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RESUMEN 

El aprendizaje automático está marcando el ritmo del avance del análisis de datos en muchos 

campos de la ciencia, la tecnología y la industria. En este contexto, el procesamiento y la inversión 

de datos sísmicos se abordan mediante estrategias que extraen la información relevante de los 

datos de forma casi automática. El “dictionary learning” y las Redes Neuronales son dos 

ejemplos comunes de algoritmos capaces de capturar las estructuras y patrones complejos 

incrustados en los datos e inferir o predecir cierta información de interés a partir de ellos. 

Utilizamos la técnica de “residual dictionary denoising” para atenuar la huella de adquisición en 

los datos sísmicos 3D. Además, demostramos algunos avances en el uso de una red neuronal 

profunda para invertir el tensor de momento sísmico en escenarios de monitorización de pozos. El 

aprendizaje automático también incluye técnicas de optimización global, como el recocido 

simulado y la evolución diferencial. Exploramos cómo estos dos algoritmos pueden automatizar 

procesos en la exploración sísmica, como el análisis de la velocidad y el “well-tying” que 

convencionalmente se hacen a mano y, por lo tanto, son susceptibles de la subjetividad y la 

experiencia del usuario. 

PALABRAS CLAVES: EXPLORACION SISMICA; VELOCIDADES; REDES NEURONALES 

 

ABSTRACT 

 

Machine learning is setting the pace in the advancement of data analysis in many fields of science, 

technology, and industry. In this context, seismic data processing and inversion are approached by 

strategies that extract the relevant information from the data almost automatically. Dictionary 

learning and neural networks are two common examples of algorithms capable of capturing the 

complex structures and patterns embedded in data and inferring or predicting certain information of 

interest from them. We use a residual dictionary denoising technique to attenuate the acquisition 

footprint in 3D seismic data. Besides, we demonstrate some progress in using a deep neural 

network to invert the seismic moment tensor in well-monitoring scenarios. Machine learning also 

includes global optimization techniques, such as simulated annealing and differential evolution. We 

explore how these two algorithms can automate processes in seismic exploration such as velocity 

analysis and well-tying, which are conventionally done by hand and are thus susceptible to user 

subjectivity and experience. 
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INTRODUCTION 

 

Machine learning (ML) are algorithms and strategies devised for making predictions from data 

without the use of explicit deterministic coding/modeling. It is difficult to pinpoint when ML first 

appeared, but one of the key works that put on the table the idea of a computer learning to "think" 

like a human was in the late 1950s (Samuel 1959). Since then, the number of developments and 

applications has increased dramatically. ML algorithms, such as artificial neural networks (ANN), 

are useful for extracting information from large datasets associated with complex systems when a 

deterministic approach/model is unavailable (e.g., predicting which movie a given streaming 

service subscriber would like to watch (Bennett, Lanning, and others 2007)). 

Deep neural networks (DNN), convolutional neural networks (CNN), and supervised or 

unsupervised NN are ANN examples. DNN is an acronym for NN with multiple layers. In the 

simplest of settings, each layer of a DNN contains affine transforms that are linked together by 

nonlinear “activation functions". CNN, on the other hand, use convolutional filters instead of affine 

transforms. In supervised systems, the concept of “learn-by-examples” is crucial, which requires 

the examples to be labeled; while in unsupervised systems, the NN learns to cluster the input data 

into groups with distinct features. 

Dictionary learning (DL), evolutionary algorithms such as genetic algorithms (GA) and 

differential evolution (DE), simulated annealing (SA), particle swarm optimization (PSO), and 

others are also examples of ML methods (Qadrouh et al. 2019 e.g.). DL (Tošić and Frossard 2011 

e.g.), for example, draws a limited number of patches from the input data to create a dictionary, 

which is then used to fit the original data by learning through sparse representations. On the other 

hand, GA (Goldberg 1989 e.g.) mimics the process of natural selection, whereas SA (Davis 1987 

e.g.) mimics the process of annealing. Contrarily, DE (Storn and Price 1997 e.g.) does not mimic 

any natural or biological process, but borrows concepts from GA such as crossover and mutation. 

