
Trial designs for detecting spatial variability of 

treatment effects in on-farm precision experiments

Carlos Agustín Alesso
1*

, Patricia Melina Acetta
2
, Nicolás Federico Martin

3
, y 

Pablo Ariel Cipriotti
4

1
 ICiAgro Litoral, UNL, CONICET, Fac. de Ciencias Agrarias, Kreder 2805, S3080HOF 

Esperanza (Argentina)
calesso@fca.unl.edu.ar

2 
Facultad de Ciencias Agrarias, UNL, Kreder 2805, S3080HOF, Esperanza (Argentina)

pacetta@fca.unl.edu.ar
3 

Dept. of Crop Sciences, University of Illinois, 1102 S Goodwin Ave, 61801 Urbana (USA)
nfmartin@illinois.edu

4 
 IFEVA, UBA, CONICET, Facultad de Agronomía, Av. San Martín 4453, (C1417DSE) 

Ciudad de Buenos Aires (Argentina)
cipriott@agro.uba.ar

* 
 Corresponding author

Abstract. Precision agriculture involves the existence of spatial variability in 

crop response to input application. Field-scale experiments allow for exploring 

such variability. However, the interaction between the spatial variability of fac-

tors controlling crop response and the applied experimental design conditions 

the results. It is necessary to identify experimental designs that optimize the ac-

quisition of reliable information on intra-field crop response. Experimental de-

signs at field scale with different spatial resolutions were evaluated to estimate 

the spatial variability of crop response to input application. Spatial response 

patterns were simulated as an underlying process to generate yield maps. Geo-

graphically weighted regression (GWR) was used to estimate crop response pat-

terns, which were compared with the underlying stochastic field. Designs with 

high  spatial  resolution  better  capture  underlying  spatial  variability  patterns 

across a wide range of considered spatial structures. Furthermore, checkerboard 

plot designs outperform strip designs as they enable detecting spatial variability 

in both directions. However, the agreement between GWR-estimated response 

maps and reference maps is sensitive to kernel selection and bandwidth.
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Resumen. La agricultura de precisión supone la existencia de variabilidad espa-

cial de la respuesta de los cultivos a la aplicación de insumos. Los experimentos 

a escala de lote permiten explorar dicha variabilidad. No obstante, la interac-

ción entre la variabilidad espacial de los factores que controlan la respuesta del 

cultivo y el diseño experimental aplicado condicionan los resultados. Es nece-

sario identificar diseños experimentales que optimicen la obtención de informa-

ción fiable de la respuesta de los cultivos intra-lote. Se evaluaron diseños exper-

imentales a escala de lote con distinta resolución espacial para estimar la vari-

abilidad espacial de la respuesta de un cultivo a la aplicación de insumos. Se 

simularon  patrones  espaciales  de  respuesta  como  proceso  subyacente  para 

generar mapas de rendimiento. Mediante regresión ponderada geográficamente 

(GWR) se estimaron los patrones de respuesta del cultivo que se compararon 

con el campo estocástico subyacente. Los diseños con alta resolución espacial 

permiten capturar mejor los patrones de variabilidad espacial subyacente en un 

amplio  rango  de  estructuras  espaciales  consideradas.  A  su  vez,  diseños  en 

parcelas tipo tablero de ajedrez superan a los diseños en franjas ya que permiten 

detectar variabilidad espacial en ambas direcciones. No obstante,  la concordan-

cia entre los mapas de respuesta estimados por GWR y los de referencia son 

sensibles a la selección de kernel y ancho de banda.

Palabras  clave:  simulación  estadística,  no  estacionariedad,  manejo  sitio-es-

pecifico
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1 Introduction

In agriculture, field trials are useful for collecting information about the crop re-

sponse to input applications at field scale. Insights from these experiments are useful 

for supporting better decisions tailored to improve production, efficiency and sustain-

ability considering soil and weather variability [1]. The experimental design is a key 

aspect for getting reliable information from this kind of experiments [2].

