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Resumen Una prediccion confiable de la demanda eléctrica es esencial
para mejorar la gestion del sistema de distribucion, optimizando la utili-
zaciéon de recursos, racionalizando la planificacion operativa y reducien-
do las interrupciones del servicio. La fluctuacién de la demanda eléctrica
esta influenciada por diversos factores externos, como las condiciones cli-
maticas, sin embargo, las asociaciones intrincadas y no lineales entre la
demanda y estas influencias presentan desafios significativos para la pre-
diccion. En este estudio, nos proponemos predecir la demanda eléctrica
examinando su relacién con las variables meteorolégicas en la provincia
de Entre Rios, Argentina. Se emplea una red neuronal recurrente, es-
pecificamente utilizando arquitectura de memoria a corto y largo plazo
(LSTM), para modelar esta relaciéon compleja directamente a partir de
datos de entrada sin ingenieria de caracteristicas previa. Evaluamos y
comparamos el rendimiento de este modelo con un método de referen-
cia. El anélisis preliminar de datos revela que las temperaturas extremas
ejercen un efecto notable en los comportamientos de consumo de ener-
gia. Nuestro modelo propuesto alcanza un coeficiente de determinacion
de 0.77 al comparar la demanda predicha con las observaciones reales,
subrayando su efectividad como una posible solucién para optimizar las
operaciones del sistema en Entre Rios.

Palabras clave: predicciéon de demanda eléctrica, condiciones climéati-
cas, aprendizaje profundo, red neuronal artificial.
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Abstract. Reliable forecasting of electricity demand is essential for en-
hancing distribution system management by optimizing resource utiliza-
tion, streamlining operational planning, and reducing service disruptions.
The fluctuation of electricity demand is influenced by various external
factors, such as weather conditions, yet the intricate and non-linear as-
sociations between demand and these influences present significant pre-
diction challenges.

In this study, we aim to forecast electricity demand by examining its
relationship with weather variables in the province of Entre Rios, Ar-
gentina. A recurrent neural network, specifically using long short-term
memory (LSTM) architecture, is employed to model this complex rela-
tionship directly from raw input data without prior feature engineering.
We assess and compare the performance of this model with a baseline
method.

Preliminary data analysis reveals that extreme temperatures exert a
notable effect on energy consumption behaviors. Our proposed model
achieves a coefficient of determination of 0.77 when comparing predicted
demand to actual observations, underscoring its effectiveness as a poten-
tial solution for optimizing system operations in Entre Rios.

Keywords: electricity demand forecast - weather conditions - deep learn-
ing - artificial neural network.

1. Introduction

Electricity demand forecast is a key input for operational and strategic de-
cision-making in electricity distribution system management [1]. Having prior
information on the electricity needs for the coming days is crucial for compa-
nies providing this service, as it enables them to plan their daily operations
effectively and determine necessary contingency measures. Thus, they can min-
imize operational issues, prevent service disruptions or equipment damage due
to overloading, and avoid blackouts and financial losses.
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The electricity consumption is influenced by different external factors such
as meteorological conditions, seasons, holidays, service fee, among others, which
make its prediction complex [3]. For instance, the impact of temperature is par-
ticularly evident, as people tend to use more electricity for heating or cooling
when temperatures are uncomfortable, or they may engage in more indoor ac-
tivities [4]. Additionally, on holidays, individuals’ behavior patterns differ from
their usual routines, making public holidays, especially long ones, an important
factor influencing power demand [5].

Numerous studies have explored methodologies for forecasting energy de-
mand, ranging from traditional statistical approaches to machine learning tech-
niques such as artificial neural networks (ANNs). The main challenge is the
difficulty in capturing non-linear relationships and the limited long-term fore-
casting capacity. In [6] they tested different ANNs to forecast the daily electric-
ity demand in Greece, including ambient temperature, relative humidity, among
others, as input variables. In [7] they applied an ANN model and trend extrapo-
lation method to forecast energy demand. The information used as input was the
primary, secondary, and tertiary value of the industry, energy consumption, the
level of urbanization, among others, without taking into account weather data.
They found that the precision of the neural network was much higher than trend
extrapolation. Furthermore, the ANN backpropagation network model was used
to forecast Turkey’s electricity demand based on different socio-economic indica-
tors [8]. The applications of traditional techniques such as econometric and time
series models along with soft computing methods such as ANNSs, fuzzy logic, and
other models are reviewed in [9] and verified the remarkable performance of the
neural network models.