In geophysics, ML has found many successful applications (Bougher 2016; Qadrouh et al. 

2019), including predicting petrophysical properties (e.g. porosity, permeability) from well-log 

and/or seismic data, seismic data interpolation, denoising, and reconstruction, seismic inversion for 

reservoir/mining applications, subsurface facies classification and structure 

delineation/identification (e.g. faults, salt bodies), signal detection, and horizon/velocity picking. 

The list of applications is constantly growing. 

We describe four novel applications developed recently by the METIS group (“Métodos 

especializados para el procesamiento de la información sísmica”, Facultad de Ciencias 

Astronómicas y Geofísicas, UNLP) that use a variety of ML techniques adopted for processing 

seismic data. The first two are methods for uncovering hidden patterns and information in input 

data: (1) footprint removal using DL (Gómez and Velis 2020) and (2) moment tensor inversion 

using NN (Brunini, Velis, and Sabbione 2021). The other two are methods to automate processes 

that are normally carried out by hand: (1) automated well tying and phase estimation using DE 

(Gelpi, Pérez, and Velis 2020), and (2) automated velocity analysis using SA (Velis 2021). 

The report is divided into two parts, each with two sections, one for each of the four applications 

mentioned above. Each section begins by presenting the problem, objectives, and methods, as 

well as a brief description of the machine learning (ML) used. The techniques are then 

demonstrated using synthetic and/or field data examples, which leads to draw the conclusions 

summarized at the end of each section. For a complete description of the methods, the reader is 

directed to the corresponding publications. 
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METHODS TO UNCOVER HIDDEN PATTERNS AND INFORMATION BY LEARNING FROM 

DATA 

 
In this section we describe two ML applications to seismic data analysis: (1) footprint removal 

using DL (Gómez and Velis 2020) and (2) moment tensor inversion using NN (Brunini, Velis, and 

Sabbione 2021). Essentially, both dictionary learning (DL) and neural networks (NN) learn from the 

input data by uncovering hidden patterns and information, either to make predictions or to capture 

its most relevant components. DL assumes that the observed data is a linear combination of a few 

atoms. These atoms are learned from patches extracted from the input data and contain the most 

important blocks of information, while ignoring irrelevant details such as random noise. On the 

other hand, NN employ an artificial net to predict the underlying model that reproduces a set of 

given observations. For training the network, a large amount of simulated data can be used. The 

training process updates the network parameters so the resulting algorithm can model the 

observed data with great accuracy and, ultimately, give reasonable predictions for unseen 

datasets. 

 
Footprint removal using DL 

 
Seismic data can contain random and coherent noise. A typical example of coherent noise is 

the acquisition footprint, which can lead to an incorrect assessment of the geological structure of 

the reservoirs. Therefore, the removal of footprint noise from seismic data is of great interest for 

seismic interpretation and data analysis (Sahai and Soofi 2006; Alali, Machado, and Marfurt 2018). 

The acquisition footprint is caused by constraints in acquisition design, acquisition equipment, and 

the processing workflow applied to the recorded seismic data (Marfurt et al. 1998). There are 

various standard techniques for footprint attenuation, most of them based on wavenumber filtering 

(Gülünay, Martin, and Martínez 1994; Gülünay 1999; Chopra and Larsen 2000; Drummond, Budd, 

and Ryan 2000; Soubaras 2002; Falconer and Marfurt 2008). 

