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Resumen. La necesidad de integración neural-simbólica se hace evidente a me-

dida que se abordan problemas más complejos, y que van más allá de tareas de 

dominio limitadas como lo es la clasificación. Los métodos de búsqueda para la 

extracción de reglas de las redes neuronales funcionan enviando combinaciones 

de datos de entrada que activan un conjunto de neuronas. Ordenando adecuada-

mente los pesos de entrada de una neurona, es posible acotar el espacio de bús-

queda. Con base en esta observación, este trabajo tiene por objetivo presentar un 

método para extraer el patrón de reglas aprendido por una red neuronal entrenada 

feedforward, analizar sus propiedades y explicar estos patrones a través del uso 

de lógica de primer orden (FOL). 

Palabras claves: Aprendizaje Profundo, Extracción de reglas, Inteligencia Arti-

ficial, Lógica 

Abstract. The need for neural-symbolic integration becomes evident as more 

complex problems are addressed, and they go beyond limited domain tasks such 

as classification. Search methods for extracting rules from neural networks work 

by sending input data combinations that activate a set of neurons. By properly 

ordering the input weights of a neuron, it is possible to narrow down the search 

space. Based on this observation, this work aims to present a method for extract-

ing the pattern of rules learned by a trained feedforward neural network, analyz-

ing its properties, and explaining these patterns through the use of first-order 

logic (FOL). 
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1 Introducción 

Con la mejora de la tecnología de almacenamiento de datos, ha habido un interés cre-
ciente en extraer conocimiento de los datos. Idealmente, el conocimiento descubierto 
debería ser preciso y comprensible para el usuario. Una de las dificultades para la ex-
tracción de conocimiento preciso es que los datos que se extraen pueden tener mucho 
ruido. En estos casos, las redes neuronales son una solución viable, debido a su relati-
vamente buena tolerancia al ruido y capacidad de generalización (Santos, Nievola, y 
Freitas 2000). 
Se ha demostrado empíricamente que las redes neuronales artificiales (ANN) funcionan 
bien en varios problemas de aprendizaje automático. Las redes multicapa feedforward 
entrenadas con el algoritmo backpropagation (Rumelhart et al., 1986) se consideran el 
método más eficiente en este respecto. Respuestas razonablemente satisfactorias a pre-
guntas como cuántos ejemplos se necesitan para que una red neuronal feedforward pro-
funda aprenda un concepto y cuál es la mejor arquitectura de red neuronal para un do-
minio de problema particular (dado un número fijo de ejemplos de entrenamiento) se 
encuentran disponibles, por lo que ahora es posible entrenar redes neuronales de un 
modo más eficiente. Esto hace que las redes neuronales sean una excelente herramienta 
para la minería de datos (Britos 2005), donde el enfoque es aprender las relaciones entre 
los datos que se almacenan en grandes volúmenes.  
Sin embargo, es bien sabido que las redes neuronales suelen representar su conoci-
miento en forma de pesos numéricos e interconexiones distribuidos, lo cual hace que 
este proceso no sea comprensible para el usuario. Esto representa un problema serio, 
dado que el usuario no es capaz de entender la información a la salida de la red o razonar 
acerca del proceso cognitivo. Por lo tanto, el usuario tendría que confiar ciegamente en 
la respuesta dada por la red, lo cual es claramente indeseable en varios dominios de 
aplicación, (i.e., en el diagnóstico médico de enfermedades mortales, donde hay vidas 
en juego). Además, si el usuario no puede comprender ni validar conocimiento descu-
bierto, podría decidir ignorarlo, lo cual podría conducir a toma de decisiones no desea-
das. 
Las redes neuronales son típicamente cajas negras. Los cálculos realizados por las ca-
pas sucesivas rara vez corresponden a pasos de razonamiento humanamente compren-
sibles, y los vectores intermedios de activaciones que se generan carecen de una semán-
tica humanamente comprensible (Nielsen et al. 2022). Entonces, debido a su estructura 
anidada y no lineal las hace muy poco transparentes, es decir, no está claro qué infor-
mación en los datos de entrada las hace llegar realmente a sus decisiones. Por lo tanto, 
estos modelos suelen considerarse cajas negras. 
La explicabilidad aborda el problema crítico de que los humanos no pueden compren-
der directamente el comportamiento complejo de las ANNs, especialmente cuando tie-
nen numerosas capas (i.e., redes neuronales profundas o DNN por sus siglas en inglés), 
o explicar su proceso de toma de decisiones subyacente. La explicabilidad en DNN es 
el requisito fundamental para generar confianza con los usuarios y es la clave para su 
implementación segura, justa y exitosa en aplicaciones del mundo real. En este sentido, 
existen aplicaciones como aprobación de crédito y diagnóstico médico donde es impor-
tante explicar el razonamiento de la red neuronal. La principal crítica contra las redes 
neuronales en tales dominios es que el proceso de toma de decisiones es difícil de en-
tender. Esto se debe a que el conocimiento en la red neuronal se almacena como 
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parámetros de valor real (pesos y sesgos) de la red, el conocimiento se codifica de forma 
distribuida y el mapeo aprendido por la red puede ser no lineal y no monótono.  
En este punto cabria cuestionar por qué se deben usar redes neuronales cuando la com-
prensibilidad es un tema importante. La razón es que la precisión predictiva también es 
muy importante y las redes neuronales tienen un sesgo inductivo apropiado para mu-
chos dominios de aprendizaje automático (R. Krishnan, Sivakumar, y Bhattacharya 
1999). 
Las precisiones predictivas obtenidas con las redes neuronales suelen ser significativa-
mente más altas que las obtenidas con otros paradigmas de aprendizaje. Investigaciones 
recientes sobre la comprensión del funcionamiento de una red neuronal entrenada se ha 
centrado en la extracción de reglas simbólicas ((AmirHosseini y Hosseini 2019; Csis-
zár, Csiszár, y Dombi 2020; Mahdavifar y Ghorbani 2020)). 
La tarea de extracción de reglas puede verse como una tarea de búsqueda o como una 
tarea de aprendizaje (Montavon et al. 2017), donde para el enfoque de búsqueda, las 
reglas se extraen a nivel de las neuronas individuales (ocultas y de salida) en la red, 
observando sus pesos y sesgos (R. Krishnan et al. 1999).  
En tal sentido, uno de los principales problemas con el enfoque de búsqueda es cómo 
restringir el espacio de búsqueda para las posibles combinaciones de reglas. En este 
artículo se presenta un nuevo método para restringir este espacio de búsqueda y se ana-
lizan algunas propiedades de este método.  
 
En la Sección 2, se plantea una discusión sobre la importancia que tienen los datos para 
estos algoritmos. En la Sección 3 se discuten aspectos relevantes sobre la necesidad de 
métodos explicables. En la Sección 4 se plantea el alcancel del método propuesto.  
En la Sección 5 se explica el problema de la extracción de reglas. En la Sección 6 se 
explica el algoritmo AREBI para la extracción de reglas y se analizan sus propiedades 
en la Sección 7. La Sección 8 presenta un breve resumen sobre el trabajo relacionado. 
La Sección 9 presenta las conclusiones del trabajo y se concluye el documento con la 
Sección 10 donde se plantean líneas de investigación para trabajo futuro. 