During the last decade, precision agriculture (PA) technologies have helped farm-

ers and crop advisers to conduct field-scale on-farm experiments with little or no dis-

turbance of regular field operations. These experiments are commonly carried out for 

comparing alternative agronomic practices or for adjusting a given crop management 

[3]. At the same time, the complexity of data collected by the machinery have chal-

lenged the application of classical statistical methods designed for on-station small-

plot experiments requiring new approaches [4, 5]. In a simulation study, Alesso et al. 

[6] have demonstrated that, if not taken into account, spatial autocorrelation can re-

duce the efficiency of treatment effect estimators and to increase the type I error rates. 

Among the experimental designs tested, those with smaller experimental units and 

larger number of replications had the best performances.

The management zones approach (MZ), which is a form of PA, has been widely 

adopted for managing within field spatial  variability [7].  Under this approach, the 

field is classified into zones having similar soil type and landscape characteristics, and 

crop response to input applications is expected to be fairly similar within those zones 

rather than between zones. Thus, on-farm experiments carried out using the MZ ap-

proach enable the quantification of such responses by zone.

The increase in the spatial resolution at which the inputs can be controlled today by 

farmers makes them willing to quantify site-specific crop responses instead of field- 

or management-zone-level responses [8–10]. To do so, several experimental designs, 

both randomized and systematic or patterned, and analytical methods have been pro-

posed. Whole-field strip designs are among the most popular designs [11, 12]. Other 

designs included checkerboard [13] and whole-field block [14] designs. In those ap-

proaches,  the continuous field spatial  variability is divided into management units 

compatible with the spatial resolution of machinery and a site-specific crop response 

function is estimated. Due to only one treatment can be assigned at the same time to 

each management unit, the effect of the remaining treatments needs to be estimated 

from geostatistical interpolation techniques [3, 15, 16] or by blocks containing an-

other replication of experiment [11, 12]. This methodology increases the spatial reso-

lution of the resulting information compared to the MZ approach.

Trevisan et al. [17] have demonstrated the potential of geographically weighted re-

gression  (GWR) applied to on-farm field scale experiments to develop prescription 

maps based on site-specific crop responses rather than sub-field regions or MZ. This 

technique, developed for tackling non-stationary processes, allows the estimation of 
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local response functions where model coefficients vary across space, and thus they 

can be mapped and interpreted as a new spatial variable [18]. Unlike global regression 

models, the GWR fits local regression models from data within a neighborhood de-

fined by a band width. The coefficients of such models are estimated by weighted 

least squares procedures. Weights are assigned using a kernel function which models 

the decay of neighbors’ influence as they get farther from the target point. Due to the 

bandwidth and kernel choices can result in the detection of misleading non-stationar-

ity patterns [19, 20] several calibration methods were reported [21].

Another important aspect in the application of GWR to the analysis of on-farm pre-

cision experiments is the effect of the spatial configuration of experimental units, i.e. 

the experimental design, and the spatial structure of the underlying spatial process, on 

the estimation of the spatial variability of the crop response. In a simulation study, 

Alesso et al. [2] have explored these effects by comparing checkerboard designs with 

different  plot  dimensions  and  randomization  under  scenarios  of  spatial  structure. 

These authors concluded that systematic designs with small plots have better perfor-

mance compared to randomized and large plots alternatives in terms of concordance 

between the true underlying spatial structure and the patterns approximated by GWR. 

In a recent study, Li et al. [22] quantified the economic impact of experimental de-

signs used to estimate the economic optimum nitrogen rate (EONR) for corn. They 

concluded that the choice of the experimental design can significantly influence the 

economic value of the information obtained from these kind of experiments. How-

ever, the effect of spatial structure and GWR parametrization was not addressed.

In this work we proposed an in silico study to explore the effect of experimental 

designs layouts and plot sizes, the underlying spatial structure of true treatment effect, 

and the GWR parameters, i.e. kernel and bandwidth, on the results obtained from an 

on-farm precision experiment (OFPE) conducted to map the field-scale spatial vari-

ability of a single treatment effect.