A more recent approach involves using deep neural networks (DNN), which
can automatically extract features from raw data to support predictions [14]. Ma-
chine learning, particularly deep learning, represents a significant advancement
in data analysis, shifting the focus from model-driven to data-driven approaches.
This shift allows for the development of models that learn from data patterns,
making them well-suited for complex applications. In the context of time series
data analysis, recurrent neural networks (RNNs) are more adept than traditional
methods at capturing temporal dependencies. A notable variant of RNNs, long-
short-term memory networks (LSTMs), incorporate specialized gates in their
architecture to retain information over time and integrate both past and cur-
rent data for forecasting. These features enable LSTMs to surpass conventional
ARIMA-based models, especially for long-term prediction tasks [13]. While DNN
techniques have shown promising results across various applications in recent
years [10,11,12,13], their application to energy demand forecasting based on me-
teorological variables remains relatively unexplored.

This work focuses on the province of Entre Rios, Argentina, where Energia de
Entre Rios S.A. (ENERSA) is the sole provider of energy services. Currently, EN-
ERSA relies on rudimentary tools to make decisions regarding energy demand.
For instance, they adjust the service cost according to an analysis of the seasonal
variations in the demand from historical records. Other aspects they take into
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account for decision-making are the GPD (Gross Domestic Product) forecasts
or available economic forecasts, the weather seasonal forecast by the SMN (from
Spanish, Servicio Meteorologico Nacional), and the behavior of the activity of
large customers and the residential sector [O. Bustamante, 2019, personal com-
munication]. In this study, we contribute to the needs of ENERSA by developing
an energy demand forecast model based on machine learning methods, aiming
to improve decision-making processes and optimize electricity distribution in the
province.

The proposed forecast is based on historical demand and meteorological data
at daily time-step. We initially focused on developing a method to forecast the
electricity demand in Entre Rios just for one day using information from the
previous 7 days. Though, the general goal is to extend the forecast to 7 days, so
that the company may identify critical days of the coming week that may lead
to failures in the regional system. The rest of the paper is structured as follows:
Section 2 introduces a method frequently used as a benchmark, the proposed
model, and the metrics used in the performance evaluation. Section 3 describes
the dataset used and the dataset partitioning for the experiments. Section 4
analyses the main feature of the energy demand data and its relationship with
meteorological conditions, and also evaluates the results of the performed ex-
periments. Finally, Section 5 summarizes the main findings and guidelines for
future work.

2. Methods

In time series analysis, it is crucial to decompose a series into latent compo-
nents that represent different temporal patterns, such as trend, seasonality, cy-
cles, and high-frequency variations. Selecting the appropriate forecasting model
depends heavily on whether the underlying process is linear or nonlinear. Con-
sequently, multiple models are in general tested, and the one that best predicts
out-of-sample data is chosen. In this section, we focus on SARIMAX (Seasonal
AutoRegressive Integrated Moving Average with eXogenous variables) model,
which is an extension of ARIMA (AutoRegressive Integrated Moving Average),
and a recurrent ANN-based model

2.1. SARIMAX

The ARIMA model serves as a foundational method for time series forecast-
ing and is frequently used as a benchmark due to its simplicity and effectiveness
in capturing linear dependencies within a time series [15,16,17]. An ARIMA(p,
d, q) model predicts future values as a linear function of past observations and
residual errors. Its general form is given by:

(1= B)ys = 0p + drys—1+ -+ Gpls—p + 1 — O160-1 — - — Oyct—q (1)

where:
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e B is the backshift operator such that B *x y; = y;_1, i.e., it shifts the series
one period back,

e d represents the order of differencing required to achieve stationarity of the

series,

y; is the value of the series at time t,

¢ and 6 are the coefficients of the autoregressive (AR) and moving average

(MA) components, respectively,

p and q are the orders of the AR and MA components, respectively,

€; represents the error term, assumed to follow a white noise process.

The term (1 — B)? indicates that the series is differenced d times to elimi-
nate trends and seasonality, allowing the ARIMA model to be applied to non-
stationary series. The Seasonal ARIMA (SARIMA) model extends ARIMA to
accommodate seasonality through additional parameters for seasonal autoregres-
sion (P), differencing (D), and moving average (Q), as well as a seasonal period
(S). This leads to the SARIMA(p, d, q)(P, D, Q)s formulation:

¢p(B)2p(B)(1 — B)'(1 — B)Py, = 04(B)Oq(B®)e: (2)

where:

¢p(B) is the AR polynomial of order p,

& p(B?®) is the seasonal autoregressive (SAR) polynomial of order P,

e (1— B)% is the non-seasonal differencing operator, applied d times to ensure
stationarity,

(1 — B%)P is the seasonal differencing operator, applied D times with a
seasonal lag S,

y; is the value of the time series at time ¢,

04(B) is the MA polynomial of order g,

O¢(B?) is the seasonal moving average (SMA) polynomial of order @,

¢ are the residuals (or errors) at time ¢, assumed to be white noise with a
mean of zero and constant variance.