2 La importancia de los datos en el aprendizaje y la ciencia 

El proceso de aprendizaje humano es un viaje complejo a través de la observación y la 
experiencia del mundo, viaje del cual recopilamos datos de propiedades, a veces fácil-
mente cuantificables en su aprehensión, otras, de tinte más subjetivo (lo propiamente 
cualitativo). El adjetivo “humano” que califica al acto de aprender, requiere una preci-
sión anterior que ronda en lo subjetivo, es decir en ese quien conoce. La persona que 
conoce el mundo interviene modificando algo, propio, de terceros, la materia, la cultura 
y la natura. 
Hasta ahora, nada de lo dicho escapa a la moralidad o ética de los actos humanos, que 
buscan verdad científica y bondad, es decir que no dañe y que aporte un valor diferen-
cial virtuoso. Conocer, investigar tendrán implicancias morales, porque todo lo que de 
la voluntad humana dependa es moral. 
A partir de la observación, como humanos que conocemos el mundo, relacionamos 
eventos con los datos de esas propiedades. Es a partir de experiencias repetitivas a partir 
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de las cuales podemos determinar algunos patrones que relacionan eventos con datos y 
eventos con eventos mismos. En el caso del descubrimiento científico, estos patrones y 
relaciones se formalizan en leyes y ecuaciones, los datos se formalizan en propiedades 
y variables, y las observaciones se formalizan en mediciones de eventos, que pueden 
ser acciones o propiedades en sí mismas. Leyes y ecuaciones, propias de la ciencia, nos 
permiten realizar predicciones y facilitan la transmisión del procedimiento de aprendi-
zaje de una forma muy compacta, con la mínima cantidad de información. Sin embargo, 
el proceso clásico de aprendizaje en ciencias es un proceso lento que requiere mucha 
experiencia observacional, para descubrir las principales variables involucradas y su 
influencia en los eventos para una cantidad probablemente enorme de combinaciones 
posibles, perdiendo con frecuencia variables relevantes no previstas. Además, el enfo-
que científico clásico se basa en hipótesis y, por lo tanto, está sesgado por ellas. 

 
El método científico se estableció para arbitrar la subjetividad intrínseca del conocer y 
aprender humano, de lo propio de la inclinación humana por buscar explicaciones me-
tafísicas que no se sostienen en la evidencia material cuantificable que ocurre en la 
observación. Sin embargo, como toda pretensión humana de asignación de verdad, el 
método científico clásico todavía está sesgado por el pensamiento deductivo de la 
mente humana.  
El modelo como resultado y los procedimientos que acerquen al humano a conocer la 
verdad a través de datos busca en lo posible, y de manera deseable, un enfoque implícito 
e imparcial de nuestra experiencia humana de aprendizaje basado en ellos (los datos) 
sin procesar observaciones reales (por tanto, subjetivas). Estos procedimientos tienen 
la ventaja adicional de probar correlaciones entre diferentes variables y observaciones, 
aprender patrones no previstos en la naturaleza y permitirnos descubrir nuevas leyes 
científicas o incluso más, realizar predicciones sin la disponibilidad de dichas leyes.  
Como humanos, estamos viviendo la era de la ciencia de datos, que impacta en todos 
los aspectos de la vida personal (y en ella implicado lo económico, social, educativo, 
científico etc).  Los datos adquieren sentido porque la persona que conoce vive dos 
pasos propios de su función humana: la de informarse y la de decidir sobre los actos de 
manera responsable y libre.  
Los datos en el mundo organizado son datos que atraviesan a las personas y sus deci-
siones en un mundo desarrollado. De hecho 10 de los 17 Objetivos del Desarrollo Sos-
tenible (Agenda 2030) que lideran la economía global son objetivos digitales. Fuente: 
https://www.un.org/sustainabledevelopment/es/2015/09/la-asamblea-general-adopta-
la-agenda-2030-para-el-desarrollo-sostenible/ 
 
Los procedimientos basados en datos están dando lugar a una nueva economía digital. 
La ciencia basada en datos también cambiará nuestras vidas y la forma en que hacemos 
ciencia y desarrollamos soluciones y decidimos conductas. La recopilación de datos, la 
extracción de datos y la visualización de datos también serán de suma importancia en 
el descubrimiento científico (Montáns et al., 2019).  
Luego de estas precisiones, de corte general y necesario, entendidas con los determi-
nantes y limitaciones esbozados, el propósito de esta sección es el de poner en relieve 
la importancia que tiene los datos para el diseño de un modelo, y la obtención de DNN 
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de buena calidad (por tanto, moral). Además, como se mencionó anteriormente, es 
deseable para la voluntad humana informada, alcanzar la explicabilidad del propósito 
de tal modelo. 
Para obtener un sistema explicable, nos apoyaremos sobre la idea de que, si las DNN 
pueden extraer patrones y aprender de los datos, los datos también deben poder expli-
carse. 

3 Explicabilidad en Redes Neuronales Profundas 

La explicabilidad aborda el problema crítico de que los humanos no pueden compren-
der directamente el comportamiento complejo de las DNN o explicar su proceso de 
toma de decisiones subyacente. La explicabilidad de las DNN es el requisito fundamen-
tal para generar confianza con los usuarios y es la clave para su implementación segura, 
justa y exitosa en aplicaciones del mundo real. 

 
El surgimiento de sistemas de decisión opacos y ubicuos, que son sistemas de caja negra 
y que utilizan modelos de aprendizaje automático para predecir información sensible, 
ha generado preocupación por la falta de explicación y comprensión de tales sistemas. 
El Parlamento Europeo adoptó recientemente el Reglamento General de Protección de 
Datos GDPR (https://gdpr-info.eu/), que se convirtió en ley en mayo de 2018. Un as-
pecto innovador del GDPR son las cláusulas sobre datos automatizados, toma de deci-
siones, incluida la elaboración de perfiles, que introducen por primera vez, hasta cierto 
punto, un derecho de explicación para que todos los individuos obtengan explicaciones 
significativas de la lógica involucrada cuando se lleva a cabo la toma de decisiones 
automatizada. A pesar de las opiniones divergentes entre los juristas sobre el alcance 
real de estas cláusulas, existe un acuerdo general sobre la necesidad de que la imple-
mentación de tal principio sea urgente y que represente hoy un enorme desafío cientí-
fico abierto. Sin una tecnología habilitadora capaz de explicar la lógica de las cajas 
negras, el derecho a una explicación seguirá siendo una dead letter (Guidotti et al. 
2019). Al confiar en sofisticados modelos de clasificación de aprendizaje automático 
entrenados en conjuntos de datos masivos gracias a infraestructuras escalables y de alto 
rendimiento, se corre el riesgo de crear y utilizar sistemas de decisión que realmente no 
entendemos. 
En tal sentido, GDPR ha introducido el derecho a una explicación para las personas 
afectadas por la toma de decisiones automatizada, destacando la necesidad de tecnolo-
gías que puedan explicar la lógica de los sistemas de caja negra. La falta de compren-
sión y validación de los componentes del aprendizaje automático puede conducir a de-
cisiones equivocadas, violaciones éticas y riesgos de seguridad en diversas industrias, 
incluidos los vehículos autónomos y la medicina personalizada. 

 
La disponibilidad de tecnologías transparentes de aprendizaje automático puede mejo-
rar la confianza, la conciencia y la responsabilidad en los procesos de toma de decisio-
nes. En esa dirección, la explicación es crucial para una ciencia de datos abierta y res-
ponsable y para la investigación científica en diversos ámbitos. 
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Del mismo modo, el uso de modelos de aprendizaje automático en la investigación 
científica, por ejemplo, en medicina, biología y ciencias socioeconómicas, requiere una 
explicación no sólo para la confianza y la aceptación de los resultados, sino también 
para la apertura del descubrimiento científico y los avances de la investigación. Como 
consecuencia, la explicación está en el centro de una ciencia de datos abierta y respon-
sable, en múltiples sectores industriales y disciplinas científicas. 
La literatura existente carece de una organización y clasificación sistemática de meto-
dologías para la interpretación de sistemas de caja negra, lo que motiva la necesidad de 
una clasificación clara considerando diferentes aspectos simultáneamente (Guidotti 
et al. 2019). 