2 Materials and Methods

2.1 Hypothetical experiment

A simulation study was conducted to evaluate the effect of field-scale experimental 

designs on capturing the spatial variability of treatment effects under different spatial 

variability scenarios. The hypothetical experiment aimed to estimate the response of 

corn to the application of an optimal rate of phosphate fertilizer. An experimental area 

of 432 m wide by 864 m long (37 ha) was considered. It was assumed that the follow-

ing machinery configurations were available to conduct the experiment and collect 

data: (1) a tractor with automatic guidance; (2) a planter with variable rate technology 

(VRT); and (3) a harvester equipped with yield monitor and automatic guidance. Ac-
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cording to the machinery specification, the minimum width of the experimental units 

was the cutting width, which is equal to 9 m. The field dimension was approximately 

equivalent to 48 and 96 times the header width, respectively. A total of 4608 data 

points were simulated for each combination of spatial scenario, experimental design, 

and GWR parametrization described in the following section. The extent of the exper-

imental field is comparable to that of commercial fields in the Pampas region and al-

lows for a realistic representation of different spatial patterns and allocation of experi-

mental unit sizes while keeping computational time low.

2.2 Experimental designs

The simulated treatments consisted of phosphorus application at planting, in rec-

ommended doses based on crop requirements and soil availability, along with a con-

trol treatment without application. Treatments were applied with a resolution ranging 

from 9 to 36 meters, perpendicular to the planting direction, and equivalent to 1 to 4 

widths of the harvester header. Along the planting direction, the resolution ranged 

from 36 to 864 meters. The minimum length was defined to allow sufficient time (ap-

proximately 18 seconds) for actuators to adjust the rate on the go, considering delays 

in the grain threshing system and yield monitor. The maximum resolution was in-

cluded to represent strip designs. Consequently, the sizes of the experimental units 

ranged from approximately 324 to 31,104 square meters. The evaluated designs are 

detailed in the following table, and some examples are visualized in Fig. 1B.

Table 1. Characteristics of the evaluated experimental designs.

Code Width (m) Length (m) Replications Area (m2)

W1L4 9 36 1152 324

W1L8 9 72 576 648

W1L16 9 144 288 1296

W1L24 9 216 192 1944

W1L48 9 432 96 3888

W1L96 9 864 48 7776

W2L4 18 36 576 648

W2L8 18 72 288 1296

W2L16 18 144 144 2592

W2L24 18 216 96 3888

W2L48 18 432 48 7776

W2L96 18 864 24 15552

W4L4 36 36 288 1296

W4L8 36 72 144 2592

W4L16 36 144 72 5184

W4L24 36 216 48 7776

W4L48 36 432 24 15552

W4L96 36 864 12 31104
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2.3 Yield simulation

The response to the treatment, i.e., phosphorus application, was simulated assum-

ing the following linear model with spatially varying coefficients:

yi (s i)=β0(si)+β1(si)x i+εi (1)

where: yi (s i) is the yield at site s i=(ui , v i) defined by the spatial coordinates ui and 

v i; β0(si) and β1(si) are the regression coefficients, where β0(si) is the yield from con-

trol treatment and β1(si) is the treatment effect, i.e. the difference between control and 

treatment, for the same site s i; xi is a dummy variable having 1 for treatment and 0 for 

control; and εi is the residual error which is assumed to be independent and identical 

normally distributed with 0 mean and constant variance, i.e. N (0 ,σε
2).

In the first place, the spatial distribution of each coefficient β j(s i) from Eq (1) was 

independently  simulated  by  unconditional  Gaussian  geostatistical  simulation  [23]. 

Spatial variability scenarios were simulated assuming a first-order stationary process 

with the following linear model:

β j(s i)=μ j+εi (s i) (2)

where: β j(s i) is the true regression coefficient j at position s i=(ui , v i); μ j is the true 

overall mean of the regression coefficient over the experimental area; and εi(si) is the 

random error term Normal distribution having 0 mean and spatial variance-covariance 

matrix depending on the separation distances (h) between locations  N (0 , Σ(h)).  A 

spherical  and  isotropic  autocorrelation  model  without  nugget  effect  was  assumed, 

with ranges of 0, 200, and 400 meters (Eq. 2). For the scenario with a range of 0 (no 

spatial autocorrelation), the variance-covariance matrix simplifies to Σ (h)=I σε
2=σε

2
. 

Alongside the exponential model, the spherical model is one of the most commonly 

used models in the literature to represent soil and crop variables [23–25].

