
Vinculación Universidad-Industria: Desarrollo de

sistema de administración remota por la UNS,

SIA Interactive y Fundación Sadosky

Juan Bajo1, Gonzalo Silveira2, Bruno Pazos3, Teo Vogel4, and Claudio

Delrieux1

1 DIEC-ICIC Universidad Nacional del Sur, Bahía Blanca, Argentina

{juan.bajo,cad}@uns.edu.ar
2 SIA Interactive, Buenos Aires, Argentina gonzalos@siainteractive.com

3 Departamento de Informática Trelew, Universidad Nacional de la Patagonia San

Juan Bosco, Trelew, Argentina

pazosbruno@gmail.com
4 DCIC, Universidad Nacional del Sur, Bahía Blanca, Argentina

teovogel97@gmail.com

Abstract. Los sistemas de escritorio remoto permiten a los usuarios

acceder y controlar un sistema informático desde otro dispositivo a dis-

tancia, generalmente a través de Internet. Facilitan tareas como la ad-

ministración de sistemas, el acceso a archivos y la colaboración, siendo

útiles tanto para entornos empresariales como para la asistencia técnica

y la capacitación a distancia. Si bien existen protocolos de red abiertos

para este fin, hasta el momento no existen soluciones completas de es-

critorio remoto gratuitas y de código abierto. En este trabajo se presenta

un proyecto en desarrollo de un sistema de administración y control re-

moto, diseñado para satisfacer las necesidades de empresas que requieran

esta herramienta, para soporte técnico o control de sus dispositivos. El

proyecto es llevado a cabo por integrantes de la Universidad Nacional

del Sur en colaboración con la empresa SIA Interactive, y cuenta con

financiamiento parcial de la Fundación Sadosky.

Keywords: Escritorio Remoto · Vinculación Tecnológica · Software Li-

bre

Abstract. Remote desktop systems allow users to access and control a

computer system from another device remotely, usually via the Internet.

These systems facilitate tasks such as system administration, file trans-

fer, and collaboration, being useful for both business environments and

technical support or remote training. Although there are open protocols

freely available, there are currently no complete free and open-source

remote desktop solutions. This paper presents an ongoing project for a

remote management and control system, designed to meet the needs of

companies that require this tool for technical support or device control.

The project is being carried out by members of the National University of

the South in collaboration with SIA Interactive, and is partially funded

by the Sadosky Foundation.

Vinculación Universidad-Industria: Desarrollo de sistema de administración remota por la UNS, SIA Interactive y Fundación Sadosky
Juan Bajo, Gonzalo Silveira, Bruno Pazos, Teo Vogel, and Claudio Delrieux
SADIO Electronic Journal of Informatics and Operations Research (EJS) Vol. 24 No. 2 (2025) e-ISSN 1514-6774
https://doi.org/10.24215/15146774e078 | https://revistas.unlp.edu.ar/ejs
Sociedad Argentina de Informática e Investigación Operativa | Universidad Nacional de La Plata | Buenos Aires | Argentina

Received May 2025; Accepted June 2025; Published July 2025

57

SADIO Electronic Journal of Informatics and Operations Research (EJS) e-ISSN 1514-6774

Keywords: Remote Desktop · Tecnology Transfer · Open Source

1 Introducción

Los sistemas de escritorio remoto permiten a los usuarios acceder y controlar
una computadora desde otra ubicación a través de una conexión de red, ya sea
internet o local. Estos sistemas facilitan la colaboración, el soporte técnico, la
educación [5] y el acceso a recursos computacionales desde cualquier lugar con
conexión a la red [6]. El funcionamiento de este tipo de sistemas consiste en la
instalación de un software cliente en el dispositivo desde el cual se quiere acceder
y un software de servidor en la computadora remota. Actualmente existen pro-
tocolos de red diseñados para resolver esta problemática como Remote Desktop
Protocol (RDP) de Microsoft y Virtual Network Computing (VNC) aunque su
utilización requiere de conocimientos avanzados sobre conceptos de redes y sis-
temas operativos. A partir de estas limitaciones para usuarios no técnicos, en
los últimos años se implementaron diversos sistemas comerciales populares que
simplifican la operatoria como TeamViewer [4] y AnyDesk [1]. Estas plataformas
comerciales, además del control remoto, ofrecen funciones como transferencia de
archivos, impresión remota, acceso a dispositivos locales y seguridad mediante
cifrado de datos y autenticación de usuarios. En la actualidad estos sistemas se
utilizan en una gran variedad de contextos, desde entornos empresariales hasta
uso personal para acceder a computadoras domésticas de forma remota [9].

