establecid para arbitrar la subjetividad intrinseca del conocer y
aprender humano, de lo propio de la inclinaciéon humana por buscar explicaciones me-
tafisicas que no se sostienen en la evidencia material cuantificable que ocurre en la
observacion. Sin embargo, como toda pretension humana de asignacion de verdad, el
método cientifico clasico todavia esta sesgado por el pensamiento deductivo de la
mente humana.

El modelo como resultado y los procedimientos que acerquen al humano a conocer la
verdad a través de datos busca en lo posible, y de manera deseable, un enfoque implicito
e imparcial de nuestra experiencia humana de aprendizaje basado en ellos (los datos)
sin procesar observaciones reales (por tanto, subjetivas). Estos procedimientos tienen
la ventaja adicional de probar correlaciones entre diferentes variables y observaciones,
aprender patrones no previstos en la naturaleza y permitirnos descubrir nuevas leyes
cientificas o incluso maés, realizar predicciones sin la disponibilidad de dichas leyes.
Como humanos, estamos viviendo la era de la ciencia de datos, que impacta en todos
los aspectos de la vida personal (y en ella implicado lo economico, social, educativo,
cientifico etc). Los datos adquieren sentido porque la persona que conoce vive dos
pasos propios de su funciéon humana: la de informarse y la de decidir sobre los actos de
manera responsable y libre.

Los datos en el mundo organizado son datos que atraviesan a las personas y sus deci-
siones en un mundo desarrollado. De hecho 10 de los 17 Objetivos del Desarrollo Sos-
tenible (Agenda 2030) que lideran la economia global son objetivos digitales. Fuente:
https://www.un.org/sustainabledevelopment/es/2015/09/la-asamblea-general-adopta-
la-agenda-2030-para-el-desarrollo-sostenible/

Los procedimientos basados en datos estan dando lugar a una nueva economia digital.
La ciencia basada en datos también cambiara nuestras vidas y la forma en que hacemos
ciencia y desarrollamos soluciones y decidimos conductas. La recopilacion de datos, la
extraccion de datos y la visualizacion de datos también seran de suma importancia en
el descubrimiento cientifico (Montans et al., 2019).

Luego de estas precisiones, de corte general y necesario, entendidas con los determi-
nantes y limitaciones esbozados, el propdsito de esta seccion es el de poner en relieve
la importancia que tiene los datos para el disefio de un modelo, y la obtenciéon de DNN
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de buena calidad (por tanto, moral). Ademas, como se menciond anteriormente, es
deseable para la voluntad humana informada, alcanzar la explicabilidad del propoésito
de tal modelo.

Para obtener un sistema explicable, nos apoyaremos sobre la idea de que, si las DNN
pueden extraer patrones y aprender de los datos, los datos también deben poder expli-
carse.

3 Explicabilidad en Redes Neuronales Profundas

La explicabilidad aborda el problema critico de que los humanos no pueden compren-
der directamente el comportamiento complejo de las DNN o explicar su proceso de
toma de decisiones subyacente. La explicabilidad de las DNN es el requisito fundamen-
tal para generar confianza con los usuarios y es la clave para su implementacion segura,
justa y exitosa en aplicaciones del mundo real.

El surgimiento de sistemas de decision opacos y ubicuos, que son sistemas de caja negra
y que utilizan modelos de aprendizaje automatico para predecir informacion sensible,
ha generado preocupacion por la falta de explicacion y comprension de tales sistemas.
El Parlamento Europeo adopto recientemente el Reglamento General de Proteccion de
Datos GDPR (https://gdpr-info.eu/), que se convirtié en ley en mayo de 2018. Un as-
pecto innovador del GDPR son las clausulas sobre datos automatizados, toma de deci-
siones, incluida la elaboracion de perfiles, que introducen por primera vez, hasta cierto
punto, un derecho de explicacion para que todos los individuos obtengan explicaciones
significativas de la ldgica involucrada cuando se lleva a cabo la toma de decisiones
automatizada. A pesar de las opiniones divergentes entre los juristas sobre el alcance
real de estas clausulas, existe un acuerdo general sobre la necesidad de que la imple-
mentacion de tal principio sea urgente y que represente hoy un enorme desafio cienti-
fico abierto. Sin una tecnologia habilitadora capaz de explicar la 16gica de las cajas
negras, el derecho a una explicacion seguira siendo una dead letter (Guidotti et al.
2019). Al confiar en sofisticados modelos de clasificacion de aprendizaje automatico
entrenados en conjuntos de datos masivos gracias a infraestructuras escalables y de alto
rendimiento, se corre el riesgo de crear y utilizar sistemas de decision que realmente no
entendemos.

En tal sentido, GDPR ha introducido el derecho a una explicacion para las personas
afectadas por la toma de decisiones automatizada, destacando la necesidad de tecnolo-
gias que puedan explicar la logica de los sistemas de caja negra. La falta de compren-
sion y validacion de los componentes del aprendizaje automatico puede conducir a de-
cisiones equivocadas, violaciones éticas y riesgos de seguridad en diversas industrias,
incluidos los vehiculos auténomos y la medicina personalizada.

La disponibilidad de tecnologias transparentes de aprendizaje automatico puede mejo-
rar la confianza, la conciencia y la responsabilidad en los procesos de toma de decisio-
nes. En esa direccion, la explicacion es crucial para una ciencia de datos abierta y res-
ponsable y para la investigacion cientifica en diversos ambitos.
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Del mismo modo, el uso de modelos de aprendizaje automatico en la investigacion
cientifica, por ejemplo, en medicina, biologia y ciencias socioeconémicas, requiere una
explicacion no soélo para la confianza y la aceptacion de los resultados, sino también
para la apertura del descubrimiento cientifico y los avances de la investigacion. Como
consecuencia, la explicacion esta en el centro de una ciencia de datos abierta y respon-
sable, en multiples sectores industriales y disciplinas cientificas.

La literatura existente carece de una organizacion y clasificacion sistematica de meto-
dologias para la interpretacion de sistemas de caja negra, lo que motiva la necesidad de
una clasificacion clara considerando diferentes aspectos simultdneamente (Guidotti
etal. 2019).