C (h)={σ sill2 ( 3h2a+
h3

2 a
3 ) 0≤h≤a

0 0≤h≤a

(3)

where: C (h) is the spatial covariance function between pairs separated by h units; 

a is the range of spatial dependence in meters; σ sill
2

  is the total process variance, as-

sumed based on a coefficient of variation of 30% around the mean yield of the control  

β0(si) 9 Mg/ha and the mean treatment effect  β1(si) (1,3 Mg/ha). Therefore, the val-

ues of total variance were 7.29 (Mg/ha)² and 0.1521 (Mg/ha)² respectively. For each 

scenario, a random realization of both random fields was independently taken, as-

sumed to be the true coefficient maps of the spatial model (Fig. 1A). The pixel-to-

pixel correlation between the coefficient maps (β j(s i)) was negligible (Pearson corre-

lation coefficients between -0.3 and 0.12). The combination of these coefficient maps 

allowed representing a wide range of responses, from situations with low yields with-
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out phosphorus and no response, which occurs when the limiting factor is not the 

treatment, to high yields without phosphorus and high response when the site has high 

response potential.

The spatial variability scenarios included in this study aim to cover a wide range of 

response patterns observable in the field, from random patterns (range = 0 m) to well-

structured patterns with smoothed variation patterns (range = 200 and 400 m). In the 

scenarios where coefficients do not have spatial structure, the application of the GWR 

procedure would not be warranted. Conversely, in scenarios with good spatial struc-

ture of the coefficients, the possibility of using linear models with spatially varying 

coefficients will allow estimating the local response to treatments.

Finally, for each combination of spatial variability scenario (3) and experimental 

design (18), 200 maps of corn yield were simulated on a grid of 4608 points combin-

ing the information of the coefficients β j(s i), the assigned treatment, and a residual er-

ror with mean 0 and constant variance around 30% according to the model of Eq. 1 

(Fig. 1C). In total, 10800 yield maps were simulated.

2.4 Data analysis

Each simulated yield map containing 4608 cells (each cell of 81 m²) was analyzed 

by fitting a GWR model [18] of Eq. 1 (Fig. 2). The regression coefficients at each lo-

cation were estimated using weighted least squares based on information from nearby 

observations:

β̂i (s i)=(X 'W (s i)X )−1W (si) y (3)

Where: y is the vector containing the yields; X is the predictor matrix composed of 

a column representing the intercept β0(si) and one for the treatment indicator variable 

β1(si); β̂ j(s i) is the vector of estimators β j(s i) ar locations s i=(ui , v i), and W (si) is an 

n x n diagonal matrix with the weights of each observation relative to point s i on the 

diagonal. Three kernels with adaptive bandwidth were tested: exponential (Eq. 4), 

bisquare (Eq. 5), and Gaussian (Eq. 6):

w (s i , s j)=exp(− d(si , s j)b(s i)
ad )

(4)

w (s i , s j)=[1−( d(si , s j)b(s i)
ad )

2

] if d (s i, s j)<b and 0 otherwise
(5)

w (s i , s j)=exp[(−12 d(si , s j)b(s i)
ad )

2

] (6)
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where  w (s i , s j) is  the  weight  of  the  data  at  location s i relative  to  location  s j; 

d (s i, s j) is the Euclidean distance between both locations; and b(si)
ad

 is the bandwidth 

for the site s i. Due to the impact of the number of neighbors on the coefficient estima-

tion, two neighborhood sizes were evaluated: 3% and 5% of the total observations, 

i.e., 138 and 230 neighbors. Given the dimensions of the plots and the grid resolution, 

these numbers of neighbors allowed representing both treatments within a search ra-

dius for each target point. As a result, 64800 GWR models were estimated.