4 Alcance 

Este trabajo se centra en redes neuronales profundas feedforward entrenadas clásicas, 
dado que el foco está puesto en la extracción de reglas a partir de las matrices de pesos 
de estas. Quedan fuera de este estudio variaciones de este tipo de redes tales como las 
redes neuronales recurrentes, y los Transformers que, si bien hacen uso de las redes 
neuronales feedforward presentan arquitecturas diferentes dado que utilizan capas de 
atención, embeedings y transformaciones creando arquitecturas hibridas más comple-
jas. Entonces, al referir a tecnologías de Deep Learning, referimos a los conceptos ver-
tidos por Goodfellow et al., (2016) y  Russell & Norvig, (2010), o a una definición 
equivalente presentadas en Domingos, (2018) donde las redes neuronales profundas 
son presentadas como capas de neuronas densas, las cuales se combinan con capas de 
entrada y salida, y alguna función de activación en sus neuronas. 

5 El Problema de la extracción de reglas 

En una red neuronal entrenada, el conocimiento adquirido en la fase de entrenamiento 
está codificado en la arquitectura de la red, las funciones de activación utilizadas y los 
pesos y sesgos de las neuronas. En tal sentido, el rendimiento de una red neuronal está 
directamente relacionado con su arquitectura y parámetros. Por tanto, la elección de 
una arquitectura para una red neuronal influye en el tiempo de aprendizaje, la precisión 
predictiva, la tolerancia al ruido y la capacidad de generalización de la red (Santos et al. 
2000). La tarea de extracción de reglas consiste en utilizar una o más de las piezas de 
información anteriores y extraer un conjunto de reglas de las neuronas. Consideramos 
el caso donde las entradas a la red feedforward son tabulares y las salidas son booleanas 
(es decir, un problema de clasificación). 
Las neuronas en las redes neuronales feedforward tienen activaciones definidas por: 

 

Zi = (∑ 𝑊𝑖,𝑗 . 𝐴𝑗) 𝑗 +  𝛽𝑖               (eq1) 

Ai = 𝐴𝑐𝑡(𝑍𝑖)                  (eq2) 𝐴𝑐𝑡(𝑥)  =  11 + 𝑒−𝛼𝑥                (eq3) 
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Donde Ai es la activación de la neurona i, Wi,j es el peso en el enlace de la neurona j a 
la neurona i,  𝐴𝑗 es la activación de la neurona j, 𝛽𝑖 es el sesgo en la neurona i, Act() es 
una función de activación no lineal (la función sigmoidal), y α es una parámetro que 
controla la pendiente de la función sigmoidal. 
En general, los métodos de búsqueda para extraer reglas intentan encontrar combina-
ciones de los valores de entrada a una neurona que dan como resultado que tenga una 
activación cercana a 1 (para una regla de confirmación) o una activación cercana a 0 
(para una regla de no confirmación). Para que una neurona tenga una activación cercana 
a 1, se busca encontrar tales combinaciones de pesos tal que la cantidad en la (eq.2) Ai 

≈ 1. De manera similar, para una activación neuronal cercana a 0, deberíamos tener Ai 

≈ 0. El valor de Ai en el que Act(Zi) ≈ 1 se denomina el umbral de la neurona. 
El proceso de encontrar reglas para las neuronas de la capa oculta se simplifica porque 
las entradas son booleanas. En este caso, para evaluar Ai en la (eq.1), debemos consi-
derar solo los pesos que alimentan la neurona. El proceso de encontrar reglas para las 
neuronas de la capa de salida es más complejo dado que la neurona de la capa oculta 
podría tener cualquier activación en el intervalo [0, 1]. Sin embargo, se puede hacer que 
la neurona de la capa oculta se aproxime a una neurona booleana controlando la incli-
nación de la función de activación. Al aumentar el valor del parámetro a en la (eq.2), 
podemos hacer que la neurona de la capa oculta se aproxime a una activación booleana. 
Establecer el valor del parámetro α en un valor alto (≈10) asegura que todas las neuro-
nas de la capa oculta en la red tendrán una activación cercana a 0 o cercana a 1. 
Esto nos permite entonces tratar las salidas de las neuronas de la capa oculta como 
cantidades booleanas y centrarnos solo en sus pesos para las neuronas de la capa de 
salida en el proceso de extracción de reglas. Las reglas extraídas deben ser válidas (las 
reglas deben cumplirse independientemente de los valores de las variables no mencio-
nadas en las reglas), deben ser lo más generales posible (si se elimina alguno de los 
antecedentes, la regla ya no debería ser válida) y completa (se deben extraer todas las 
reglas válidas y máximamente generales posibles). 

6 El método propuesto 

En esta sección, explicamos el concepto de un árbol de combinación y cómo se usa en 
la generación de reglas. Para tratar uniformemente los pesos positivos y negativos de 
la neurona, se ha adoptado una transformación admisible de pesos utilizada por primera 
vez por (Sethi y Yoo 1996) y adaptada en (Krishnan et al., 1999), para convertir todos 
los pesos negativos de la neurona en cantidades positivas. Esta transformación nos per-
mite trabajar solo con pesos positivos. Para tal propósito hemos utilizado una red feed-
forward de tres capas entrenada usando la regla de backpropagation (Goodfellow et al. 
2016). 
Una regla de confirmación es aquella que explica cuándo se activa una neurona; una 
regla de des confirmación explica cuándo una neurona se apaga. Explicaremos en de-
talle el procedimiento para extraer una regla de confirmación; Se aplica un procedi-
miento similar para las reglas contrarias. 
Como se mencionó en la Sección 1, una de las cuestiones más cruciales en el desarrollo 
de un algoritmo de extracción de reglas es cómo restringir el tamaño del espacio de 
solución buscado. Supongamos que una neurona en la red tiene cuatro pesos positivos 
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etiquetados como 1, 2, 3 y 4, respectivamente. Con este vector de cuatro pesos podemos 
formar ∑ 𝐶𝑖   44𝑖=0  combinaciones. Si ignoramos las combinaciones nulas (i.e. 𝐶0   4 ), el 
resto de las combinaciones se pueden considerar como nodos de un árbol con una com-
binación de tamaño i en el i-ésimo nivel del árbol. La figura 1 muestra el árbol de com-
binaciones para una neurona que tiene cuatro pesos positivos. En lugar de intentar com-
binaciones aleatorias de pesos, primero ordenamos los pesos y luego generamos com-
binaciones de todos los tamaños posibles. Las combinaciones para cualquier tamaño 
en particular se ordenan en orden descendente de la suma de los pesos en la combina-
ción. Debido al orden de los pesos y a la restricción por la regla de máxima generalidad, 
es posible excluir algunas combinaciones de la búsqueda. A continuación, se explica 
cómo el ordenamiento de los pesos de la neurona y considerar las combinaciones en el 
orden anterior, ayuda a reducir el espacio de búsqueda. 

6.1    Poda de la búsqueda en un árbol de combinación 

Existen dos tipos de poda que pueden ocurrir en un árbol de combinación. 