The SARIMAX model further extends SARIMA by incorporating external
predictors, or exogenous variables, to model the influence of external factors on
the target variable. The general structure of the SARIMAX(p, d, q)(P, D, Q)s
model, with the inclusion of exogenous predictors X, is described as follows:

Yo = Bo + B1 X, + BaXoy + - A Br X + wyi (3)
where:

e y; is the value of the target variable at time ¢,

e [y is the intercept term, representing the baseline level of y; when all pre-
dictors are zero,

e (3; is the coefficients associated with each exogenous variable X ;, quantifying
the effect of X;: on the target variable y;,
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e X, is the i-th exogenous variable at time ¢, representing external predic-
tors that influence y; (examples could include weather conditions, economic
indicators, or policy changes),

e w; is the residual error term.

By integrating this regression equation into the SARIMA framework, SARIMAX
models can effectively capture complex dynamics influenced by internal and
external factors.

2.2. Long Short-Term Memories

ANNs are powerful functions that simulate how the human brain processes
information. An ANN is composed of a network of processing nodes (or neurons),
which perform numerical manipulations and are interconnected in a specific or-
der. Historical data can be used by ANNs to predict the future values of noisy
multivariate times series [19]. Feed-forward ANNs can be applied to sequential
or time series data, however, there are several issues that render them unsuitable
for these types of problems.

RNNs are able to capture the dynamics of sequences via recurrent connec-
tions, overcoming the limitations of feed-forward ANNs. LSTM is a special type
of RNN, which has the capability to learn longer dependencies in the dataset
[19,20]. LSTMs have been effectively used in several time series forecasting ap-
plications, e.g. in [21].

The simple LSTM architecture with forget gate [23] is depicted in Figure 1.
The forget gate determines the unnecessary component from the previous cell
state which can be computed as follows:

fe=WeXy +Ushe_1 + by (4)

where f; is the forget gate activation at time ¢. This vector determines which
part of the past information to forget, Wy is the weight matrix applied to the
input X; at time ¢, Uy is the recurrent weight matrix applied to the previous
hidden state h;—; (the output of the LSTM cell in the previous time step) and
by the ias term for the forget gate. The state update of the cell is determined by
the input gate and tanh layer, which is calculated as

iy = Wi Xy + Uihg—1 + by, (5)

where 4; is the input gate activation at time ¢. This vector decides how much
new information to store in the cell state, W; is the weight matrix applied to the
input X3, U; recurrent weight matrix applied to the previous hidden state h;_1,
b; the bias term for the input gate.

The candidate cell state at time ¢ is a new candidate memory created from
the input and the previous hidden state which is calculated as

t* = tanh(WCXt + Uchi—1 + bc) (6)
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Fig. 1. LSTM unit architecture (Based from [22]).

where tanh hyperbolic tangent activation function, ensuring the output values
are between -1 and 1, W, is the weight matrix applied to the input X;, U, the
recurrent weight matrix applied to the previous hidden state h;—; and b, the
bias term for the candidate cell state.

The cell state at time ¢ is a combination of the previous cell state, modulated
by the forget gate, and the new candidate memory, modulated by the input gate
which is calculated as

Cy = fiCi_1 + i1 Cy (7)

where f;Cy_1 the element-wise (Hadamard) product between the forget gate
activation and the previous cell state C;_1, representing the part of the previous
cell state that is retained and i;C; the element-wise (Hadamard) product between
the input gate activation and the candidate cell state, representing the new
information being stored.

The output from the cell to the next cell is calculated by the output gate as

O = WoXt + Uohtfl + bo (8)

where o0; the output gate activation at time ¢. This determines which part of the
cell state will be used for the output. W, the weight matrix applied to the input
Xy, U, the recurrent weight matrix applied to the previous hidden state h;_;
and b, bias term for the output gate.

ht = Ot tanh(Ct) (9)

where h; hidden state at time ¢. This is the output of the LSTM cell, based on
the output gate activation and the current cell state, o; output gate activation,
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Fig. 2. Overview of the models setup.

modulating the influence of the cell state on the output and tanh(C}) application
of the hyperbolic tangent function to the cell state C, ensuring the output values
are between -1 and 1.