2.5 Designs comparison

The agreement  between the effect map estimated by the GWR model   β̂1(si) for 

each realization of the simulated yield map and the true coefficient map of the effect  

β1(si) was evaluated using the following metrics: correlation coefficient ( r ), mean ab-

solute error (MAE), coverage probability (CP), and standard deviation ratio (SDR):

r=
σβ1( si)β̂1(s i)

σβ1(si)
σβ̂1(si)

(7)

MAE=
1

N
∑|β̂1(si)−β1(si)|

(8)

CP(d)=P [|β̂1(s i)−β1(s i)|]≤d (9)

SDR=
σ β̂1(s i)

σβ1(s i)

(10)

The correlation coefficient indicates the degree of linear association between the 

estimated coefficients and the reference ones. Absolute values close to unity indicate a 

nearly perfect relationship, but it does not necessarily imply the absence of bias in the 

estimates. The MAE represents the average absolute distance between the estimated 

coefficients and the reference ones. Ideally, this measure should be 0, but the lower it  

is, the lower the bias, and the higher it is the average concordance between the coeffi-

cients. Additionally, for each estimated map, the proportion of locations where the ab-

solute distance between the estimated coefficients and the reference one was less than 

or equal to 15% relative to the reference one was calculated. In other words, this mea-

sure represents the proportion of the plot where the differences between the observed 

response coefficients and the true parameter value were less than the predefined error 

margin. Finally, the SDR captures the relationship between the variability of the co-

efficients estimated by GWR and those used in the simulation. When SDR > 1, the 

variability of the effect map obtained by GWR is higher than the variability of the true 

effect.
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(A)

(B)

Simulated 
yield maps β(si)

εi

×

(C)

Agreement metrics

Y ( si )=f [β(si) , X ]+ε

(D)

β̂(si)

β(si)

X  (designs)

GWR 
estimated 

coefficients

Simulated 
coeficcients

(true)

Fitted local 
models

Fig. 1. Stages of the methodological workflow. (A) Generation of spatial variability 

scenarios of the coefficients β j(s i) of the response model, (B) design of vector layers 

associated with each experiment, (C) simulation of yields and estimation of spatially 

variable coefficient models from the simulated coefficients in (C) and designs in (B), 

and (D) analysis of agreement between the estimated coefficients in (C) and the simu-

lated coefficients in (A). The example considers design X and variability scenario Y.
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As a result, for each combination of spatial structure (ranges) and designs, a sam-

ple of 200 values of each metric was obtained (Fig. 1D), and descriptive statistics 

were calculated on them. The effect of design and underlying spatial structure on the 

model's ability to capture the spatial structure of the effects was evaluated by fitting a 

full factorial model: 3 widths × 6 lengths × 3 ranges × 2 bandwidths × 3 kernels. The 

importance of the factors to explain metrics variability was quantified by calculating 

the  principal  and  total  sensitivity  indices  from  the  sums  of  squares  (SS)  of  the 

ANOVA [26]. The principal sensitivity index (SP) captures the importance of the fac-

tor by discounting interaction effects, while the total sensitivity index (ST) includes 

the interaction effect. The SS of the factors were subsequently partitioned to evaluate 

specific contrasts between plot sizes or design types.

Data processing, visualization, and modeling were conducted using the statistical 

program R [27]. and functions from packages gstat [28],  sf [29],  tidyverse [30], and 

GWmodel [31, 32].

3 Results and Discussion

The median of the local coefficient of determination (R2) of the models, grouping 

all the designs employed, ranged between 5% and 64% depending on the combination 

of the underlying variability scenario and the GWR parameters used, i.e., bandwidth 

and kernel (Fig. 2). Regardless of the kernel choice, the moderate to low proportion of 

variance explained by these models is inversely related to the amount of residual vari-

ation. In this study, simulations assumed a residual variation of 30% around the con-

trol yield. This residual variation was used to evaluate designs in scenarios of high 

variability that can cover real situations in experiments of this type at realistic scales 

in commercial fields of the Pampas region. Since the regression coefficients estimated 

by GWR depend on the weighting function [18, 19], it was observed that, regardless 

of the designs and bandwidth used, on average the highest local R2 values were ob-

tained with the bisquare kernel (R2 ≈ 48%) compared to the exponential and Gauss-

ian kernels (R2 between 27% and 30%). The differences due to bandwidth were mi-

nor, with R2 values consistently lower for larger bandwidths. On the other hand, it 

was also observed that the goodness of fit of the local models increased with the spa-

tial structure of the simulated scenario. This is expected since as the spatial structure 

increases, there is more evidence to consider a model with non-stationary coefficients.