Podas al mismo nivel del árbol. Si una combinación en cualquier nivel no se cumple, 
todas las demás combinaciones en este nivel pueden eliminarse. Esto se debe a que 
todas las combinaciones en el mismo nivel tienen la misma longitud, y debido al orden 
de los pesos, si falla una combinación en un nivel, todas las demás combinaciones en 
ese nivel también fallarán, ya que su suma ponderada sumará menos de la combinación 
que falló. Por lo tanto, no es necesario considerarlos en la búsqueda de reglas. 
Podas a niveles más profundos del árbol. Si una combinación en un nivel logra formar 
una regla, entonces no es necesario considerar las combinaciones en los siguientes ni-
veles de las cuales la presente combinación forma un subconjunto. Aunque estas com-
binaciones lograrán formar reglas, estas reglas serán subsumidas por las reglas forma-
das a partir de la combinación actual y pueden ser excluidas debido a la condición de 
máxima generalidad. 
Si Consideramos el árbol de combinación que se muestra en la Fig. 1., vemos que las 
combinaciones de nivel 2 son 12, 13, 14, 23, 24, 34. Si 12 no genera el antecedente 
positivo de una regla, no necesitamos probar las combinaciones 13, 14, 23, 24, 34 y 
estas pueden eliminarse. Por otro lado, si 12 logra formar un antecedente positivo de la 
regla, entonces todas las combinaciones en su subárbol, es decir, 123, 124 y 1234, pue-
den eliminarse ya que formarán reglas más específicas que la combinación 12 y pueden 
eliminarse debido a la restricción de máxima generalidad. 
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[]

1
2 3

4

12 13 14 2423 34

123 124 134 234

1234  
Figura 1. Árbol de combinaciones 

6.2 El Algoritmo AREBI para generación de reglas 

El algoritmo de extracción de reglas AREBI se basa en la estrategia de poda discutida 
anteriormente y funciona en tres etapas. En la primera etapa extraemos reglas para las 
neuronas de la capa de salida. Se considera que las neuronas de la capa oculta repre-
sentan conceptos booleanos haciendo que su función de activación tenga una alta ga-
nancia como se explica en la Sección 5. En la segunda etapa extraemos reglas para las 
neuronas de la capa oculta. 
En la etapa final, las reglas obtenidas en la primera etapa se reescriben en términos de 
las reglas obtenidas en la segunda etapa para obtener reglas que expliquen la relación 
entrada-salida. El algoritmo para extraer una regla de confirmación para una neurona 
individual es el siguiente. 

 
1. En el primer paso, todos los pesos negativos de la red neuronal se convierten en 
cantidades positivas. Esto se hace de la siguiente manera. Para entradas binarias: Se 
convierten todos los pesos negativos en pesos positivos usando la siguiente transforma-
ción admisible (R. Krishnan et al. 1999). 
Reemplazamos cada literal de entrada x, que tiene un peso negativo con su literal ne-
gado, ⌐x. Reemplazamos su peso negativo, ⌐w con w y calculamos un valor de umbral 
nuevo tal que T = (∑ 𝑤𝑖𝑛𝑖=1 ) / 2, donde n es el tamaño del vector de pesos. 
 
2. Los pesos de la neurona, para la que se requiere una regla, se ordenan en orden des-
cendente. 
 
3. Generar combinaciones de los pesos ordenados en orden ascendente por sus tamaños. 
Primero, se generan todas las combinaciones de tamaño uno, luego las combinaciones 
de tamaño dos, y así sucesivamente. Dentro de una combinación de tamaño M, las com-
binaciones se ordenan de la siguiente manera. Dadas dos combinaciones C1 y C2, C1 
sucede antes que C2 si: 

 ∑ 𝑊𝑖 >  ∑ 𝑊𝑖𝑤2∈𝐶2𝑤1∈𝐶1  
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Luego guardamos todas las combinaciones en la lista no testeada. 
 
4. Comenzar con combinaciones de tamaño 1. Para la siguiente combinación en la lista 
no testeada, verificar si: 
 ∑ 𝑊𝑐  + 𝑏𝑖𝑎𝑠 𝑑𝑒 𝑙𝑎 𝑛𝑒𝑢𝑟𝑜𝑛𝑎 > 𝑢𝑚𝑏𝑟𝑎𝑙 𝑑𝑒 𝑙𝑎 𝑛𝑒𝑜𝑟𝑜𝑛𝑎   (eq 4) 

 
Donde Wc son los pesos para cada combinación. Notar que Act(umbral) ≈ 1, por lo 

que, si la neurona tiene su valor de activación por encima de este valor, el concepto 
correspondiente a esta es verdadero. El valor real de este umbral depende del valor de 
α en la eq2. 
 
a. Si la desigualdad anterior no se satisface, elimine todas las demás combina-

ciones del mismo tamaño de la lista no probada. Aquí el tamaño de la combi-
nación es el número de pesos que representa. Por ejemplo, la combinación 12 
tiene tamaño 2. 

b. Si la desigualdad anterior se cumple para la combinación actual, insertar la 
combinación actual en la lista de éxito. Eliminar todas las combinaciones de 
tamaños mayores de las cuales la combinación actual es un subconjunto. Por 
ejemplo, en la figura 1, si la combinación 12 satisface la desigualdad anterior, 
elimine las combinaciones 123 y 1234 de la lista sin probar. 

 
Repetir este paso hasta que no queden combinaciones en la lista de no probados. 
 
5. Con cada combinación en la lista de éxito, formar la regla correspondiente. 

 
Las reglas de conformidad para toda la red son generadas de la siguiente manera. 

 

I. Realice los pasos 1-5 anteriores para todas las neuronas en las capas de salida y 
ocultas. Las reglas de las neuronas de la capa de salida tendrán las neuronas de la 
capa oculta como antecedentes, mientras que las neuronas de la capa oculta tendrán 
las neuronas de la capa de entrada como antecedentes. 

II. Volver a escribir el conjunto de reglas anterior de modo que los antecedentes sean 
las neuronas de la capa de entrada y los consecuentes sean las neuronas de la capa 
de salida. 

 
Las reglas contrarias son generadas por un método similar. Para ilustrar con ejemplos 
prácticos cómo funciona el algoritmo, presentamos tres ejemplos. El primero se basa 
en un ejemplo presentado en (R. Krishnan et al. 1999) 
 
Ejemplo 1: Consideremos una neurona cuyo vector de pesos es w = [2, 2, -1, -2] y el 
umbral T = 0.5. Después de aplicar la transformación admisible, el vector de pesos se 
convierte en w = [2, 2, 1, 2] y el nuevo valor de umbral pasa a ser T=3.5. Después de 
ordenarlo, el vector de pesos se convierte en w= [2, 2, 2, 1]. Los índices de los pesos 
ordenados en los pesos originales vienen dados por el vector [1, 2, 4, 3] y estos 
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representan los literales x1, x2, ⌐x4, ⌐x3. Esto da como resultado el árbol de combinación 
que se muestra en la Fig. 2. 

[]

1(2)
2(2) 3(2)

4(1)

12(4) 13(4) 14(3) 24(3)23(4) 34(3)

123(6) 124(5) 134(5) 234(5)

1234(7)  
Figura 2. Árbol de combinación para neurona con vector de pesos w= [2, 2, -1, 2] y T = 0.5 

 

La suma de los pesos en cada contribución se muestra entre paréntesis. Para que se 
forme una regla, la suma de los pesos en la combinación debe ser mayor o igual que el 
umbral modificado, a saber, 3.5. En el primer nivel del árbol, la primera combinación 
tiene una suma ponderada de 2. Como esto es insuficiente para formar una regla, no es 
necesario considerar el resto de las combinaciones en el mismo nivel. La primera com-
binación en el nivel 2, 12, tiene una suma ponderada de 4 que supera el umbral de 3,5 
y, por lo tanto, puede formar una regla.   Las combinaciones del subárbol del cual 12 
está en la raíz, es decir, 123, 124 y 1234 se pueden eliminar. Aunque estas combinacio-
nes formarán reglas, estas reglas estarán subsumidas por la regla formada por la com-
binación 12. Al mismo nivel, las combinaciones 13 y 23 también formarán reglas. Por 
lo tanto, las combinaciones 134 y 234 también pueden ser podadas. También al mismo 
nivel, la combinación 14 no logra formar una regla, por lo tanto, todas las demás com-
binaciones al mismo nivel, es decir, 24 y 34, pueden eliminarse. La expresión booleana 
para las combinaciones que lograron formar reglas viene dada por: 
f=x1x2 ᴠ x1⌐x4 ᴠ x2⌐x4. 