In the case of random noise, dictionary learning (DL) methods borrowed from the field of sparse 

and redundant representation of signals (Mallat 1999; Elad 2010; Tošić and Frossard 2011), 

provide several interesting applications in seismic processing (Beckouche and Ma 2014; Turquais, 

Asgedom, and Söllner 2017a; Li, Zhang, and Mosher 2019; Zu et al. 2019). A dictionary is a 

collection of redundant vectors known as atoms. The DL process is an alternate optimization 

scheme. Given an initial dictionary, a sparse representation of the data is calculated. The sparse 

representation is then applied to update the initial dictionary. The updated dictionary improves the 

sparseness of the data representation. This two-step process iterates until convergence. For 

coherent noise, DL often requires complex atom classification strategies to differentiate atoms that 

contain structured noise from those that contain seismic signal (Turquais, Asgedom, and Söllner 

2017b). Residual dictionary denoising (RDD) (Gómez and Velis 2020) overcomes this issue. It 

uses an augmented dictionary of filtered atoms and their residuals after edge-preserving 

smoothing. The atoms in the residual dictionary provide a good representation of the footprint 

pattern. This fact is used to enable automated source separation. 

 

Dictionary learning 

DL is a machine learning technique for finding a sparse representation of a given dataset using 

a relatively small set of atoms. These atoms are learned from patches of the input data: 

 

{𝐷̂, 𝑋} = arg min𝐷,𝑋 ∥ 𝑋 ∥0 s.t.min
𝐷

∥ 𝑌 − 𝐷𝑋 ∥F
2 ,    (1) 
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where 𝑌 represents a collection of 2D patches from the input data in column vector form, 𝐷 the 

dictionary, and 𝑋 the sparse representation of the data patches collected in 𝑌 (Tošić and Frossard 

2011 e.g.). The operator ∥ 𝑋 ∥0 counts the number of nonzero entries in 𝑋, and ∥⋅∥F
2 is the square 

of the Frobenius matrix norm. In practice, we solve this problem using coherent DL (CDL) 

(Turquais, Asgedom, and Söllner 2017a). 

The method of residual dictionary denoising (RDD) allows to separate signal from coherent 

noise by building an augmented dictionary (𝐷a) that comprises filtered atoms (𝐷f) and residual 

atoms (𝐷r) (Gómez and Velis 2020): 

 

𝐷a = 𝐷f ∪ 𝐷r, 𝐷r = 𝐷 − 𝐷f.    (2) 

 

Figure 1 shows an atom drawn from the learned dictionary 𝐷̂ that contains both signal and 

acquisition footprint. After filtering, the atom will be mostly signal, while the residual atom will be 

mostly acquisition footprint. We can denoise each patch of the original data 𝑦 by removing the 

footprint component given by the residual dictionary: 𝑦r = 𝐷r𝑥r. That is 

 
𝑦 = 𝑦 − 𝐷r𝑥r,        (3) 

 

where 𝑦 is the denoised patch. Assembling and averaging the denoised patches yields the 

filtered seismic data. 

 
Figure 1. By filtering, a dictionary atom 𝑑𝑗 is separated into a signal atom 𝑑𝑓𝑗 and a residual atom 𝑑𝑟𝑗. The 

energy from the coherent noise should be mostly represented by 𝑑𝑟𝑗. Modified after (Gómez and Velis 

2020). 

 

Examples 

 

Figure 2 shows a synthetic example that illustrates the filtering of a 3D seismic volume. In this 

case, the data (left panel) contains both random and coherent noise. Figure 3 depicts the 

corresponding learned, filtered, and residual dictionaries. The learned dictionary is a mixture of the 

seismic signal and the footprint noise. The augmented dictionary 𝐷a consists of the filtered 

dictionary 𝐷f and the residual dictionary 𝐷r. As shown in Figure 2 (middle and right panels), RDD 

captures the coherence noise, which is then removed from the original data. 
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Figure 2. Synthetic example. Left: 3D cube with random and coherent noise. Middle: result after RDD. Right: 

residual (scaled by a factor of 5 for better visualization). Modified after (Gómez and Velis 2020). 