The importance of the spatial structure of the scenarios (depicted by the range), the 

characteristics of the experimental design (plot dimensions), and the parameters used 

in the GWR model (kernel and bandwidth) in the comparison between the estimated 

coefficients and the true ones are shown in Fig. 3. As can be seen, the spatial structure 

of the simulated scenario, alone or through interaction with other factors, had a sig-

nificant impact on 3 out of the 4 evaluated metrics.
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Fig. 2. Distribution of local coefficient of determination obtained by GWR models fit-

ted  using  different  combinations  of  kernel  and  bandwidth  for  spatial  dependence 

ranges.

Fig. 3.  Importance of the underlying spatial structure (range), the design (width and 

length), and parameters of the GWR model (kernel and bandwidth) in the variability 

of metrics of agreement between the coefficients estimated by GWR and the reference 

realization of the random field (Eq. 2): correlation coefficient (r), mean absolute error 

(MAE), coverage probability (CP), and standard deviation ratio (SDR). The main sen-

sitivity index represents the proportion of explained variation accounted for by each 

factor alone. The total sensitivity index includes not only the main factor but all the 

interactions involving it.

Alesso et al, Trial designs for detecting spatial variability of treatm. effects in on-farm precision experim, EJS 23 (2) 2024 pg 2-2012

ISSN 1514-6774



The presence of spatial structure had a significant impact on the correlation be-

tween the maps of coefficients estimated by GWR and the reference map (Fig. 3).  

Nearly 95% of the total variation was associated with this factor alone. This effect can 

be primarily explained by the contrast between the scenario of no spatial structure and 

those with structured variability patterns. When the spatial structure was absent, the 

correlation coefficients obtained were nearly zero (r = 0.008), indicating that the use 

of GWR in such scenarios is unnecessary (Fig. 4). In scenarios with spatial structure, 

the average correlation coefficient was around 0.66. These differences accounted for 

93% of the variation associated with this factor.

When analyzing the effect of plot size, differences were observed depending on the 

width. In general, narrower plots had better correlation values. In designs with wide 

plots (36 m), variable effects of plot length were observed, where shorter plots main-

tained high correlation values. When comparing strip designs with checkerboard de-

signs, the checkerboard resulted in slightly higher correlation values than the strip de-

signs. These differences were larger as the spatial structure had a greater range.

Fig. 4.  Effect of spatial structure, kernel, and plot dimensions on the correlation of 

maps estimated by GWR with the reference random field realization.
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Regarding the MAE, spatial structure and kernel were the factors with the greatest 

impact. Of the total variation associated with these factors and interactions, 78% and 

70% were explained by the main effect, respectively (Fig. 3). With greater spatial 

structure, the error or bias in the estimation of the treatment effect was lower, with 

some differences observed among designs (Fig. 5). As in the previous case, the effect 

of  spatial  structure  corresponds  to  the  difference between the  results  of  scenarios 

without structure (where GWR is not justified) and the average of scenarios with spa-

tial structure. The effect of the kernel is due to the greater bias produced in the models 

where bisquare was used. The differences between exponential and Gaussian kernels 

are minimal. Unlike these kernels, where all combinations of plot length and width 

had comparable results, the bisquare kernel consistently produced higher errors in de-

signs with wider and longer plots. The comparison between checkerboard and strip 

designs also indicated differences in favor of the former, due to the shorter length of 

the plots.

Fig. 5. Effect of spatial structure, kernel, and plot dimensions on the mean absolute er-

ror (MAE) and the correlation of the maps estimated by GWR with the reference ran-

dom field realization.

The CP was mostly affected by the magnitude of the spatial structure (70% of total 

variation, 65.5% main effect), and to a lesser extent by the kernel (25% of total varia-
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tion, 21% main effect) (Fig. 3). Conversely to the results for MAE, the proportion of 

the plot area where the difference between the estimated and true effect was less than 

or  equal  to  15% increased with  the  range of  spatial  structure.  In  the  case  of  the 

bisquare kernel, in designs with wider plots, smaller increases in CP were observed 

compared to the exponential and Gaussian kernels, where designs were not differenti-

ated and CP levels were higher due to the general effect of the kernel (Fig. 6). Similar 

to the previous metrics, the comparison between checkerboard and strip designs indi-

cated differences in favor of the former, due to the shorter length of the plots.