4 Alcance

Este trabajo se centra en redes neuronales profundas feedforward entrenadas clasicas,
dado que el foco esta puesto en la extraccion de reglas a partir de las matrices de pesos
de estas. Quedan fuera de este estudio variaciones de este tipo de redes tales como las
redes neuronales recurrentes, y los Transformers que, si bien hacen uso de las redes
neuronales feedforward presentan arquitecturas diferentes dado que utilizan capas de
atencion, embeedings y transformaciones creando arquitecturas hibridas mas comple-
jas. Entonces, al referir a tecnologias de Deep Learning, referimos a los conceptos ver-
tidos por Goodfellow et al., (2016) y Russell & Norvig, (2010), o a una definicion
equivalente presentadas en Domingos, (2018) donde las redes neuronales profundas
son presentadas como capas de neuronas densas, las cuales se combinan con capas de
entrada y salida, y alguna funcion de activacion en sus neuronas.

5 El Problema de la extraccion de reglas

En una red neuronal entrenada, el conocimiento adquirido en la fase de entrenamiento
estd codificado en la arquitectura de la red, las funciones de activacion utilizadas y los
pesos y sesgos de las neuronas. En tal sentido, el rendimiento de una red neuronal esta
directamente relacionado con su arquitectura y parametros. Por tanto, la eleccion de
una arquitectura para una red neuronal influye en el tiempo de aprendizaje, la precision
predictiva, la tolerancia al ruido y la capacidad de generalizacion de la red (Santos et al.
2000). La tarea de extraccion de reglas consiste en utilizar una o mas de las piezas de
informacion anteriores y extraer un conjunto de reglas de las neuronas. Consideramos
el caso donde las entradas a la red feedforward son tabulares y las salidas son booleanas
(es decir, un problema de clasificacion).

Las neuronas en las redes neuronales feedforward tienen activaciones definidas por:

Zi-(CiWj . A) + Bi (eql)
Ai-Act(Z;) (eq2)
Act(x) = m;_ax (eq3)
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Donde Ajes la activacion de la neurona i, W;; es el peso en el enlace de la neurona j a
la neurona i, A; es la activacion de la neurona j, §5; es el sesgo en la neurona i, Act() es
una funcion de activacion no lineal (la funcion sigmoidal), y a es una parametro que
controla la pendiente de la funcion sigmoidal.

En general, los métodos de blisqueda para extraer reglas intentan encontrar combina-
ciones de los valores de entrada a una neurona que dan como resultado que tenga una
activacion cercana a 1 (para una regla de confirmacion) o una activacién cercana a 0
(paraunaregla de no confirmacion). Para que una neurona tenga una activacion cercana
a 1, se busca encontrar tales combinaciones de pesos tal que la cantidad en la (eq.2) A;
~ 1. De manera similar, para una activacion neuronal cercana a 0, deberiamos tener A;
~ (. El valor de Ajen el que Act(Z;) = 1 se denomina el umbral de la neurona.

El proceso de encontrar reglas para las neuronas de la capa oculta se simplifica porque
las entradas son booleanas. En este caso, para evaluar A; en la (eq.1), debemos consi-
derar solo los pesos que alimentan la neurona. El proceso de encontrar reglas para las
neuronas de la capa de salida es mas complejo dado que la neurona de la capa oculta
podria tener cualquier activacion en el intervalo [0, 1]. Sin embargo, se puede hacer que
la neurona de la capa oculta se aproxime a una neurona booleana controlando la incli-
nacion de la funcion de activacion. Al aumentar el valor del parametro a en la (eq.2),
podemos hacer que la neurona de la capa oculta se aproxime a una activacion booleana.
Establecer el valor del parametro a en un valor alto (=10) asegura que todas las neuro-
nas de la capa oculta en la red tendran una activacion cercana a 0 o cercana a 1.

Esto nos permite entonces tratar las salidas de las neuronas de la capa oculta como
cantidades booleanas y centrarnos solo en sus pesos para las neuronas de la capa de
salida en el proceso de extraccion de reglas. Las reglas extraidas deben ser validas (las
reglas deben cumplirse independientemente de los valores de las variables no mencio-
nadas en las reglas), deben ser lo mas generales posible (si se elimina alguno de los
antecedentes, la regla ya no deberia ser valida) y completa (se deben extraer todas las
reglas validas y madximamente generales posibles).

6 El método propuesto

En esta seccion, explicamos el concepto de un arbol de combinacién y como se usa en
la generacion de reglas. Para tratar uniformemente los pesos positivos y negativos de
la neurona, se ha adoptado una transformacion admisible de pesos utilizada por primera
vez por (Sethi y Yoo 1996) y adaptada en (Krishnan et al., 1999), para convertir todos
los pesos negativos de la neurona en cantidades positivas. Esta transformacion nos per-
mite trabajar solo con pesos positivos. Para tal proposito hemos utilizado una red feed-
forward de tres capas entrenada usando la regla de backpropagation (Goodfellow et al.
2016).

Una regla de confirmacion es aquella que explica cuando se activa una neurona; una
regla de des confirmacion explica cuando una neurona se apaga. Explicaremos en de-
talle el procedimiento para extraer una regla de confirmacion; Se aplica un procedi-
miento similar para las reglas contrarias.

Como se mencioné en la Seccion 1, una de las cuestiones mas cruciales en el desarrollo
de un algoritmo de extraccion de reglas es como restringir el tamafio del espacio de
soluciéon buscado. Supongamos que una neurona en la red tiene cuatro pesos positivos
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etiquetados como 1, 2, 3 y 4, respectivamente. Con este vector de cuatro pesos podemos
formar Y%, *C; combinaciones. Si ignoramos las combinaciones nulas (i.e. *C,), el
resto de las combinaciones se pueden considerar como nodos de un arbol con una com-
binacién de tamaio 7 en el i-ésimo nivel del arbol. La figura 1 muestra el arbol de com-
binaciones para una neurona que tiene cuatro pesos positivos. En lugar de intentar com-
binaciones aleatorias de pesos, primero ordenamos los pesos y luego generamos com-
binaciones de todos los tamaiios posibles. Las combinaciones para cualquier tamafio
en particular se ordenan en orden descendente de la suma de los pesos en la combina-
cion. Debido al orden de los pesos y a la restriccion por la regla de maxima generalidad,
es posible excluir algunas combinaciones de la busqueda. A continuacion, se explica
como el ordenamiento de los pesos de la neurona y considerar las combinaciones en el
orden anterior, ayuda a reducir el espacio de biisqueda.