Las soluciones comerciales existentes representan, en general, un costo ex-
tremadamente alto para empresas medianas y chicas que requieren proveer so-
porte a clientes con múltiples dispositivos. Debido a esto, es claro que se necesitan
soluciones de bajo costo y extensibles para dar soporte al acceso remoto para pe-
queñas y medianas empresas. Además, la posibilidad de integración con sistemas
propios es nula, dificultando su operación y duplicando recursos. Las ventajas
de poseer software de acceso remoto son transversales a cualquier tipo de orga-
nización, entre otras podemos identificar la optimización de recursos humanos,
la minimización de tiempos de espera y fácil acceso a terminales dedicadas, por
ejemplo en cartelería digital.

En el presente trabajo se describe el progreso del desarrollo de un sistema
remoto de administración y control de sistemas basado en la tecnología presente
en el software de código abierto RustDesk [3]. Este trabajo fue desarrollado por
la Universidad Nacional del Sur junto con la empresa SIA Interactive, financiado
parcialmente por la Fundación Sadosky.

2 Organización del Equipo

El trabajo fue llevado a cabo por un equipo mixto compuesto por desarrolladores
de la Universidad Nacional del Sur y de la empresa SIA. El seguimiento general
del proyecto junto con la coordinación de las diferentes etapas fue realizado por
la fundación Sadosky. Desde la universidad se aportó un grupo de 3 desarrol-
ladores calificados formado por un especialista en la plataforma Flutter Android,

58

SADIO Electronic Journal of Informatics and Operations Research (EJS) e-ISSN 1514-6774

y dos desarrolladores web Python avanzados. Desde la empresa SIA Interactive,
se asignaron desarrolladores front-end, diseñadores gráficos y de experiencia de
usuario y testers. La participación de SIA Interactive en el proyecto fue particu-
larmente útil debido a su experiencia en el desarrollo y desplegado de soluciones
interactivas a gran escala. Además de los desarrolladores, ambos equipos poseen
project managers internos que organizaban las tareas. La comunicación fue flu-
ida a través de plataformas de comunicaciones para trabajo y se programaron
reuniones de avance semanales. Ambos grupos colaboraron estrechamente para
asegurar el éxito y la calidad del trabajo, combinando sus habilidades y experi-
encias para alcanzar los objetivos establecidos.

El trabajo se dividió en 4 etapas de 3 meses de duración cada una alineadas
con la entrega de informes del equipo de trabajo hacia la Fundación Sadosky. En
la primera etapa se investigaron las diferentes alternativas tanto comerciales
como de software libre de aplicaciones de escritorio remoto. La recopilación
de datos generada a partir de esa investigación permitió conocer el estado del
arte respecto a esas soluciones y detectar posibles soluciones abiertas para ser
utilizadas en el proyecto a implementar. Dentro de las alternativas analizadas,
además de RustDesk, se estudiaron: TeamViewer Remote, AnyDesk, RealVNC,
GoTo Resolve, EV Reach, Apache Guacamole y MeshCentral. De todas las al-
ternativas estudiadas, se eligió RustDesk como proyecto origen por presentar
características adecuadas para el proyecto, por el soporte a diferentes codecs de
video y protocolos de transmisión, facilidades de instalación para clientes y ad-
ministradores, propiedad de los datos, seguridad, arquitectura de software, etc.
Por otra parte, RustDesk es el proyecto que más plataformas soporta, teniendo
alternativas para Android, iOS, macOS, Linux y Windows junto a un cliente
web. Durante esta etapa, también se hizo una prueba de la plataforma desple-
gada en servidores propios para ver limitaciones de ancho de banda, cantidad
de dispositivos conectados en simultáneo y funcionamiento con los dispositivos
específicos de la empresa SIA. Teniendo elegido el proyecto a partir del cuál se
iba a implementar la solución, se procedió a diseñar un modelo de datos para el
almacenamiento de los dispositivos, clientes (tenants) y usuarios.

En la segunda etapa se comenzó con la implementación del sistema backend
a partir del diseño y las especificaciones planteadas en la etapa anterior y se
comenzó con el diseño de las interfaces de usuario del sistema.