 

Ejemplo 2: En este ejemplo, extraemos reglas usando AREBI para el problema de un 
codificador. En este problema, se mapea un conjunto de patrones de entrada ortogonales 
a un conjunto de patrones de salida ortogonales utilizando un pequeño conjunto de uni-
dades ocultas. La topología de la red neuronal presenta ocho entradas y ocho salidas. 
La capa oculta tiene tres neuronas. Tanto en la capa oculta como en la capa de salida se 
utilizó la función sigmoide. La misión es hacer que la red neuronal aprenda un mapeo 
de identidad. Por ejemplo, si el vector de entrada es [10000000] la salida es también 
[10000000]. La red básicamente aprende a codificar los ocho patrones en tres bits uti-
lizando las neuronas de la capa oculta. Los pesos de las capas oculta y de salida de la 
red entrenada se muestran en las Tablas 1 y 2, respectivamente. Las siguientes reglas 
fueron extraídas para las neuronas de la capa oculta.  
 

• L[1]
0= (⌐X6 ^ X1) ⱽ (⌐X6 ^ ⌐X3) ⱽ (X1 ^ ⌐X3) 

• L[1]
1= (⌐X0 ^ X1) ⱽ (⌐X0 ^ ⌐X3) ⱽ (X1 ^ ⌐X3) 

• L[1]
2= (⌐X6 ⱽ ⌐X3 ⱽ ⌐X0 ⱽ ⌐X1) 
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Luego de aplicar las transformaciones admitidas, los umbrales para cada neurona de la 
capa oculta quedan de la siguiente manera: Th0 = 11,5204; Th1= 12,065; Th2= 7,4491 
 
Las siguientes reglas fueron extraídas por AREBI de la capa de salida: 
 
L[2]

0 = (⌐X1 ⱽ ⌐X2)   L[2]
1 =  (X1 ^ X0)    L[2]

3 = (⌐X2 ⱽ ⌐X0 ⱽ ⌐X1) 
L[2]

5 = (⌐X0 ⱽ ⌐X1 ⱽ X2) L[2]
6 = (⌐X2 ⱽ ⌐X0 ⱽ X1) L[2]

7 = (⌐X0 ⱽ X2 ⱽ ⌐X1) 
 

Los umbrales para cada neurona de la capa de salida quedan de la siguiente manera: 
 
TL[2]

0 = 18,4005; TL[2]
1 = 19,6766; TL[2]

3 = 9,5887; TL[2]
5 = 0,0495; TL[2]

6 = 17,1678; 
TL[2]

07 = 0,0354. 
 
Como se puede observar, las neuronas 2 y 4 de la capa de salida no forman formulas 
bien formadas, con lo cual se las excluyen del análisis. La nomenclatura utilizada para 
identificar cada componente de la red es que el superíndice entre corchetes representa 
la capa dentro de la red y el subíndice la ubicación de la neurona dentro de la red. 
 

Tabla 1. Pesos de la capa oculta para el problema del codificador. 
 L[1]

0 L[1]
1 L[1]

2 
L[0]

0 5,5636 -6,2065 -3,7184 

L[0]
1 5,8380 6,0896 -3,3470 

L[0]
2 0,0017 -0,0006 0,0078 

L[0]
3 -5,7647 -6,0446 -3,8870 

L[0]
4 0,0048 0,0042 0,0069 

L[0]
5 -0,0062 -0,0018 0,0002 

L[0]
6 -5,8596 5,7814 -3,9270 

L[0]
7 -0,0020 -0,0010 0,0036 

Bias 0,0755 0,1208 7,3547 

 
Tabla 2. Pesos de la capa de salida para el problema del codificador. 

 L[2]
0 L[2]

1 L[2]
2 L[2]

3 L[2]
4 L[2]

5 L[2]
6 L[2]

7 
L[1]

0 11,6801 13,8896 0,0015 -6,2849 0,0356 -0,0506 -11,4906 -0,0269 
L[1]

1 -12,8318 14,0866 -0,0231 -6,1982 0,0291 -0,0131 9,8659 -0,017 

L[1]
2 -12,2891 -11,377 0,0614 -6,6944 0,0343 0,0058 -12,979 0,0269 

Bias 6,3483 -8,1153 -0,0268 9,3658 -0,0560 0,0435 7,0913 0,0320 

 
Tabla 3.  Pesos de la capa oculta 1 para el problema del clasificador. 

 L[1]
0 L[1]

1 L[1]
2 L[1]

3 L[1]
4 L[1]

5 L[1]
6 L[1]

7 L[1]
8 L[1]

9 

L[0]
0 0,4949 0,3751 0,3181 -0,2837 -0,4633 -0,3130 0,0462 -0,3694 -0,5308 0,2586 

L[0]
1 0,1949 -0,4851 0,8025 0,3736 -0,4757 0,2525 -0,2237 -0,1543 -0,1858 0,2754 

L[0]
2 -0,1240 -0,0694 0,0800 -0,2585 0,0249 0,2644 0,4629 -0,3231 -0,3739 0,8155 

L[0]
3 -0,4877 0,2059 -0,3034 -0,1130 0,3097 0,2768 0,4408 0,6138 -0,5277 -0,0089 

Bias 0,0164 -0,0104 0,1322 0 0 -0,1037 0,0029 0 0 -0,1566 
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Tabla 4. Pesos de la capa oculta 2 para el problema del clasificador. 
 L[2]

0 L[2]
1 L[2]

2 L[2]
3 L[2]

4 L[2]
5 L[2]

6 L[2]
7 L[2]

8 L[2]
9 

L[1]
0 -0,017 0,175 -0,084 -0,237 -0,436 -0,120 -0,450 -0,508 -0,271 -0,412 

L[1]
1 -0,296 -0,083 0,417 -0,109 0,653 0,398 0,405 -0,222 -0,658 0,213 

L[1]
2 0,028 0,303 -0,052 -0,382 -0,181 -0,281 0,082 0,276 0,539 0,035 

L[1]
3 0,313 0,076 0,392 0,515 -0,019 -0,131 0,298 -0,233 0,286 0,207 

L[1]
4 0,313 -0,157 0,420 -0,242 0,291 -0,480 0,191 -0,218 0,389 0,220 

L[1]
5 0,788 -0,410 0,249 -0,133 0,013 0,460 0,132 0,184 0,110 -0,032 

L[1]
6 -0,203 -0,001 -0,403 0,468 0,298 -0,157 -0,431 0,717 0,234 0,536 

L[1]
7 0,397 -0,232 -0,323 -0,541 0,308 0,190 -0,485 -0,170 -0,173 0,513 

L[1]
8 0,218 0,431 -0,305 0,478 0,017 0,199 0,149 -0,246 0,502 0,516 

L[1]
9 0,223 0,351 -0,318 0,718 0,607 0,166 -0,155 0,215 0,147 0,249 

Bias -0,079 0,093 0 -0,074 -0,050 -0,055 -0,134 0 0,136 -0,023 

 
Tabla 5. Pesos de la capa salida para el problema del clasificador. 