6.1 Poda de la bisqueda en un arbol de combinacion

Existen dos tipos de poda que pueden ocurrir en un arbol de combinacion.

Podas al mismo nivel del arbol. Siuna combinacion en cualquier nivel no se cumple,
todas las demas combinaciones en este nivel pueden eliminarse. Esto se debe a que
todas las combinaciones en el mismo nivel tienen la misma longitud, y debido al orden
de los pesos, si falla una combinacién en un nivel, todas las demas combinaciones en
ese nivel también fallaran, ya que su suma ponderada sumara menos de la combinacion
que fall6. Por lo tanto, no es necesario considerarlos en la busqueda de reglas.

Podas a niveles mas profundos del arbol. Si una combinacion en un nivel logra formar
una regla, entonces no es necesario considerar las combinaciones en los siguientes ni-
veles de las cuales la presente combinacion forma un subconjunto. Aunque estas com-
binaciones lograran formar reglas, estas reglas seran subsumidas por las reglas forma-
das a partir de la combinacion actual y pueden ser excluidas debido a la condicion de
maxima generalidad.

Si Consideramos el arbol de combinacion que se muestra en la Fig. 1., vemos que las
combinaciones de nivel 2 son 12, 13, 14, 23, 24, 34. Si 12 no genera el antecedente
positivo de una regla, no necesitamos probar las combinaciones 13, 14, 23, 24, 34 y
estas pueden eliminarse. Por otro lado, si 12 logra formar un antecedente positivo de la
regla, entonces todas las combinaciones en su subarbol, es decir, 123, 124y 1234, pue-
den eliminarse ya que formaran reglas mas especificas que la combinacion 12 y pueden
eliminarse debido a la restriccion de maxima generalidad.
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N
~

2 3 T 14 24 34
23 14 14 34

1234
Figura 1. Arbol de combinaciones

6.2  El Algoritmo AREBI para generacion de reglas

El algoritmo de extraccion de reglas AREBI se basa en la estrategia de poda discutida
anteriormente y funciona en tres etapas. En la primera etapa extraemos reglas para las
neuronas de la capa de salida. Se considera que las neuronas de la capa oculta repre-
sentan conceptos booleanos haciendo que su funcioén de activacion tenga una alta ga-
nancia como se explica en la Seccion 5. En la segunda etapa extraemos reglas para las
neuronas de la capa oculta.

En la etapa final, las reglas obtenidas en la primera etapa se reescriben en términos de
las reglas obtenidas en la segunda etapa para obtener reglas que expliquen la relacion
entrada-salida. El algoritmo para extraer una regla de confirmacion para una neurona
individual es el siguiente.

1. En el primer paso, todos los pesos negativos de la red neuronal se convierten en
cantidades positivas. Esto se hace de la siguiente manera. Para entradas binarias: Se
convierten todos los pesos negativos en pesos positivos usando la siguiente transforma-
cion admisible (R. Krishnan et al. 1999).

Reemplazamos cada literal de entrada x, que tiene un peso negativo con su literal ne-
gado, —x. Reemplazamos su peso negativo, —w con w y calculamos un valor de umbral
nuevo tal que T= (3]=; w;) / 2, donde n es el tamafio del vector de pesos.

2. Los pesos de la neurona, para la que se requiere una regla, se ordenan en orden des-
cendente.

3. Generar combinaciones de los pesos ordenados en orden ascendente por sus tamafios.
Primero, se generan todas las combinaciones de tamafio uno, luego las combinaciones
de tamafio dos, y asi sucesivamente. Dentro de una combinacion de tamafio M, las com-
binaciones se ordenan de la siguiente manera. Dadas dos combinaciones C; y C,, C;

sucede antes que C; si:
S ws S w

w,ECy W,LEC,

ISSN 1514-6774



Negro et al, Extrac.reglas redes neuronales feedforward entrenadas con ldgica de ler orden, EJS 23 (1) 2024 pg 58-80 67

Luego guardamos todas las combinaciones en la lista no testeada.

4. Comenzar con combinaciones de tamaio 1. Para la siguiente combinacion en la lista
no testeada, verificar si:

YW, + bias de la neurona > umbral de la neorona (eq 4)

Donde W. son los pesos para cada combinacion. Notar que Act(umbral) = 1, por lo
que, si la neurona tiene su valor de activacion por encima de este valor, el concepto
correspondiente a esta es verdadero. El valor real de este umbral depende del valor de
aen la eq2.

a. Si la desigualdad anterior no se satisface, elimine todas las demas combina-
ciones del mismo tamafio de la lista no probada. Aqui el tamafio de la combi-
nacion es el nimero de pesos que representa. Por ejemplo, la combinacién 12
tiene tamafo 2.

b. Si la desigualdad anterior se cumple para la combinacion actual, insertar la
combinacion actual en la /ista de éxito. Eliminar todas las combinaciones de
tamafios mayores de las cuales la combinacion actual es un subconjunto. Por
ejemplo, en la figura 1, si la combinacion 12 satisface la desigualdad anterior,
elimine las combinaciones 123 y 1234 de la lista sin probar.

Repetir este paso hasta que no queden combinaciones en la lista de no probados.
5. Con cada combinacion en la lista de éxito, formar la regla correspondiente.

Las reglas de conformidad para toda la red son generadas de la siguiente manera.

I. Realice los pasos 1-5 anteriores para todas las neuronas en las capas de salida y
ocultas. Las reglas de las neuronas de la capa de salida tendran las neuronas de la
capa oculta como antecedentes, mientras que las neuronas de la capa oculta tendran
las neuronas de la capa de entrada como antecedentes.