Durante la tercera y cuarta etapa se trabajó sobre la adaptación de la apli-
cación móvil Android para dar soporte al nuevo producto junto con la imple-
mentación del frontend de la plataforma previo diseño de la experiencia de
usuario.

3 Arquitectura de la solución

La solución implementada utiliza parte del desarrollo del software de código
abierto RustDesk (ver Figura 3).

59

SADIO Electronic Journal of Informatics and Operations Research (EJS) e-ISSN 1514-6774

3.1 RustDesk

RustDesk es una solución de software libre, desarrollado en lenguaje de progra-
mación Rust junto con el framework para desarrollo multi-plataforma Flutter,
para acceso y control remoto que permite operar con dispositivos de manera re-
mota. El cliente está disponible en diversos sistemas operativos como Microsoft
Windows, Apple macOS, Apple iOS, Android y Linux, además de un cliente
web. El diseño de RustDesk permite su utilización sin la necesidad de contar
con herramientas adicionales como VPNs o direccionamiento de puertos. Fun-
ciona, además, a través de firewalls o NATs. Estas características permiten gran
facilidad de uso por parte de usuarios finales sin conocimientos técnicos avanza-
dos, como así también su adopción en entornos seguros. Entre sus características
distintivas se incluyen: acceso remoto multiplataforma, encriptación end-to-end,
posibilidad de desplegar servidor propio, transferencia de archivos, y TCP tun-
neling. Por el momento, la solución libre ofrece el código para los distintos sis-
temas operativos junto con el código fuente de los servidores involucrados para
desplegar un servidor propio en la nube. Es importante aclarar que la solución
brindada por RustDesk no incluye la administración de dispositivos, lo cual es
de vital importancia en empresas que tengan acceso a gran cantidad de ellos.
El objetivo del desarrollo del software es agregar la capacidad de la gestión au-
tomática de los dispositivos remotos junto con un sistema de control de acceso
flexible para soporte técnico. Si bien la solución fue desarrollada junto con SIA
Interactive para ser utilizada en sus sistema de cartelería digital, el proyecto se
mantiene libre para su adopción por parte de otros actores.

3.2 Protocolo Rendezvous

El protocolo Rendezvous en redes es un método utilizado para permitir que
dispositivos o nodos en una red se comuniquen entre sí sin necesidad de tener
información previa sobre las direcciones IP o ubicaciones de los otros nodos. Este
protocolo se utiliza comúnmente en sistemas de comunicación peer-to-peer (P2P)
y en redes de sensores [8]. En RustDesk, la implementación de este protocolo
consiste en los siguientes pasos (ver Figura 2 y 6).

– Registro inicial: Cuando se lanza la aplicación RustDesk en algún dispositivo
conectado a la red, se registra en un servidor Rendezvous centralizado (sig-
naling server). Durante este registro, el nodo proporciona información sobre
sus capacidades y servicios disponibles, mientras que el servidor responde
con las credenciales para su acceso.

– Solicitud de conexión: Cuando un nodo necesita comunicarse con otro nodo
en la red, envía una solicitud al servidor Rendezvous especificando las cre-
denciales del dispositivo remoto a conectarse.

– Búsqueda: El servidor Rendezvous busca en su base de datos de nodos reg-
istrados las credenciales provistas y retorna los datos de conexión del dis-
positivo remoto para un intento de conexión a través de la técnica de Punch

Hole [7].

60

SADIO Electronic Journal of Informatics and Operations Research (EJS) e-ISSN 1514-6774

Fig. 1. Capturas de la aplicación de RustDesk para Android. La aplicación funciona
tanto como cliente, para controlar un dispositivo remoto, como servidor para ser con-
trolado.

– Comunicación directa: En caso que el Punch Hole funcione se establece la
conexión con el stream de video correspondiente con el escritorio remoto.
En caso que falle, se utiliza un segundo servidor rendezvous, llamado Relay
Server el cual es accesible por los dispositivos cliente y servidor.