Fig.  6.  Effect  of  spatial  structure,  kernel,  and plot  dimensions on the coverage 

probability (CP) of the maps estimated by GWR and the reference random field real-

ization.

Finally, a high impact of the kernel on the SDR, i.e., the relationship between the 

variability estimated by the GWR coefficients and the underlying simulated variabil-

ity, is observed (Fig. 3). The choice of kernel alone explained 70% of the total varia-

tion, while an additional 10% was explained by its interactions, mainly with plot di-

mensions. In this regard, the bisquare kernel tends to overestimate variability, with 

SDR values around 1.5, while the exponential, and to a lesser extent, the Gaussian un-

derestimate it (Fig. 7). In both cases, over and underestimation decreases as the spatial 

structure becomes stronger. On the other hand, in the exponential and Gaussian ker-
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nels, although they underestimate the underlying variability, the effect of plot dimen-

sions, both length and width, is less pronounced. In contrast, with the bisquare kernel,  

designs with wider plots tend to overestimate more, even in scenarios of structured 

underlying variability. The comparison between checkerboard and strip designs re-

sulted in differences in favor of checkerboard designs only in scenarios with long spa-

tial dependence ranges.

Fig. 7. Effect of spatial structure, kernel, and plot dimensions on the relationship be-

tween the variability estimated by GWR and that present in the reference random field 

realization.

The results presented highlight the impact of the experimental design used and the 

underlying spatial variability of the response on the ability of the GWR model to cap-

ture the spatial variability of crop response to variable input application, as well as the 

impact of alternative parametrization of this model. Since the spatial structure of the 

response is unknown and not under the experimenter's control when designing the 

field experiment, simulation studies like this allows for some conclusions to be drawn 

for designing field experiments at the plot scale.

In  this  regard,  among  the  designs  evaluated  here,  which  were  systematic,  the 

checkerboard design with small plots represents an option that ensures good results 
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for the range of spatial variability conditions studied and options for parameterization 

of the GWR model. Similar results were reported by Alesso et al. [2]. In a similar 

study, Li et al. [22] observed that grid or checkerboard designs did not always show 

the best performance in terms of information return. The authors concluded that sys-

tematic designs with some restriction on spatial distribution, or even strip designs 

with high spatial heterogeneity, had comparable results.

From the perspective of field application, complex designs such as checkerboard 

with spatial balance are less adopted because they represent a greater challenge for the 

prescription design and field implementation, as they requires more precise and ex-

pensive variable application systems (e.g., electronic rate controllers, high precision 

GPS receivers, etc.) to execute dose changes over short distances. In contrast, strip de-

signs are simpler to execute, even without VRT technology. However, it is advisable 

to balance simplicity and the rigor of the results.

Finally,  while  the  general  recommendation  regarding  plot  dimensions  is:  the 

smaller dimension, the greater the chance of capturing the underlying spatial variabil-

ity,  the  minimum size  of  plots  is  limited  by  machinery  footprint,  e.g.,  header  or  

planter width, the smoothing process along the harvesting direction [33, 34], and the 

accuracy of positioning systems.

4 Conclusions

This study confirmed the effects of underlying spatial structure on the ability of the 

GWR model to estimate the spatial variability of treatment effects, and its interaction 

with the field designs. The significant effect of model parameters on the obtained re-

sponse maps was also verified. In summary, greater spatial structure led to better per-

formance of the GWR model in capturing the non-stationarity of coefficients. Among 

the evaluated designs, the width and length of the plots had an impact on the evalu-

ated metrics. Larger plot sizes resulted in lower agreement between the coefficients 

estimated by GWR and the simulated random field. The greatest impact was observed 

in the measure of mean absolute error (MAE) and the overestimation of variability 

when the bisquare kernel  was employed.  Finally,  the use of  designs with smaller 

plots, especially checkerboards, improves the estimation of underlying response vari-

ability compared to designs with larger plot dimensions.
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