II. Volver a escribir el conjunto de reglas anterior de modo que los antecedentes sean
las neuronas de la capa de entrada y los consecuentes sean las neuronas de la capa
de salida.

Las reglas contrarias son generadas por un método similar. Para ilustrar con ejemplos
practicos como funciona el algoritmo, presentamos tres ejemplos. El primero se basa
en un ejemplo presentado en (R. Krishnan et al. 1999)

Ejemplo 1: Consideremos una neurona cuyo vector de pesos es w = [2, 2, -1, -2] y el
umbral T = 0.5. Después de aplicar la transformacion admisible, el vector de pesos se
convierte en w = [2, 2, 1, 2] y el nuevo valor de umbral pasa a ser T=3.5. Después de
ordenarlo, el vector de pesos se convierte en w= [2, 2, 2, 1]. Los indices de los pesos
ordenados en los pesos originales vienen dados por el vector [1, 2, 4, 3] y estos
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representan los literales x;, X2, —x4, —x3. Esto da como resultado el arbol de combinacion
que se muestra en la Fig. 2.

1(2) 41)
2(2) 3(2)

1204  13(4) 23(4)  14(3) 24(3)  34(3)
123(6) 124(5) 134(5) 234(5)

1234(7)
Figura 2. Arbol de combinacion para neurona con vector de pesos w=[2, 2, -1, 2] y T = 0.5

La suma de los pesos en cada contribucién se muestra entre paréntesis. Para que se
forme una regla, la suma de los pesos en la combinacion debe ser mayor o igual que el
umbral modificado, a saber, 3.5. En el primer nivel del arbol, la primera combinacion
tiene una suma ponderada de 2. Como esto es insuficiente para formar una regla, no es
necesario considerar el resto de las combinaciones en el mismo nivel. La primera com-
binacion en el nivel 2, 12, tiene una suma ponderada de 4 que supera el umbral de 3,5
y, por lo tanto, puede formar una regla. Las combinaciones del subarbol del cual 12
esta en la raiz, es decir, 123, 124 y 1234 se pueden eliminar. Aunque estas combinacio-
nes formaran reglas, estas reglas estaran subsumidas por la regla formada por la com-
binacion 12. Al mismo nivel, las combinaciones 13 y 23 también formaran reglas. Por
lo tanto, las combinaciones 134 y 234 también pueden ser podadas. También al mismo
nivel, la combinacién 14 no logra formar una regla, por lo tanto, todas las demas com-
binaciones al mismo nivel, es decir, 24 y 34, pueden eliminarse. La expresion booleana
para las combinaciones que lograron formar reglas viene dada por:

f=X1X2 V X17X4 V X2 X4,

Ejemplo 2: En este ejemplo, extraemos reglas usando AREBI para el problema de un
codificador. En este problema, se mapea un conjunto de patrones de entrada ortogonales
a un conjunto de patrones de salida ortogonales utilizando un pequefio conjunto de uni-
dades ocultas. La topologia de la red neuronal presenta ocho entradas y ocho salidas.
La capa oculta tiene tres neuronas. Tanto en la capa oculta como en la capa de salida se
utilizo6 la funcion sigmoide. La mision es hacer que la red neuronal aprenda un mapeo
de identidad. Por ejemplo, si el vector de entrada es [10000000] la salida es también
[10000000]. La red basicamente aprende a codificar los ocho patrones en tres bits uti-
lizando las neuronas de la capa oculta. Los pesos de las capas oculta y de salida de la
red entrenada se muestran en las Tablas 1 y 2, respectivamente. Las siguientes reglas
fueron extraidas para las neuronas de la capa oculta.

o Ly=(—X6"XI1)V(—X6"~X3)V(XI"—X3)

o L= (=X0"XI1)V(~X0"~X3) V(XI"—X3)
o L= (—X6V-X3V~X0V—XI)
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Luego de aplicar las transformaciones admitidas, los umbrales para cada neurona de la
capa oculta quedan de la siguiente manera: Tho = 11,5204; Thi= 12,065; Th2= 7,4491

Las siguientes reglas fueron extraidas por AREBI de la capa de salida:

LBy = (—X17V~=X2) LBl = (X1 X0) LPly = (=X27V=X0"~XI)
LPls= (=X0V~XI1VX2) LPls= (—X2V-=X0VXI) LP*,= (~X0VX2V~XI)

Los umbrales para cada neurona de la capa de salida quedan de la siguiente manera:

TLP, = 18,4005; TL¥, = 19,6766; TL?; = 9,5887; TL¥s = 0,0495; TLZ 5= 17,1678;
TLP g, = 0,0354.

Como se puede observar, las neuronas 2 y 4 de la capa de salida no forman formulas
bien formadas, con lo cual se las excluyen del analisis. La nomenclatura utilizada para
identificar cada componente de la red es que el superindice entre corchetes representa
la capa dentro de la red y el subindice la ubicacion de la neurona dentro de la red.

Tabla 1. Pesos de la capa oculta para el problema del codificador.

L[Ug L[I]I L[1]2
LY, 55636 -6,2065 _3,7184
1, 5,8380 6,0896 -3,3470
L, 0,0017 -0,0006 0,0078
L, -5,7647 -6,0446 -3,8870
L, 0,0048 0,0042 0,0069
L -0,0062 -0,0018 0,0002
LY -5,8596 5,7814 -3,9270
7, -0,0020 -0,0010 0,0036
Bias 0,0755 0,1208 7,3547

Tabla 2. Pesos de la capa de salida para el problema del codificador.

7, 17, 17, 7, 17, Jz 7, 7,
I, 11,6801 | 13,8896 | 0,0015 | -62849 | 0.0356 | -0,0506 | -11,4906 | -0,0269
', -12,8318 | 14,0866 | -0,0231 | -6,1982 | 0,0291 | -0,0131 9,8659 | -0,017
Y, -12,2891 -11,377 | 00614 | -6,6944 | 00343 0,0058 | -12979 | 10,0269
Bias 6,3483 | -81153 | -0,0268 | 93658 | -0,0560 | 0,0435 7,0913 | 0,0320

Tabla 3. Pesos de la capa oculta 1 para el problema del clasificador.