2.3. Model setup

Figure 2 illustrates the basic flow of data of the two models employed in
this study for energy demand forecasting. The models, SARIMAX and LSTM,
are fed with a combination of temporal, energetic, and meteorological inputs.
These inputs are processed independently by each model, resulting in separate
forecasts of energy demand. The figure highlights both models sharing the same
set of inputs but producing independent outputs. The notation tw=7" indicates
a 7-day input window, while 'ftw=1" refers to a 1-day forecast window. This
means the model is trained on 7 days of historical data to predict the energy
demand for the next day (eighth day). Observed electricity demand is the target
variable, as seen in Table 1.

2.4. Metrics for performance evaluation

For evaluating training and prediction performance, we considered the Root
Mean Squared Error (RMSE), which measures the average magnitude of the er-
rors between predicted and actual values. A lower RMSE indicates better model
performance. The RMSE can vary from 0 (no error) to infinity, with higher values
indicating larger errors and poorer model performance. Additionally, we use the
coefficient of determination (R?), which represents the proportion of variance in
the dependent variable that can be predicted from the independent variables. R?
values range from 0 to 1, with a value of 1 indicating perfect prediction, where
the model explains all the variance in the target variable.
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Table 1. Input and output variables.

Input Output
Temporal Energetic Meteorological
year users minimum, mean, maximum, and
month skin temperature
day downward and net thermal and
encoded day solar radiation
latent and sensible heat flux cnerey
L demand
precipitation
runoff

surface pressure
total cloud cover
wind speed
relative humidity

3. Data description

3.1. Dataset

The electricity and meteorological data are daily time series for the period
2012 to 2023 obtained from two sources: ENERSA and the fifth-generation
ECMWF atmospheric reanalysis of the global climate (ERA5). After prepro-
cessing, the final dataset includes a total of 21 variables summarized in Table
2, all of them offered at a daily time-scale. The encoded representation of the
weekday assigns 1 for Monday, 2 for Tuesday, ..., 7 for Sunday, and 8 for holidays
(regardless of the actual weekday). This parameter is used to distinguish holi-
days from workdays and weekends, as holidays typically have a different energy
demand compared to other days.

As depicted in Figure 7 the data was split as follows: 80% for training, 10% for

validation, and 10% for testing. The split is performed using consecutive periods
of daily data, for instance, January 2012 to February 2021 for training, March
2021 to April 2022 for validation, and May 2022 to May 2023 for testing. This
approach ensures that each subset of data (training, validation, and testing)
preserves the inherent temporal structure which includes a marked annual cycle.
This is crucial for capturing seasonal fluctuations and other temporal patterns
that could impact the predictive performance of the model.

3.2. General features of the demand series

An exploratory analysis was conducted to first understand the main features
of the energy demand time series and then examine its relationship with me-
teorological variables. The electricity demand over the entire period shows a
general upward trend in demand over the years (see black curve in Figure 3).
The long-term positive trend includes two declines in 2017 and 2019, which can
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Table 2. Description of input variables.

Variable Description

Year Year of the data (2012-2023).
Month Month of the data (1-12).
Day Day of the data (1-31).

Encoded day
Users

Minimum temperature (tmin)
Mean temperature (tmean)
Maximum temperature (tmax)
Skin temperature (skt)

Solar radiation downwards (ssrd)
Thermal radiation downwards (strd)
Net shortwave radiation (ssr)
Net longwave radiation (str)
Latent heat flux (slhf)

Sensible heat flux (slhf)

Total precipitation (tp)

Surface runoff (sro)

Surface pressure (sp)

Total cloud cover (tcc)

Wind speed (ws)

Relative humidity (rh)

Encoded representation of the weekday (1-8).
Number of electricity service users.

Minimum 2-m temperature.

Mean 2-m temperature.

Maximum 2-m temperature.

Mean skin surface temperature.

Solar radiation reaching the surface.
Thermal radiation returning to the surface.
Net balance of solar radiation at the surface.
Net balance of thermal radiation at the surface.
Flux of latent heat at the surface.

Flux of sensible heat at the surface.

Total amount of precipitation.

Water flowing over the surface.

Surface air pressure.

Percentage of sky covered by clouds.