 

 

 
Figure 3. Synthetic example. Learned, filtered, and residual dictionaries corresponding to data shown in 

Figure 2 (left panel). Modified after (Gómez and Velis 2020). 

 

 

We apply RDD to offshore seismic data from Nova Scotia, Canada. We compare the results of 

RDD, conventional DL, and wavenumber filtering using a single time slice in Figure 4. The resulting 

RDD image is footprint-free, sharp, and with negligible signal leakage. Figure 5 shows the 

corresponding dictionaries.  

We note that to achieve a similar result with wavenumber filtering, a seismic processor should 

choose a filter and tune its parameters (e.g., the cutoff frequencies) by inspecting the given data 

and the filtered result in an iterative fashion. Figure 6 shows that RDD does an acceptable work in 

the whole seismic data: the filtered volume is free of footprint, while the residual volume clearly 

contains the undesired coherent noise. RDD is applied time slice by time slice in this example. 
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Figure 4. Field data example. Top: Time slice at 𝑡 = 0.116 s (left), filtered by RDD (middle) and residual 

(right). Second row: Filtered by conventional DL and residual. Bottom: filtered by wavenumber filtering and 

residual. The yellow sector shows the size of a patch used for learning the dictionary. The residuals are 

scaled 5 times for visualization. Modified after (Gómez and Velis 2020). 
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Figure 5. Field data example: learned, filtered, and residual dictionaries corresponding to data shown in 

Figure 4 (top left panel). Modified after (Gómez and Velis 2020). 

 

 

 
Figure 6. Field data example. Original subvolume, filtered by RDD, and residual. The residual is scaled 5 

times for visualization. 

 

 

One key feature of RDD is its application in transfer learning mode, where the dictionary learned 

from one time slice can be used to filter different time slices. This saves computational effort, since 

the most expensive step in RDD is learning the dictionary 𝐷̂ from the alternate optimization 

scheme. Figure 7 shows an example of filtering a different time slice of the offshore dataset using 

the dictionary shown in Figure 5. Finally, Figure 8 shows the complete seismic data filtered using 

RDD with transfer learning. 

 

 
Figure 7. Field data example. Left: Time slice at 𝑡 = 0.136 s. Right: Filtered time slice with transfer 

learning, where the augmented dictionary was derived from the time slice at 𝑡 = 0.116 s (Figure 5). Modified 

after (Gómez and Velis 2020). 
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Figure 8. Field data example. Left: Whole subset. Middle: Subset filtered by RDD with transfer learning. 

Right: Residual (scaled by 5). The dictionary learned at 𝑡 = 0.116 s was filtered and enhanced to be applied 

to the whole subset. The inlines and crosslines show that signal is preserved in the whole dataset. Modified 

after (Gómez and Velis 2020). 

 

 

Conclusions 

The proposed RDD method is a dictionary learning variant that can remove coherent noise from 

time slices of 3D seismic data without analyzing the data’s morphology to classify the atoms by 

hand. The augmented dictionary joins the filtered and residual dictionaries, allowing the exclusion 

of the footprint patterns from the data’s final sparse representation automatically. The denoising 

process is further automated and simplified by RDD’s transfer learning capabilities. 

 
Moment tensor inversion using NN 

 
Solving the MTI problem is important for monitoring microseismic hydraulic fracturing processes 

(Baig and Urbancic 2010). The focal mechanism is typically the most valuable information 

extracted from a microseismic monitor survey, as it provides insights into fracture orientation and 

slip directions, ultimately aiding in the understanding of a reservoir’s geomechanical behavior 

(Grechka and Heigl 2017). Figure 9 (left) depicts a typical hydraulic fracturing scenario where two 

vertical wells containing an array with 3C geophones record seismic data generated by several 

events in the nearby. Figure 9 (right) shows a sample 3C microseismic dataset as acquired by one 

of the well arrays. The data contains the P-wave arrival and two S-wave phases because we 

consider a subsurface with vertical transverse isotropy. In MTI, the fracture mechanism should be 

obtained from the amplitude information contained in these observed data. Several limiting factors, 

such as the poor angle apertures that characterize most acquisition geometries and the data’s low 

signal-to-noise ratio, may prevent this task from being accomplished successfully and without 

ambiguity. 
MTI methods are typically deterministic (Vavryčuk and Kühn 2012; V. I. Grechka 2015). 