7, 7, 7, ™, 7, 7 7, 7, 7, 7,
L, 0,4949 03751 03181 | -02837 | -04633 | -0,3130 00462 | -0.3694 | -05308 | 0,2586
L, 0,1949 | -0,4851 0,8025 0,3736 | -0,4757 0,2525 | -0,2237 | -0,1543 | -0,1858 0,2754
L, -0,1240 | -0,0694 0,0800 | -0,2585 0,0249 0,2644 04629 | -03231 | -03739 | 08155
L, -0,4877 02059 | -0.3034 | -0.1130 0.3097 0.2768 0,4408 06138 | -0.5277 | -0.0089
Bias 0,0164 | -0,0104 0,1322 0 0| -01037 0,0029 0 0 | -0.1566
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Tabla 4. Pesos de la capa oculta 2 para el problema del clasificador.

L, 7 1770 LPls 2 7% 7 L= LBl Ll
Y, 0,017 0175 | -0084 | -0237 -0,436 0,120 | -0,450 -0,508 0,271 0,412
7, <0296 | -0,083 0417 | -0.109 0,653 0,398 0,405 0,222 -0,658 0213
J7Z 0,028 0303 | -0052 | -0382 0,181 -0,281 0,082 0276 0,539 0,035
L, 0313 0,076 0,392 0515 0,019 -0,131 0,298 0,233 0,286 0,207
', 0313 | -0157 | 0420 | -0242 0,291 -0,480 0,191 0,218 0,389 0,220
Jig 0,788 | -0.410 0249 | -0.133 0,013 0,460 0,132 0,184 0,110 -0,032
L <0203 | -0,001 | -0,403 0,468 0,298 0,157 | -0431 0717 0,234 0,536
o, 0,397 | -0232 | -0323 | -0541 0,308 0,190 | -0,485 -0,170 0,173 0513
L 0,218 0,431 | -0.305 0,478 0,017 0,199 0,149 -0,246 0,502 0,516
L, 0,223 0351 | -0318 0718 0,607 0,166 | -0,155 0215 0,147 0,249
Bias -0.079 0,093 0| -0.074 -0,050 -0,055 | -0,134 0 0,136 -0.023

Tabla 5. Pesos de la capa salida para el problema del clasificador.

LB, LB, LB/,
L, -0,4558 | -0,7504 | 10,3269
L, -0,1039 | -0,1854 | -0,6559
L, 0,2857 | 0,1208 | -0,5869
L5 -0,6514 0,0361 0,1253
L, -0,8796 | -0,3285 | -0,3988
L5 0,1496 | -0,0413 | -0,1389
L -0,3261 0,1937 | 0,3480
L, -0,2504 0,5358 | 0,3766
L 0,6003 | -0,6083 | -0,4603
L, -0,0371 0,4301 0,8630
Bias 0,1504 0,0048 | -0,0914

En este punto, también se observa que las reglas extraidas pueden expresarse como
formulas bien formadas (fbf) de la logica de primer orden (Pons, Rosenfeld, y Smith
2017), entonces si calculamos las tablas de verdad para cada una de las reglas obten-
dremos valores de verdad en cada neurona, respecto de los valores de entrada. Si se
toma como ejemplo L/?y = (-X1 v -X2), su tabla de verdad sera como se ilustra en la
tabla de verdad 1. Por favor notar que en lugar de usar valores Verdadero o Falso para
representar verdad o falsedad utilizamos 1 para identificar valor de verdad y 0 para
identificar valor de falsedad. De este modo se siguen utilizando los mismos valores
binarios con los que fue entrenada la red.

Aplicando el mismo procedimiento para el resto de las reglas, se obtienen las tablas de
verdad que se muestran en la tabla de verdad 2.

Finalmente, al calcular las conjunciones entre todas las componentes del sistema, se
obtienen tautologias a lo largo de todo el sistema de conjunciones, lo cual demuestra
que las reglas son validas y explican la funcion aprendida por la red neuronal. Las tablas
de verdad del sistema final se pueden ver en la tabla de verdad 3.

Calculando la relacion de implicancia entre las reglas formadas en cada capa, se observa
que los resultados son tautologias también. A modo de ejemplo, si se toman las fbf entre
LMy y Ly y se calcula L'y -> L, se obtiene como resultado una tautologia. Por
ultimo, si se calculan las implicancias entre los valores de verdad para las reglas obte-
nidas en cada capa, se obtiene que las siguientes fbf estan implicitamente relacionadas:
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Capa oculta:

fly=(—X6"X1)V(—X6"—X3) V(XI "—X3)

= (X0"X1)V(—X0"—X3) V(XI—X3)

S = (X1 A —X3) V(X6 ~X1) V (—X6 " —X3) " (—X0 " X1) V (—X0 " —X3))

Capa de Salida:
o= (—X1V~X2)f2;=(—X2V~X0V—XI)
s =(X0V—X1VX2) fPls=(—X2V—X0VXI)

Al reducir el sistema, la fbf final quedaria del siguiente modo: Net = f///o,> (/%5 V f12/3

v f[2] 5V f[2] 5)
B _ A B C D E F
)il X12 -)él -)32 = :), = Jig 0 L[2]1 L[z]3 L[2]5 L[2]6 L[2]7
! | 0 0 0 0 1 0 1 1 0
1 0 0 1 1
1 0 0 1 1 0 1 1 0 0 1
0 1 1 0 1 1 0 1 1 1 0
0 1 1 0 1 1 0 1 1 1 1
0 0 1 1 1 1 0 1 1 1 1
0 0 1 1 1 1 0 1 1 1 1
Tabla de verdad 1. Valores de verdad i 8 i i i (1)

Para LPly = (-X1 v -X2)