Speed of the wind.

‘Water vapor content in air.

be attributed to the tariff increases applied in Argentina during those years.
These fluctuations highlight the influence of external factors such as economic
conditions and population growth on energy consumption patterns. From the
annual cycle analysis represented in Figure 4, we observe that energy consump-
tion follows a clear "W’ pattern, with high consumption during the summer and
winter months, and lower consumption during the intermediate seasons. This
pattern is also evident in Figure 3 (see blue curve). This seasonal evolution
can be interpreted as being directly related to temperature-driven demand. In
summer, electricity demand rises for cooling purposes, while in winter, electric-
ity is used for heating. However, during winter, electricity demand for heating
is supplemented by gas services, as is common in this region and most of Ar-
gentina, which explains why the peak in winter is not as high as in summer.
Another factor is that summer temperatures in Entre Rios are more extreme
and sustained over longer periods than winter temperatures, which are generally
milder. Focusing on the dynamics of energy demand during the week, the left
panel of Figure 5 shows consumption peaks from Tuesday to Thursday, while
Sunday records the lowest levels of consumption. When holidays are isolated in
the analysis, as shown in the above panel of Figure 5, the boxplot suggests that
energy consumption during holidays is comparable to that on weekends. These
findings align with previous studies [24,25,26].
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Fig. 3. Energy demand [MWh] time series at monthly and annual time-scale.
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Fig. 4. Annual cycle of energy demand [MWHh] shown with monthly boxplots.

Lastly, we evaluate the relationship between input variables and energy de-
mand with scatter plots (Figure 6). The results underscore the dominant influ-
ence of temperature on energy consumption, with a clear pattern of demand that
increases at both low and (mainly) high temperatures while decreasing at mod-
erate temperatures, as illustrated in Figure 4. This temperature-energy demand
relationship reveals a pronounced non-linear behavior. In contrast, the effects of
other variables on energy consumption are less straightforward. While no direct
correlation is immediately evident, it is plausible that non-linear interactions
between these factors and energy demand exist, which are not apparent through
simple observation. In this context, ANNs offer a valuable tool for identifying
and modeling these complex, hidden relationships, allowing for a more compre-
hensive understanding of the various factors that influence energy consumption.
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Fig. 5. Above: Week cycle of energy demand shown with daily boxplots. Below: As
above, but separating holidays.

4. Experiments and results

4.1. Models evaluation

For the SARIMAX model, six different parameter configurations were tested
to identify the optimal setup. The best performance was achieved with p=7, d=0,
and ¢=2, where p=7 represents the order of the seasonal autoregressive com-
ponent, d=0 indicates that no differencing was applied, and ¢=2 corresponds
to the order of the moving average component. Additionally, exogenous vari-
ables were included in the model, taking advantage of SARIMAX’s capability
to account for external factors influencing the target variable. In Table 3, six
different configurations used in the experiments along with their corresponding
metric values for the test dataset can be observed. For LSTM models, a total of
thirty-one different settings were explored using the options described in section
I1. 1-layered, 2-layered, and 3-layered LSTM structures are used for modeling
with different amounts of neurons in each hidden layer. After the LSTM layers,
a fully connected layer is incorporated to further process the learned features
and capture complex patterns in the data. The number of layers and units in
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Fig. 6. Scatter plots of input meteorological variables versus energy demand at daily
time-scale.

the LSTM was selected via trial-and-error, as well as the training parameters
learning rate, and batch size. The performance of each architecture considered
was evaluated using different configurations regarding learning rate, batch size,
and number of epochs. In Table 4, some of the configurations used in the ex-
periments along with their corresponding metric values for each dataset can be
observed. For the experiments in the table, Adam optimizer [27] was used and a
patience of 150 epochs for early stopping. The models were trained for 50 to 400
epochs. It was observed in the experiments that larger batch sizes and increas-
ing the number of neurons in the layers led to a loss of generalization capacity
and performance and required a greater number of epochs during training. The
best configurations are those with, 2 layers and 5 neurons, and, 2 layers and 10
neurons, all yielding a test R? above 0.70, as highlighted in Table 1.

For the best LSTM model, which achieves an R? value of 0.77 on the test
set, the corresponding R? value on the training set is 0.64 (see Table 4). This
discrepancy suggests that the model is not overfitted and acquired generalization
capabilities. On the other hand, the best approximation of SARIMAX models
obtained R?=0.40 and RMSE=0.19 (see Table 3), suggesting it may not be
adequate to solve complex non-linear problems.