 L[3]
0 L[3]

1 L[3]
2 

L[2]
0 -0,4558 -0,7504 0,3269 

L[2]
1 -0,1039 -0,1854 -0,6559 

L[2]
2 0,2857 0,1208 -0,5869 

L[2]
3 -0,6514 0,0361 0,1253 

L[2]
4 -0,8796 -0,3285 -0,3988 

L[2]
5 0,1496 -0,0413 -0,1389 

L[2]
6 -0,3261 0,1937 0,3480 

L[2]
7 -0,2504 0,5358 0,3766 

L[2]
8 0,6003 -0,6083 -0,4603 

L[2]
9 -0,0371 0,4301 0,8630 

Bias 0,1504 0,0048 -0,0914 
 
En este punto, también se observa que las reglas extraídas pueden expresarse como 
formulas bien formadas (fbf) de la lógica de primer orden (Pons, Rosenfeld, y Smith 
2017), entonces si calculamos las tablas de verdad para cada una de las reglas  obten-
dremos valores de verdad en cada neurona, respecto de los valores de entrada. Si se 
toma como ejemplo L[2]

0 = (-X1 v -X2), su tabla de verdad será como se ilustra en la 
tabla de verdad 1. Por favor notar que en lugar de usar valores Verdadero o Falso para 
representar verdad o falsedad utilizamos 1 para identificar valor de verdad y 0 para 
identificar valor de falsedad. De este modo se siguen utilizando los mismos valores 
binarios con los que fue entrenada la red. 
Aplicando el mismo procedimiento para el resto de las reglas, se obtienen las tablas de 
verdad que se muestran en la tabla de verdad 2. 
Finalmente, al calcular las conjunciones entre todas las componentes del sistema, se 
obtienen tautologías a lo largo de todo el sistema de conjunciones, lo cual demuestra 
que las reglas son válidas y explican la función aprendida por la red neuronal. Las tablas 
de verdad del sistema final se pueden ver en la tabla de verdad 3. 
Calculando la relación de implicancia entre las reglas formadas en cada capa, se observa 
que los resultados son tautologías también. A modo de ejemplo, si se toman las fbf entre 
L[1]

0 y L[2]
0 y se calcula L[1]

0 -> L[2]
0 se obtiene como resultado una tautología. Por 

último, si se calculan las implicancias entre los valores de verdad para las reglas obte-
nidas en cada capa, se obtiene que las siguientes fbf están implícitamente relacionadas: 
 
 

Negro et al,  Extrac.reglas redes neuronales feedforward entrenadas con lógica de 1er orden, EJS 23 (1) 2024 pg 58-80 70

ISSN 1514-6774



Capa oculta: 

f[1]
0= (⌐X6 ^ X1) ⱽ (⌐X6 ^ ⌐X3) ⱽ (X1 ^ ⌐X3) 

f[1]
1= (⌐X0 ^ X1) ⱽ (⌐X0 ^ ⌐X3) ⱽ (X1 ^ ⌐X3) 

f[1]
out= (X1 ^ ⌐X3) ⱽ ((⌐X6 ^ X1) ⱽ (⌐X6 ^ ⌐X3) ^ (⌐X0 ^ X1) ⱽ (⌐X0 ^ ⌐X3)) 

 

Capa de Salida: 

f[2]
0 = (⌐X1 ⱽ ⌐X2) f[2]

3 = (⌐X2 ⱽ ⌐X0 ⱽ ⌐X1) 
f[2]

5 = (⌐X0 ⱽ ⌐X1 ⱽ X2) f[2]
6 = (⌐X2 ⱽ ⌐X0 ⱽ X1) 

 
Al reducir el sistema, la fbf final quedaría del siguiente modo: Net = f[1]

out-> (f[2]
0 ⱽ f[2]

3 
ⱽ f[2]

5 ⱽ f[2]
6) 

 
X1 X2 -X1 -X2 -X1 v -X2 

1 1 0 0 0 
1 1 0 0 0 
1 0 0 1 1 
1 0 0 1 1 
 0 1 1 0 1 
0 1 1 0 1 
0 0 1 1 1 
0 0 1 1 1 

Tabla de verdad 1. Valores de verdad  
Para L[2]

0 = (-X1 v -X2)

 
 
 
 
 
 
 

 

 
 
 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

A B C D E F 
L[2]

0 L[2]
1 L[2]

3 L[2]
4 L[2]

8 L[2]
9 

1 0 0 1 1 1 
1 0 0 1 0 1 
1 0 0 1 1 0 
1 0 0 1 0 1 
1 0 0 1 0 1 
1 0 0 1 0 1 
1 1 0 1 0 0 
1 1 0 1 0 0 

Tabla de verdad 4. fbfs de la capa 2 para el 
problema del clasificador. 

 

V W X Y Z 

A ⱽ B V ⱽ C W ⱽ D X ⱽ E Y ⱽ F 

1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 

Tabla de verdad 3. Conjunciones para las sa-
lidas de las reglas de cada neurona de la 
capa de salida. 

 

A B C D E F 
L[2]

0 L[2]
1 L[2]

3 L[2]
5 L[2]

6 L[2]
7 

0 1 0 1 1 0 
0 1 1 0 0 1 
1 0 1 1 1 0 
1 0 1 1 1 1 
1 0 1 1 1 1 
1 0 1 1 1 1 
1 0 1 1 1 0 
1 0 1 1 1 1 

Tabla de verdad 2. Valores de verdad para 
todas las reglas obtenidas en las neuronas en 
la capa de salida. 

 

G H U J K 
A ⱽ B G ⱽ C  H ⱽ D I ⱽ E J ⱽ F 

1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 

Tabla de verdad 5. Conjunciones para la fbf de la 

capa 2 para el problema del clasificador. 
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Ejemplo 3: En este ejemplo, se extraen reglas usando AREBI para el problema de un 
clasificador para el conjunto de datos Iris. En este problema, se clasifica un conjunto 
de features de entrada a un conjunto variables categóricas en la salida. La topología de 
la red neuronal presenta cuatro neuronas en la entrada y 3 en la salida. Además, presenta 
dos capas ocultas con 10 neuronas en cada capa. En las capas ocultas se utilizó la fun-
ción de activación Relu y para la capa de salida la función Softmax. La misión es hacer 
que la red neuronal aprenda a clasificar el tipo el tipo de flor adecuado. Los pesos de 
las capas oculta y de salida de la red entrenada se muestran en las Tablas 3, 4 y 5, 
respectivamente. La siguiente regla fue extraída para las neuronas de la capa de salida: 
 
L[2]

1 = (-X0-^X8^X7) ⱽ (-X0^-X8^X9) ⱽ (-X0^-X8-^X4) 

 
Si bien las neuronas 0 y 2 de la capa de salida forman formulas bien formadas, estas no 
están implicadas por ninguna fbf en las capas ocultas, con lo cual se las excluyen del 
análisis. Luego de aplicar las transformaciones admitidas, los umbrales para cada neu-
rona de las capas ocultas y de salida, quedan de la siguiente manera: 
 
TL[1]

0 =0,6508; TL[1]
1= 0,5678; TL[1]

2= 0,7521 TL[1]
3=0,5144; TL[1]

4= 0,6369;  
TL[1]

5= 0,5534 TL[1]
6=0,5869; TL[1]

7= 0,7304; TL[1]
8= 0,8092 TL[1]

9=0,6793 
 

TL[2]
0 =1,4002; TL[2]

1= 1,1118; TL[2]
2= 1,4838 TL[2]

3= 1,9146; TL[2]
4= 1,4147; 

TL[2]
5= 1,2928 

TL[2]
6= 1,3904; TL[2]

7= 1,4964; TL[2]
8= 1,6582 TL[2]

9= 1,4692 
TL[3]

0= 1,8701; TL[3]
1= 1,6154; TL[3]

2= 2,1405 
 
Las neuronas 5, 6 y 7 de la capa oculta 2 forman fbf que son demasiado específicas y 
violan el principio de máxima generalidad, con lo cual se las omitió del análisis. Las 
tablas de verdad para esta capa respecto de las fbfs junto con sus conjunciones, se mues-
tra en las tablas 4, y 5. 
Para esta DNN, luego de construir las tablas de verdad, se verifican las tautologías entre 
las reglas extraídas para cada capa. Además, calculando la relación de implicancia entre 
las reglas formadas en cada capa, se observa que los resultados son tautologías también. 
En tal sentido, las reglas extraídas para cada capa junto con las relaciones de implican-
cia entre capas devuelven la siguiente regla: 