Tabla de verdad 2. Valores de verdad para

todas las reglas obtenidas en las neuronas en

v W X Y Z :
YT R 770 T x5 77 F la capa de salida.
A B C D E F
1 1 1 1 1 20, 2, | 2, | 7, | 17,
1 1 1 1 1 1 0 0 1 1 1
1 1 1 1 1 1 0 0 1 0 1
1 1 1 1 1 1 0 0 1 1 0
1 1 1 1 1 1 0 0 1 0 1
1 1 1 1 1 1 0 0 1 0 1
1 1 1 1 1 1 0 0 1 0 1
1 1 1 1 1 1 1 0 1 0 0
Tabla de verdad 3. Conjunciones para las sa- 1 1 0 1 0 0
lidas de las reglas de cada neurona de la Tabla de verdad 4. fbfs de la capa 2 para el
capa de salida. problema del clasificador.
G H U J K
AVB | GVC HYD |IVE | JVF
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Tabla de verdad 5. Conjunciones para la fbf de la

capa 2 para el problema del clasificador.
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Ejemplo 3: En este ejemplo, se extraen reglas usando AREBI para el problema de un
clasificador para el conjunto de datos Iris. En este problema, se clasifica un conjunto
de features de entrada a un conjunto variables categoricas en la salida. La topologia de
la red neuronal presenta cuatro neuronas en la entrada y 3 en la salida. Ademas, presenta
dos capas ocultas con 10 neuronas en cada capa. En las capas ocultas se utilizo la fun-
cion de activacion Relu y para la capa de salida la funcion Softmax. La mision es hacer
que la red neuronal aprenda a clasificar el tipo el tipo de flor adecuado. Los pesos de
las capas oculta y de salida de la red entrenada se muestran en las Tablas 3, 4 y 5,
respectivamente. La siguiente regla fue extraida para las neuronas de la capa de salida:

L2, = (-X0-AX8"X7) V (-XON-X8"X9) V (-X0-X8-"X4)

Si bien las neuronas 0 y 2 de la capa de salida forman formulas bien formadas, estas no
estan implicadas por ninguna fbf en las capas ocultas, con lo cual se las excluyen del
analisis. Luego de aplicar las transformaciones admitidas, los umbrales para cada neu-
rona de las capas ocultas y de salida, quedan de la siguiente manera:

TL!"y=0,6508; TL!",=0,5678; TL!",=0,7521 TL!"5=0,5144; TL!",= 0,6369;
TLMs=0,5534 TL!"¢=0,5869; TL!"7= 0,7304; TL!Vs= 0,8092 TL!"4-0,6793

TLPl) =1,4002; TL?h = 1,1118; TLI?,=1,4838 TLP= 19146, TLP= 14147,
TLI?s=1,2928

TLPIg=1,3904; TLI?l7= 1,4964; TLI?/s=1,6582 TL/?o- 1,4692

TLP- 1,8701; TLP - 1,6154; TLP,- 2,1405

Las neuronas 5, 6 y 7 de la capa oculta 2 forman fbf que son demasiado especificas y
violan el principio de maxima generalidad, con lo cual se las omitio del analisis. Las
tablas de verdad para esta capa respecto de las fbfs junto con sus conjunciones, se mues-
tra en las tablas 4, y 5.

Para esta DNN, luego de construir las tablas de verdad, se verifican las tautologias entre
las reglas extraidas para cada capa. Ademas, calculando la relacion de implicancia entre
las reglas formadas en cada capa, se observa que los resultados son tautologias también.
En tal sentido, las reglas extraidas para cada capa junto con las relaciones de implican-
cia entre capas devuelven la siguiente regla:

Ri = ((X2/X1) V (X2/X0)) = (X5"XT7) » (X3 VX4 V -X1)) V (X9"X3) * (-X7 V -
X4V X0)) V (X3/-X77-X4)) -> ((-X07-X8) A (X7 V X9 V -X4))

El patrén para cada regla sigue el siguiente formato:

R.= (regla capa 1) -> (regla capa 2) -> (regla capa de salida).
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Tabla 6. Estadisticas por clase y feature para el problema del clasificador.

Xo Xi X5 X5
sepal sepal petal petal
length width length width

Clase 0

Media 5.0 3.4 1.5 0.2
Max 5.8 4.4 1.9 0.6
Cotas [5..5,8] [3.4.4,4] | [1,5..1,9] | [0,2..0,6]
Clase 1

Min 4,9 2 3 1
Media 5,9 2,8 42 1,3
Cotas [4,9..5,9] | [2..2,8] [3.4,2] [1..1,3]
Clase 2

Perc 50 6,5 3 5,6 2

Max 7,9 3,8 6,9 2,5
Cotas [6,5..7.9] | [3..3,8] [5,6..6,9] | [2..2,5]

En la tabla 6, se presentan los valores de las estadisticas calculadas sobre todo el con-
junto de datos, para las cuales la precision predictiva de la red se maximiza. Dado que
AREBI busca aquellos valores que maximicen la funcion Act(Zi) = 1, se probara la
regla extraida con dichos valores estadisticos para verificar que estas expliquen a los
datos.

Para validar la regla se partird de la premisa de que los valores de verdad para cada
variable de entrada y para cada clase, estara en relacion con si la variable se encuentra
dentro del rango de valores expresado en la tabla 6, para cada clase. Entonces, por
ejemplo, para X, la variable sera verdadera si toma valores entre 1,5 y 1,9 para deter-
minar la clase 0, de lo contrario sera falsa.

Si se toma el primer término de la regla ((X2"X1) V (X2"X0)) y se le asignan a cada
variable de entrada los rangos de la tabla 6, se observa que para la clase 0 la regla
quedaria: ([1,5..1,9] ~[3,4..4,4]) V ([1,5..1,9] *[5..5,8]). Aqui se observa que alcanza
con evaluar la primera expresion del término dado que resuelve completamente el so-
lapamiento que se evidencia en X para las clases 0 y 3. El segundo termino determina
la fidelidad de la expresion. Entonces la regla satisface la clasificacion para la clase 1
cuando ([1,5..1,9] ~[3,4..4,4]) V ([1,5..1,9] ~[5..5,8]), y para la clase 2 cuando
([6,5..7,91"[3..3,8]) V ([5,6..6,9] "[2..2,5]). Desde el punto de vista de la regla, cualquier
combinacion de valores en la entrada que no siga esta distribucion, hard que las con-
junciones y disyunciones en la entrada no formen tautologias, y este patron fluira hacia
el resto de la regla, haciendo que las relaciones de implicancia no se cumplan y en
consecuencia que los datos no expliquen la clasificacion a la salida.