As shown in Figure 8, a forecasting comparison is presented between two
models —SARIMAX and LSTM— and the observed demand. The results sug-
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Table 3. Configurations evaluated for the SARIMAX model and their metrics.

Test
RMSE R?
19.08 0.39
29.88 -0.49

2223.32  -82.63
18.96 0.40
19.17 0.39

2094.14  -73.30

N NN
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gest that both models follow the general trend of the observed data, with the
LSTM model significantly outperforming the SARIMAX model, particularly in
capturing finer fluctuations.
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Fig. 8. Model performance comparison: SARIMAX vs. LSTM for demand forecasting
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Table 4. Configurations evaluated for the LSTM model and their metrics.

Train Validation Test
Layers Units Lr Batch RMSE R? RMSE R? RMSE R?
1 10 0.0001 4 0.09 0.73 0.16 0.38 0.20 0.29
1 20 0.0001 4 0.08 0.78 0.11 0.68 0.17 0.1
1 20 0.0001 8 0.09 069 0.14 053 0.20 0.35
1 40 0.0001 4 0.07 0.84 0.12 0.62 0.19 041
1 40 0.0001 8 0.08 079 0.13 059 020 0.37
1 40  0.0001 10 0.08 0.78 0.13 0.60 0.18 0.43
1 40 0.001 4 0.05 092 0.12 0.63 0.15 0.59
1 40  0.001 8 0.05 090 0.13 0.56 0.17 0.50
1 40  0.001 10 0.05 090 0.13 056 0.19 0.41
2 5 0.001 10 0.10 0.67 0.12 0.64 0.17 0.50
2 5 0.001 16 0.09 073 0.13 0.58 0.18 0.42
2 5 0.001 4 0.08 0.78 0.10 0.76 0.12 0.75
2 5 0001 8 0.08 0.77 0.11 0.69 0.17 0.48
2 5 0.001 10 0.10 0.64 0.10 0.73 0.12 0.77
2 5 0.001 16 0.10 0.62 0.11 0.68 0.14 0.68
2 5 0.001 32 0.10 064 0.12 0.65 0.18 0.48
2 5 0.001 8 0.10 0.63 0.13 0.59 0.17 0.53
2 5 0.001 16 0.12 045 0.14 049 0.19 0.40
2 5 0.001 32 0.12 0.51 0.14 052 0.18 047
2 10 0.001 4 0.08 0.77 0.10 0.75 0.12 0.75
2 10 0.001 8 0.08 0.76 0.10 0.73 0.14  0.67
2 10 0.001 10 0.08 0.75 0.10 0.75 0.13 0.72
2 10 0.001 16 0.10 0.67 0.12 0.63 0.17 0.52
2 20 0.001 4 0.08 0.78 0.12 0.64 0.17 0.52
2 20 0.001 8 0.08 0.75 0.11 0.07 0.15 0.62
2 20 0.001 10 0.09 0.68 0.13 0.60 0.17 0.49
2 20 0.001 16 0.09 0.71 0.12 0.64 0.17 0.50
2 20 0.001 32 0.09 0.72 0.13 0.60 0.19 0.37

5. Conclusions and future work

This paper presents a recurrent artificial neural network architecture for fore-
casting electricity demand using a case study from the province of Entre Rios,
Argentina. The study innovates by incorporating historical energy demand and
meteorological variables as inputs to the forecasting model, providing a compre-
hensive approach to forecasting energy demand. The preliminary results show
a consistent level of competence in accurate demand forecasting. The proposed
model scores 0.77 in the coefficient of determination with 0.12 RMSE when
comparing the predicted electricity demand with observations. To potentially
improve the performance of the models, it could be beneficial to extend the
exploration of the hyperparameters or modify the early stopping criteria.

Future work will focus on extending the proposed model to analyze energy
demand patterns at a more granular level by applying it to individual trans-
former stations or localities, as they can present particular energy demand pat-
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terns. While some localities exhibit notable seasonal fluctuations, others exhibit
steady demand throughout the year. Factors like regional economic activity and
demographic characteristics can be accused of this variation. It would be possible
to capture the specific features of the energy demand at every place by expand-
ing the suggested model to every transformer station or locality. This could lead
to improved energy efficiency and more precise demand predictions.

Lastly, exploring other deep learning approaches, such as combining convo-
lutional neural networks with LSTM models, and the use of transformers, could
further enhance the accuracy and robustness of electricity demand forecasting.
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