However, only a few works have been dedicated to solving the MTI problem using ML/AI 

(Ovcharenko, Akram, and Peter 2018; Binder 2018; Wamriew et al. 2020). Deterministic methods 

necessitate a significant computational effort and do not allow for the easy solution of new MTI as 

new data is acquired, because the MTI solver is dependent on each specific data. NNs, on the 

other hand, allow for the generation of solutions for any new dataset on the fly, as long as they are 

well-trained beforehand. Because of the well-known theoretical limitations imposed by the single-

well MTI scenario (V. Grechka 2015 e.g.), the deep neural network that we propose (Brunini, Velis, 

and Sabbione 2021) solves the MTI problem in a dual-vertical-borehole case. 
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Figure 9. Left: subsurface (VTI: vertical transverse isotropy) and acquisition geometry. A large number of 

fractures with random focal mechanism and coordinates. Right: sample 3C microseismic signal showing P- 

and both slow and fast S-wave phases. Modified after (Brunini, Velis, and Sabbione 2021). 

 

Deep neural network 

A typical deep neural network (DNN) consists of several neuron layers interconnected by 

nonlinear activation functions. The base computation of a DNN involves the following relation for 

one neuron of one layer: 

 

𝑦 = 𝑔(𝑤 ⋅ 𝑥 + 𝑏),      (4) 

 

where 𝑥 is the input as a column vector, 𝑤 the weights and 𝑏 the bias of the neuron, 

respectively, 𝑔 a nonlinear activation function, 𝑦 the output node, and the operator ⋅ the inner 

product (Goodfellow, Bengio, and Courville 2016). Collecting all the outputs for different neurons 

we get the column vector 𝑦, which is the output of one layer. The output of one layer is connected 

to the next layer of neurons until reaching the output layer with its desired output size or number of 

nodes. The weights and biases of all the layers are the model parameters (unknowns) estimated 

by training. The input layer is fed by the input data 𝑥 (which are known as features). The output 

layer produces the prediction of the model. 

The DNN used to solve the MTI problem contains 6 layers, where the input layer has 93 nodes, 

each one associated with a feature (10 receivers x 3 components x 3 phases + 3 coordinates), and 

the output layer has 6 nodes, each one associated with a prediction (6-independent MT elements). 

For the prediction, we rely on the mean squared error (MSE) loss function. For training we use 

9 × 105 simulated events with known source mechanisms and coordinates, while for testing we 

used 9 × 104 simulated events. 

 

Examples 

Figure 10 shows the results of the MTI inversion using the proposed DNN. As shown, most 

predicted MT parameters are very similar to the actual values, both in the training and in the testing 

stages. Figure 11 shows the relative errors for the 9 × 105 predicted events during the training 

stage. We observe a very high accuracy in most cases, except for those events that are placed 
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along the vertical plane that contains both wells. In these cases, as expected, the information 

contained in the observed data is not enough to resolve the inverse problem unambiguously. 

 
Figure 10. Left: Correlation coefficient between actual and predicted MT elements for the testing dataset. 

Right: Relative error between actual (green) and predicted (red) MT elements. Top: 0.99 ≤ 𝜌 ≤ 1.0 (>70%) 

bottom: 0.94 ≤ 𝜌 < 0.95 (<1%). Modified after (Brunini, Velis, and Sabbione 2021). 

 

 

 

 
Figure 11. Relative errors of the predicted MT elements (different ranges). Largest errors are aligned 

along the vertical plane that contains the wells. Modified after (Brunini, Velis, and Sabbione 2021). 