Desde el punto de vista de la red, las distribuciones de datos en la entrada por fuera de
estos rangos de valores podrian arriban a clasificaciones erroneas, con una baja proba-
bilidad o con probabilidades solapadas entre clases.

7 Analisis del algoritmo AREBI

Las reglas generadas por AREBI son vaélidas, genéricas y completas.

Proposicion 1. Las reglas generadas por AREBI son validas.
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Prueba. Una regla es valida si se cumple independientemente de las activaciones de
las neuronas no especificadas en la regla. Supongamos que WC son los pesos de la
combinacion. Una regla se forma solo si se cumple la siguiente condicion:

Z Wy + Bias > Tyew
WeEW

Aqui Thew es el valor recalculado del umbral luego de aplicar las transformaciones ad-
mitidas. Es facil ver que en presencia de los pesos que no estan en la combinacion
anterior, la relacion atn se mantendra. Esto se debe a que todos los pesos que no estan
en la combinacion también son positivos. La presencia de tales pesos solo aumentara
la suma ponderada. Por lo tanto, todas las reglas generadas por AREBI son validas.

Proposicion 2. Las reglas generadas por AREBI son genéricas.

Prueba. En la busqueda de reglas de confirmacion en el arbol de combinacién, cuando
una combinacion tiene €xito, todas las combinaciones del subarbol del que es raiz se
eliminan. Por lo tanto, todas las combinaciones que podrian formar reglas subsumidas
se eliminan, por lo tanto, las reglas generadas cumplen con la méxima generalidad.

Proposicion 3. El conjunto de reglas generado por AREBI es completo.

Prueba. El algoritmo elimina las combinaciones de dos maneras: a lo ancho y en pro-
fundidad a lo largo del arbol. En el primer caso, las combinaciones podadas no pueden
formar una regla. Para el Gltimo caso, las combinaciones podadas pueden formar reglas,
pero estas estan subsumidas por otras reglas mas generales. Dado que se generaran to-
das las demas reglas posibles, las reglas extraidas forman un conjunto completo.

7.1  Complejidad del Algoritmo

Cuando se verifica la formacion de reglas, es decir, existen algunas reglas para la neu-

rona, el éxito podria ocurrir en cualquier nivel del arbol de combinaciones. Supongamos

que hay N pesos para una neurona dada, entonces el nimero maximo de combinaciones
N

que podrian tener éxito en el arbol de combinacion para los N pesos es N2 Para
llegar al nivel del arbol donde se intentan combinaciones de tamafio N/2, una combina-
cion en cada uno de los niveles anteriores deberia haber fallado. Por lo tanto, el niumero

1
NCN/z + 5 (N-1)

maximo de combinaciones que deben intentarse es: . Para valores

1
Z(N-1)
grandes de N el termino 2 puede ser desestimado, y en consecuencia el numero
N

de combinaciones maximo que podrian formar una regla se resume a N2 Por lo
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N
tanto N/2 gsera el namero maximo de reglas que pueden ser extraidas dado el vector
de pesos de una neurona dada. Utilizando la aproximacion de Stirling

m f
m!=27wm (—)" obtenemos NCy, = 2" 2
e TN

N
Por lo tanto, la complejidad del método en el peor de los casos es (27) .

7.2  Limites en el nimero minimo de podas

Como se sefiald anteriormente, las podas pueden ocurrir de dos maneras, a lo ancho y
en profundidad. Si en una neurona dada una combinacion logra formar una regla, se
realiza una poda en profundidad, de lo contrario, se realiza una poda en anchura. La
poda se realizara en todos los nodos internos del arbol. En los nodos de las hojas del
arbol, la poda puede o no realizarse. En general, todas aquellas combinaciones que con-
tengan el digito 'N' (donde N es el numero total de pesos) podrian resultar en ninguna
poda. En los casos en que N es grande y el valor de Bias =~ Umbral, las reglas tienden
a formarse en el primer nivel del arbol, con lo cual la poda sera al menos N/2, y obten-
dremos reglas formadas por disyunciones. Para los casos donde la distancia entre Um-
bral y Bias es grande, la poda sera al menos N - log2(N). Aqui las reglas se daran en
niveles medios del arbol y estas serdn una combinacion entre conjunciones y disyun-
ciones. Para los nodos donde una regla se forma con éxito se observa que al menos una
combinacion fallara cuando Bias < Umbral/2, con lo cual la poda sera como minimo
N-1. Como se sefialo anteriormente, cuando el valor de Bias = Umbral, las reglas tien-
den a formarse en el primer nivel del arbol, obtendremos disyunciones y la probabilidad
de poda tendera a 0.

8 Trabajo relacionado

Varios investigadores han propuesto algoritmos para extraer reglas de una red neuronal
alimentada hacia adelante entrenada. Para ello se aborda la explicabilidad desde dife-
rentes enfoques. Para el caso los métodos donde se explica la estructura de decision
global (R Krishnan, Sivakumar, y Bhattacharya 1999) extraen arboles de decision
desde las redes neuronales entrenadas y utilizan algoritmos genéticos para consultar la
red y seleccion de prototipos. (Markowska-Kaczmar y Wnuk-Lipinski 2004) presentan
un método de extraccion de reglas a partir de redes neuronales basado en algoritmos
genéticos con optimizacion de Pareto.