4 Implementación

Si bien la solución de RustDesk provee una implementación para la conexión
punto a punto y el envío de comandos del cliente y el video del servidor, no
provee soporte para la administración de los dispositivos a controlar. Esta fun-
cionalidad es un valor agregado de las soluciones comerciales y es fundamen-
tal para empresas con gran cantidad de dispositivos para controlar, como lo es
típicamente una empresa de cartelería digital. En la operación propia de una
empresa de estas características es necesario contar con las nociones de cliente
(tenant), dispositivo, carpeta de dispositivos, además de un esquema flexible de
permisos pensado para el soporte técnico. Para lograr un sistema completo de
administración de dispositivos se implementó un panel de administración web
para los dispositivos y se modificó la aplicación cliente del proyecto RustDesk
para interactuar con el mencionado panel.

4.1 Aplicación cliente

La aplicación cliente del proyecto RustDesk es el punto de entrada a la solución.
Consiste en un ejecutable disponible para los sistemas operativos más utilizados
tanto de escritorio como móviles. Si bien se la denomina aplicación cliente debido

61

SADIO Electronic Journal of Informatics and Operations Research (EJS) e-ISSN 1514-6774

a la arquitectura rendezvous mencionada, desde el punto de vista lógico funciona
como cliente y servidor al mismo tiempo. Su utilización es similar a las soluciones
comerciales: al momento de ejecutarla provee las credenciales necesarias para
conectarse a ese dispositivo a partir de un número único a nivel sistema y una
contraseña. También existe la posibilidad de usar ese mismo aplicativo para
conectarse a otro dispositivo ingresando las credenciales del sistema remoto al
cuál se quiere conectar. Ver imagen 1

La aplicación está desarrollada utilizando el framework Flutter [2] para desar-
rollo multiplataforma,ma, mientras que el núcleo está implementado utilizando
el lenguaje Rust. De esta manera, se tienen clientes en diferentes sistemas oper-
ativos de manera rápida, sin necesidad de reescribir la lógica de comunicación.

Esta aplicación, parte del proyecto RustDesk, fue modificada para ser parte
de la solución propia. En primer lugar, se implementó la lógica para que la
aplicación se comunique con el panel de administración, a través de una au-
tenticación. Al momento de instalar un nuevo dispositivo, la persona técnica
encargada ingresa un usuario y una contraseña y la aplicación quedará asoci-
ada con el panel de seguimiento. Posteriormente, cada vez que la aplicación rote
sus credenciales, se subirán actualizadas al panel. Esto es necesario para que
el usuario final pueda acceder directamente desde el panel de seguimiento, sin
necesidad de recordar las claves de acceso o de otro técnico frente al dispositivo.

4.2 Panel de administración

El objetivo general del trabajo en desarrollo consiste en implementar un sistema
completo de administración de dispositivos remotos. En este sentido es necesario
diseñar un sistema que permita, entre otras cuestiones, el manejo de los dispos-
itivos por parte de los usuarios del sistema y los respectivos permisos, así como
también la organización de los dispositivos de manera lógica.

El panel de seguimiento se implementó como una aplicación web RESTful
cliente-servidor (Ver imagen 5). El backend del panel de administración fue im-
plementado utilizando Python y el framework FastAPI, junto con una base de
datos relacional.

La aplicación cuenta con ABM de usuarios y sistema de login. La organización
de los dispositivos es multi-usuario (multi-tenant). Dentro de cada tenant se
almacenan los dispositivos organizados lógicamente en carpetas. En sistemas de
cartelería digital, esto permite organizar lógicamente los dispositivos emulando
su organización física, por ejemplo, en cadenas de negocios que poseen múltiples
sucursales.

5 Resultados y discusiones

Actualmente, el proyecto se encuentra en la etapa final de desarrollo. La elec-
ción de RustDesk como origen al desarrollo presentado fue producto de una etapa
de pruebas de todas las opciones viables. En esta etapa se probaron múltiples
soluciones, tanto comerciales como libres, algunas de ellas fueron: TeamViewer

62

SADIO Electronic Journal of Informatics and Operations Research (EJS) e-ISSN 1514-6774

Remote, AnyDesk, RealVNC, ConnectWise ScreenConnect, GoTo Resolve, EV
Reach, Apache Guacamole y MeshCentral. La ventaja de RustDesk es su buen
funcionamiento, su disponibilidad en diferentes sistemas operativos y la posibil-
idad de self-hosting de su arquitectura completa. Las pruebas fueron realizadas
desplegando la arquitectura en sistemas de infraestructura como servicio (IaaS)
Amazon Web Services y Microsoft Azure.

El equipo de trabajo está compuesto por dos líderes de proyecto, uno por
cada institución involucrada en el desarrollo informático: UNS y SIA Interactive.
Además, el equipo posee 4 desarrolladores de software entre ambas instituciones.