 
R1 = ((X2^X1) ⱽ (X2^X0)) -> (((X5^X7) ^ (X3 ⱽ X4 ⱽ -X1)) ⱽ ((X9^X3) ^ (-X7 ⱽ -
X4 ⱽ X0)) ⱽ (X3^-X7^-X4)) -> ((-X0^-X8) ^ (X7 ⱽ X9 ⱽ -X4)) 
 
El patrón para cada regla sigue el siguiente formato: 
 
Rx= (regla capa 1) -> (regla capa 2) -> (regla capa de salida). 
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Tabla 6. Estadísticas por clase y feature para el problema del clasificador. 
 X0 X1 X2 X3 
 sepal 

length 
sepal 
width 

petal 
length 

petal 
width 

Clase 0     
Media 5.0 3.4 1.5 0.2 
Max 5.8 4.4 1.9 0.6 
     
Cotas [5..5,8] [3,4..4,4] [1,5..1,9] [0,2..0,6] 
Clase 1     
Min 4,9 2 3 1 
Media 5,9 2,8 4,2 1,3 
Cotas [4,9..5,9] [2..2,8] [3..4,2] [1..1,3] 
Clase 2     
Perc 50 6,5 3 5,6 2 
Max 7,9 3,8 6,9 2,5 
Cotas [6,5..7,9] [3..3,8] [5,6..6,9] [2..2,5] 

 
En la tabla 6, se presentan los valores de las estadísticas calculadas sobre todo el con-
junto de datos, para las cuales la precisión predictiva de la red se maximiza. Dado que 
AREBI busca aquellos valores que maximicen la función Act(Zi) ≈ 1, se probará la 
regla extraída con dichos valores estadísticos para verificar que estas expliquen a los 
datos. 
Para validar la regla se partirá de la premisa de que los valores de verdad para cada 
variable de entrada y para cada clase, estará en relación con si la variable se encuentra 
dentro del rango de valores expresado en la tabla 6, para cada clase. Entonces, por 
ejemplo, para X2 la variable será verdadera si toma valores entre 1,5 y 1,9 para deter-
minar la clase 0, de lo contrario será falsa. 
Si se toma el primer término de la regla ((X2^X1) ⱽ (X2^X0)) y se le asignan a cada 
variable de entrada los rangos de la tabla 6, se observa que para la clase 0 la regla 
quedaría: ([1,5..1,9] ^[3,4..4,4]) ⱽ ([1,5..1,9] ^[5..5,8]). Aquí se observa que alcanza 
con evaluar la primera expresión del término dado que resuelve completamente el so-
lapamiento que se evidencia en X1 para las clases 0 y 3. El segundo termino determina 
la fidelidad de la expresión. Entonces la regla satisface la clasificación para la clase 1 
cuando ([1,5..1,9] ^[3,4..4,4]) ⱽ ([1,5..1,9] ^[5..5,8]), y para la clase 2 cuando 
([6,5..7,9]^[3..3,8]) ⱽ ([5,6..6,9] ^[2..2,5]). Desde el punto de vista de la regla, cualquier 
combinación de valores en la entrada que no siga esta distribución, hará que las con-
junciones y disyunciones en la entrada no formen tautologías, y este patrón fluirá hacia 
el resto de la regla, haciendo que las relaciones de implicancia no se cumplan y en 
consecuencia que los datos no expliquen la clasificación a la salida.  
Desde el punto de vista de la red, las distribuciones de datos en la entrada por fuera de 
estos rangos de valores podrían arriban a clasificaciones erróneas, con una baja proba-
bilidad o con probabilidades solapadas entre clases. 

7 Análisis del algoritmo AREBI 

Las reglas generadas por AREBI son válidas, genéricas y completas. 
  
Proposición 1. Las reglas generadas por AREBI son válidas. 
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Prueba. Una regla es válida si se cumple independientemente de las activaciones de 
las neuronas no especificadas en la regla. Supongamos que WC son los pesos de la 
combinación. Una regla se forma solo si se cumple la siguiente condición:  
 ∑ 𝑊𝐶  +  𝐵𝑖𝑎𝑠 >  𝑇𝑛𝑒𝑤𝑊𝑐∈𝑊  

 
Aquí Tnew es el valor recalculado del umbral luego de aplicar las transformaciones ad-
mitidas. Es fácil ver que en presencia de los pesos que no están en la combinación 
anterior, la relación aún se mantendrá. Esto se debe a que todos los pesos que no están 
en la combinación también son positivos. La presencia de tales pesos solo aumentará 
la suma ponderada. Por lo tanto, todas las reglas generadas por AREBI son válidas. 
 
Proposición 2. Las reglas generadas por AREBI son genéricas. 

 
Prueba. En la búsqueda de reglas de confirmación en el árbol de combinación, cuando 
una combinación tiene éxito, todas las combinaciones del subárbol del que es raíz se 
eliminan. Por lo tanto, todas las combinaciones que podrían formar reglas subsumidas 
se eliminan, por lo tanto, las reglas generadas cumplen con la máxima generalidad. 
 
Proposición 3. El conjunto de reglas generado por AREBI es completo. 
 
Prueba. El algoritmo elimina las combinaciones de dos maneras: a lo ancho y en pro-
fundidad a lo largo del árbol. En el primer caso, las combinaciones podadas no pueden 
formar una regla. Para el último caso, las combinaciones podadas pueden formar reglas, 
pero estas están subsumidas por otras reglas más generales. Dado que se generarán to-
das las demás reglas posibles, las reglas extraídas forman un conjunto completo. 

7.1 Complejidad del Algoritmo 

Cuando se verifica la formación de reglas, es decir, existen algunas reglas para la neu-
rona, el éxito podría ocurrir en cualquier nivel del árbol de combinaciones. Supongamos 
que hay N pesos para una neurona dada, entonces el número máximo de combinaciones 

que podrían tener éxito en el árbol de combinación para los N pesos es  /2
N

NC
. Para 

llegar al nivel del árbol donde se intentan combinaciones de tamaño N/2, una combina-
ción en cada uno de los niveles anteriores debería haber fallado. Por lo tanto, el número 

máximo de combinaciones que deben intentarse es: 
/2

1
( 1)

2
N

NC N+ −
. Para valores 

grandes de N el termino  

1
( 1)

2
N −

 puede ser desestimado, y en consecuencia el número 

de combinaciones máximo que podrían formar una regla se resume a /2
N

NC
. Por lo 
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tanto /2
N

NC
 será el número máximo de reglas que pueden ser extraídas dado el vector 

de pesos de una neurona dada. Utilizando la aproximación de Stirling 

! 2 ( )mm
m m

e
=  obtenemos 

/2

2
2N n

NC
N

  

Por lo tanto, la complejidad del método en el peor de los casos es (2 )NO . 

7.2 Límites en el número mínimo de podas 

Como se señaló anteriormente, las podas pueden ocurrir de dos maneras, a lo ancho y 
en profundidad. Si en una neurona dada una combinación logra formar una regla, se 
realiza una poda en profundidad, de lo contrario, se realiza una poda en anchura. La 
poda se realizará en todos los nodos internos del árbol. En los nodos de las hojas del 
árbol, la poda puede o no realizarse. En general, todas aquellas combinaciones que con-
tengan el dígito 'N' (donde N es el número total de pesos) podrían resultar en ninguna 
poda. En los casos en que N es grande y el valor de Bias ≈ Umbral, las reglas tienden 
a formarse en el primer nivel del árbol, con lo cual la poda será al menos N/2, y obten-
dremos reglas formadas por disyunciones. Para los casos donde la distancia entre Um-
bral y Bias es grande, la poda será al menos N - log2(N). Aquí las reglas se darán en 
niveles medios del árbol y estas serán una combinación entre conjunciones y disyun-
ciones. Para los nodos donde una regla se forma con éxito se observa que al menos una 
combinación fallará cuando Bias < Umbral/2, con lo cual la poda será como mínimo 
N-1. Como se señaló anteriormente, cuando el valor de Bias ≈ Umbral, las reglas tien-
den a formarse en el primer nivel del árbol, obtendremos disyunciones y la probabilidad 
de poda tendera a 0. 