Para el caso donde se analiza el ruido y dimensionalidad relevante (Montavon, Braun,
y Mueller 2011) Analizan la evolucion por capas de la representacion en una red pro-
funda mediante la construccion de una secuencia de nucleos. (Braun y Buhmann 2008)
Explican como la informacion relevante de un problema de aprendizaje supervisado
esta contenida hasta un error insignificante en un niimero finito de componentes PCA
principales del kernel. (Ozbakir et al. 2009) proponen un método que utiliza el algo-
ritmo Touring Ant Colony Optimization (TACO) para extraer reglas precisas y com-
prensibles de bases de datos a través de redes neuronales artificiales entrenadas.
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Para el caso donde la explicabilidad se aborda dese el andlisis del papel que juegan
neuronas particulares (Erhan et al. 2010), buscan mejorar las herramientas para encon-
trar buenas interpretaciones cualitativas de caracteristicas de alto nivel aprendidas por
los modelos. También se busca comprender mejor las invariancias aprendidas por redes
neuronales profundas. (Augasta y Kathirvalavakumar 2012) proponen un algoritmo
RxREN que extrae reglas de redes neuronales entrenadas para conjuntos de datos con
atributos de modo mixto. El algoritmo se basa en la técnica de ingenieria inversa para
podar las neuronas de entrada insignificantes y descubrir los principios tecnologicos de
cada neurona de entrada significativa de la red neuronal en la clasificacion.

Desde la optica de la invariancia a ciertas transformaciones de los datos (Goodfellow
et al. 2009) proponen una serie de pruebas empiricas que miden directamente el grado
en que las caracteristicas aprendidas son invariantes a diferentes transformaciones de
entrada. (Zarlenga, Shams, y Jamnik 2021) presentan ECLAIRE, un novedoso algo-
ritmo de extraccion de reglas de tiempo polinomial capaz de escalar tanto a grandes
arquitecturas de redes neuronales, como a grandes conjuntos de datos de entrenamiento.

Las principales contribuciones del trabajo presentado en este articulo respecto a los
trabajos descriptos son:

e  Proponer un nuevo algoritmo para extraer el patron de reglas aprendido de una
red neuronal feedforward entrenada y analizar sus propiedades.

e Uso de logica de primer orden (FOL) para explicar los patrones aprendidos
por la red neuronal.

e  Presentar un método de caja blanca que analiza las matrices de pesos de las
DNN para extraer reglas,

e El método no requiere ninguna regla de aprendizaje especial durante la extrac-
cion de reglas, lo que facilita su uso.

e El método funciona de manera eficiente tanto para atributos continuos como
enumerados.

e El algoritmo es muy eficiente en la poda de neuronas no relevantes de la DNN
y no requiere reentrenamiento después de la poda.

e Las reglas extraidas se pueden usar para explicar el proceso de toma de deci-
siones de la red neuronal, a través de formulas de la l6gica de primer orden, lo
que puede ser util en diversas aplicaciones, como el diagndstico médico, la
deteccidn de fraudes y la calificacion crediticia.

9 Conclusiones

En este articulo, se ha propuesto un nuevo algoritmo de busqueda para la extraccion de
reglas que se basa en ordenar los pesos y considerar combinaciones de pesos en el orden
de su suma ponderada. Este algoritmo genera reglas validas, maximamente generales y
completas. Aunque el algoritmo tiene una complejidad exponencial, todavia es viable
para su uso en redes neuronales de tamafio pequefio o mediano. Se investigaron las
propiedades de poda del algoritmo y se calcul6 un limite inferior para el nimero de
posibles podas.
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Aunque posiblemente se podria obtener un limite mas estricto, se conjetura que este
método da como resultado el nimero maximo de podas. El trabajo futuro implicara
analizar las reglas extraidas para verificar que el algoritmo no solo sirve para explicar
la funcion aprendida por la red, sino también para regularizacion.

10 Trabajo Futuro

Como linea de investigacion a futuro, se propone continuar desarrollando algoritmos
para la extraccion de patrones de reglas aprendidos en redes neuronales feedforward
entrenadas, a través de la utilizacion de técnicas de logica proposicional y ldgica de
primer orden (FOL) para explicar los patrones aprendidos por la red neuronal. Ademas,
presentar un método de caja blanca que analice las matrices de pesos de las DNN utili-
zando la métrica de similitud coseno. Se implementara un célculo de distancia para
resolver solapamientos entre clases y se demostrara que el método es eficiente tanto
para atributos continuos como enumerados. Se destacara que el algoritmo no requiere
reglas de aprendizaje especiales durante la extraccion de reglas, lo que facilita su uso.
Ademas, se demostrara que el método es altamente eficiente en la identificacion de
neuronas relevantes en la DNN y no requiere reentrenamiento después de la seleccion
de neuronas criticas. Las reglas extraidas se utilizaran para explicar el proceso de toma
de decisiones de la red neuronal a través de formulas de logica de primer orden, lo que
puede ser util en diversas aplicaciones, como el diagnostico médico, la deteccion de
fraudes y la calificacion crediticia. Se demostrara que las reglas extraidas se pueden
mapear directamente contra el conjunto de datos, lo que permite explicar las decisiones
de la red con datos. Ademas, se discutira como el algoritmo de extraccion de reglas
puede servir como un método de regularizacion de la DNN al identificar los caminos
criticos neuronales y componer asi redes mas pequefias. Finalmente, se construira un
prototipo funcional que implemente las funciones definidas en el modelo formal pro-
puesto.

En resumen, las lineas de trabajo a futuro se identifican en los siguientes puntos ex-
puestos a continuacion:

e Investigar la aplicacion del método propuesto en redes neuronales mas
complejas y de mayor escala para evaluar su escalabilidad y rendimiento.

e  Explorar la integracion de marcos logicos adicionales, como la logica di-
fusa o la logica probabilistica, para mejorar la interpretabilidad y explica-
bilidad de los patrones de reglas extraidos.

e  Realizar estudios empiricos para evaluar la eficacia del método en diferen-

tes dominios y tareas, como el procesamiento del lenguaje natural, para
evaluar su generalizacion y solidez.

ISSN 1514-6774



Negro et al, Extrac.reglas redes neuronales feedforward entrenadas con ldgica de ler orden, EJS 23 (1) 2024 pg 58-80 78

e Examinar el impacto de diferentes arquitecturas de red y técnicas de capa-
citacion en la interpretabilidad de los patrones de reglas extraidos, para ob-
tener informacion sobre la relacion entre la estructura de la red y la expli-
cabilidad.

e Investigar el potencial del método propuesto en combinacion con otras téc-
nicas de explicabilidad, como mecanismos de atencién o mapas de promi-
nencia, para proporcionar una comprension mas completa y detallada del
proceso de toma de decisiones en redes neuronales.
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