Una vez terminado, el proyecto será de dominio público y podrá ser usado
y desplegado por cualquier organización que requiera resolver el problema del
acceso remoto.

6 Conclusión

En este trabajo se presentó un caso de desarrollo de software llevado a cabo
entre la Universidad Nacional del Sur, la empresa SIA Interactive por medio del
financiamiento parcial de la fundación Sadosky. El desarrollo de este proyecto
en colaboración entre la Universidad Nacional del Sur y la empresa SIA Inter-
active permitió enriquecer tanto el proceso de investigación como su aplicación
práctica. En primer lugar, la universidad aportó conocimiento teórico, y una
base académica sólida, lo que asegura que el proyecto esté respaldado por los
últimos avances en el campo. Por otro lado, la empresa aportó experiencia prác-
tica al haber desarrollado sistemas con restricciones similares, comprensión de
las necesidades del mercado y capacidad para implementar soluciones de manera
eficiente y rentable. Los avances realizados a partir de esta vinculación prometen
dar soluciones a la comunidad sobre un problema cuya solución de código libre
aún no existe y proponer un caso de éxito entre las dos instituciones.

References

1. Anydesk website. Available at http:// https://www.anydesk.com/ (10/4/2024)
2. Flutter website. Available at http://flutter.dev/ (10/4/2024)
3. Rustdesk website. Available at http:// rustdesk.com/ (17/4/2024)
4. Teamviewer website. Available at http://www.teamviewer.com/ (10/4/2024)
5. Hutchison, D., Bekkering, E.: Using remote desktop applications in education
6. Jiang, M., Gou, G., Shi, J., Xiong, G.: I know what you are do-

ing with remote desktop. In: 2019 IEEE 38th International Performance
Computing and Communications Conference (IPCCC). pp. 1–7 (2019).
https://doi.org/10.1109/IPCCC47392.2019.8958721

7. Maier, D., Haase, O., Wäsch, J., Waldvogel, M.: Nat hole punching revisited. In:
2011 IEEE 36th Conference on Local Computer Networks. pp. 147–150 (2011).
https://doi.org/10.1109/LCN.2011.6115173

8. Pelc, A.: Deterministic rendezvous in networks: A comprehensive survey. Net-
works 59(3), 331–347 (2012). https://doi.org/https://doi.org/10.1002/net.21453,
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.21453

63

SADIO Electronic Journal of Informatics and Operations Research (EJS) e-ISSN 1514-6774

Fig. 2. El Protocolo Rendezvouz implementado permite que dos dispositivos puedan
accederse y comunicarse en entornos de redes privadas. Al momento de iniciar la apli-
cación, tanto el cliente como el servidor se reportan al signaling server obteniendo un
id único. Si la técnica de Hole Punching es exitosa se genera una conexión punto a
punto, caso contrario la comunicación se realiza a través del relay server.

9. Song, T., Wang, J., Wu, J., Ma, R., Liang, A., Gu, T.,
Qi, Z.: Fastdesk: A remote desktop virtualization system for
multi-tenant. Future Generation Computer Systems 81, 478–491
(2018). https://doi.org/https://doi.org/10.1016/j.future.2017.07.001,
https://www.sciencedirect.com/science/article/pii/S0167739X17304776

64

SADIO Electronic Journal of Informatics and Operations Research (EJS) e-ISSN 1514-6774

Fig. 3. Arquitectura del sistema desarrollado. A partir de las soluciones del Relay y
Signaling Server, provistas por el proyecto RustDesk, se implemento una aplicación
cliente-servidor web que permite la administración de dispositivos.

65

SADIO Electronic Journal of Informatics and Operations Research (EJS) e-ISSN 1514-6774

Fig. 4. La aplicación del proyecto original fue modificada para ser funcional a la nueva
arquietectura del sistema planteada.

Fig. 5. Captura del panel web del administrador de dispositivos. Los dispositivos son
organizados en tenants y carpetas

66

SADIO Electronic Journal of Informatics and Operations Research (EJS) e-ISSN 1514-6774

Fig. 6. Detalle de la implementación del protocolo de rendezvous. Imagen extraída de
la documentación pública de RustDesk [3]

67

SADIO Electronic Journal of Informatics and Operations Research (EJS) e-ISSN 1514-6774