8 Trabajo relacionado 

Varios investigadores han propuesto algoritmos para extraer reglas de una red neuronal 
alimentada hacia adelante entrenada. Para ello se aborda la explicabilidad desde dife-
rentes enfoques. Para el caso los métodos donde se explica la estructura de decisión 
global   (R Krishnan, Sivakumar, y Bhattacharya 1999) extraen arboles de decisión 
desde las redes neuronales entrenadas y utilizan algoritmos genéticos para consultar la 
red y selección de prototipos. (Markowska-Kaczmar y Wnuk-Lipiński 2004) presentan 
un método de extracción de reglas a partir de redes neuronales basado en algoritmos 
genéticos con optimización de Pareto. 
Para el caso donde se analiza el ruido y dimensionalidad relevante (Montavon, Braun, 
y Mueller 2011)  Analizan la evolución por capas de la representación en una red pro-
funda mediante la construcción de una secuencia de núcleos. (Braun y Buhmann 2008) 
Explican como la información relevante de un problema de aprendizaje supervisado 
está contenida hasta un error insignificante en un número finito de componentes PCA 
principales del kernel. (Özbakir et al. 2009) proponen un método que utiliza el algo-
ritmo Touring Ant Colony Optimization (TACO) para extraer reglas precisas y com-
prensibles de bases de datos a través de redes neuronales artificiales entrenadas. 
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Para el caso donde la explicabilidad se aborda dese el análisis del papel que juegan 
neuronas particulares (Erhan et al. 2010), buscan mejorar las herramientas para encon-
trar buenas interpretaciones cualitativas de características de alto nivel aprendidas por 
los modelos. También se busca comprender mejor las invariancias aprendidas por redes 
neuronales profundas. (Augasta y Kathirvalavakumar 2012) proponen un algoritmo 
RxREN que extrae reglas de redes neuronales entrenadas para conjuntos de datos con 
atributos de modo mixto. El algoritmo se basa en la técnica de ingeniería inversa para 
podar las neuronas de entrada insignificantes y descubrir los principios tecnológicos de 
cada neurona de entrada significativa de la red neuronal en la clasificación. 
Desde la óptica de la invariancia a ciertas transformaciones de los datos (Goodfellow 
et al. 2009) proponen una serie de pruebas empíricas que miden directamente el grado 
en que las características aprendidas son invariantes a diferentes transformaciones de 
entrada. (Zarlenga, Shams, y Jamnik 2021) presentan ECLAIRE, un novedoso algo-
ritmo de extracción de reglas de tiempo polinomial capaz de escalar tanto a grandes 
arquitecturas de redes neuronales, como a grandes conjuntos de datos de entrenamiento. 
 
Las principales contribuciones del trabajo presentado en este articulo respecto a los 
trabajos descriptos son: 
 

• Proponer un nuevo algoritmo para extraer el patrón de reglas aprendido de una 
red neuronal feedforward entrenada y analizar sus propiedades. 

• Uso de lógica de primer orden (FOL) para explicar los patrones aprendidos 
por la red neuronal. 

• Presentar un método de caja blanca que analiza las matrices de pesos de las 
DNN para extraer reglas, 

• El método no requiere ninguna regla de aprendizaje especial durante la extrac-
ción de reglas, lo que facilita su uso. 

• El método funciona de manera eficiente tanto para atributos continuos como 
enumerados. 

• El algoritmo es muy eficiente en la poda de neuronas no relevantes de la DNN 
y no requiere reentrenamiento después de la poda. 

• Las reglas extraídas se pueden usar para explicar el proceso de toma de deci-
siones de la red neuronal, a través de fórmulas de la lógica de primer orden, lo 
que puede ser útil en diversas aplicaciones, como el diagnóstico médico, la 
detección de fraudes y la calificación crediticia. 

9 Conclusiones 

En este artículo, se ha propuesto un nuevo algoritmo de búsqueda para la extracción de 
reglas que se basa en ordenar los pesos y considerar combinaciones de pesos en el orden 
de su suma ponderada. Este algoritmo genera reglas válidas, máximamente generales y 
completas. Aunque el algoritmo tiene una complejidad exponencial, todavía es viable 
para su uso en redes neuronales de tamaño pequeño o mediano. Se investigaron las 
propiedades de poda del algoritmo y se calculó un límite inferior para el número de 
posibles podas. 
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Aunque posiblemente se podría obtener un límite más estricto, se conjetura que este 
método da como resultado el número máximo de podas. El trabajo futuro implicará 
analizar las reglas extraídas para verificar que el algoritmo no solo sirve para explicar 
la función aprendida por la red, sino también para regularización. 

10 Trabajo Futuro 

Como línea de investigación a futuro, se propone continuar desarrollando algoritmos 
para la extracción de patrones de reglas aprendidos en redes neuronales feedforward 
entrenadas, a través de la utilización de técnicas de lógica proposicional y lógica de 
primer orden (FOL) para explicar los patrones aprendidos por la red neuronal. Además, 
presentar un método de caja blanca que analice las matrices de pesos de las DNN utili-
zando la métrica de similitud coseno. Se implementará un cálculo de distancia para 
resolver solapamientos entre clases y se demostrará que el método es eficiente tanto 
para atributos continuos como enumerados. Se destacará que el algoritmo no requiere 
reglas de aprendizaje especiales durante la extracción de reglas, lo que facilita su uso. 
Además, se demostrará que el método es altamente eficiente en la identificación de 
neuronas relevantes en la DNN y no requiere reentrenamiento después de la selección 
de neuronas críticas. Las reglas extraídas se utilizarán para explicar el proceso de toma 
de decisiones de la red neuronal a través de fórmulas de lógica de primer orden, lo que 
puede ser útil en diversas aplicaciones, como el diagnóstico médico, la detección de 
fraudes y la calificación crediticia. Se demostrará que las reglas extraídas se pueden 
mapear directamente contra el conjunto de datos, lo que permite explicar las decisiones 
de la red con datos. Además, se discutirá cómo el algoritmo de extracción de reglas 
puede servir como un método de regularización de la DNN al identificar los caminos 
críticos neuronales y componer así redes más pequeñas. Finalmente, se construirá un 
prototipo funcional que implemente las funciones definidas en el modelo formal pro-
puesto. 

 
En resumen, las líneas de trabajo a futuro se identifican en los siguientes puntos ex-
puestos a continuación: 

 
• Investigar la aplicación del método propuesto en redes neuronales más 

complejas y de mayor escala para evaluar su escalabilidad y rendimiento. 
 

• Explorar la integración de marcos lógicos adicionales, como la lógica di-
fusa o la lógica probabilística, para mejorar la interpretabilidad y explica-
bilidad de los patrones de reglas extraídos. 

 
• Realizar estudios empíricos para evaluar la eficacia del método en diferen-

tes dominios y tareas, como el procesamiento del lenguaje natural, para 
evaluar su generalización y solidez. 
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• Examinar el impacto de diferentes arquitecturas de red y técnicas de capa-
citación en la interpretabilidad de los patrones de reglas extraídos, para ob-
tener información sobre la relación entre la estructura de la red y la expli-
cabilidad. 

 
• Investigar el potencial del método propuesto en combinación con otras téc-

nicas de explicabilidad, como mecanismos de atención o mapas de promi-
nencia, para proporcionar una comprensión más completa y detallada del 
proceso de toma de decisiones en redes neuronales. 
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