 

Conclusions 

The proposed DNN architecture is capable of accurately predicting most testing data. The 

inversion is poor for events near the plane containing both wells, but becomes very accurate as 

they move away from this plane. The results show that a well-trained DNN is a good alternative to 
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traditional MTI methods because it can be used on the fly whenever new seismic data for the same 

monitoring scenario is acquired. 

 
METHODS TO AUTOMATE PROCESSES THAT ARE NORMALLY CARRIED OUT BY HAND 

 
We describe in this section two ML applications to automate seismic data processes that are 

usually carried out by hand: (1) automated well tying and phase estimation using DE (Gelpi, Pérez, 

and Velis 2020), and (2) automated velocity analysis using SA (Velis 2021). Both differential 

evolution (DE) and simulated annealing (SA) are stochastic optimization algorithms whose goal 

can be stated as: given a cost or objective function (any “function” or process that produces an 

output from a given input), find the global minimum regardless of the initial guess. Of the two 

methods considered, simulated annealing (SA) (Laarhoven and Aarts 1988 e.g.) mimics the 

process of annealing (i.e. slow cooling of metals until they reach the lowest energy state). 

Differential evolution (DE) (Storn and Price 1997), on the other hand, does not mimic any natural 

process, but borrows some concepts from genetic algorithms (GA), that do mimic a natural process 

(Darwin’s evolution). 

Both DE and SA rely on some randomization to carry out the search, which is done in a clever 

way so that the model space (space of feasible solutions) can be explored without evaluating all 

feasible solutions. Unlike most non-stochastic optimization algorithms (e.g., steepest descent), 

they do not require derivatives, avoid local minima, perform well for ill-behaved functions, and allow 

for the incorporation of constraints easily. These key characteristics enable these algorithms to 

solve difficult optimization problems, such as those that arise in complex scenarios. For instance, 

for finding a set of parameters that control a number of processes applied to input data to achieve 

a desired goal, regardless of the complexity of the underlying processes. It is important to note, 

however, that the convergence of most stochastic optimization algorithms is not guaranteed and 

may be too slow, especially when the number of unknowns (parameters) is relatively large (“curse 

of dimensionality”). In the applications that follow, we show how relatively complex manual seismic 

processes can be emulated using DE and SA to improve efficiency and reduce user subjectivity. 

 

Automated well tying and phase estimation using DE 

 
The goal of well-tying is to match the observed seismic data to the seismic trace obtained from 

well-log data (synthetic trace). This enables the linking of well-log information, such as geological 

units and formations, to seismic data, an important aspect of seismic data interpretation 

(Ziolkowski, Underhill, and Johnston 1998; Herron 2011; Simm and Bacon 2014 e.g.). This process 

is traditionally done by hand (trial-and-error) by adding bulk time shifts and phase rotations. 

Furthermore, some trace stretching and/or squeezing may be required at some points along the 

time scale to improve the match. This process, as expected, is inefficient and prone to 

inconsistencies because it is subject to the user’s subjectivity and the arbitrary selection of the 

parameters (Walden and White 1984; White and Simm 2003; Newrick 2012). 

These issues highlight the need for automated or semi-automated methods to mimic the human 

process. One of these methods is dynamic time warping (DTW), which allows to attain high 

correlation values between the observed and synthetic traces (Herrera, Fomel, and Baan 2014; 

Muñoz and Hale 2015), but frequently comes at the expense of introducing some waveform 

distortions. In contrast, the proposed method iteratively modifies the log data (and the wavelet 

phase) to significantly increase the match without any waveform distortions (Gelpi, Pérez, and 

Velis 2020). The velocity log is perturbed (modified) by applying a function created by a monotonic 

cubic splines interpolator, 𝑝(𝑧), with a fixed number of knots 𝑀: 

 

𝑣𝑚𝑜𝑑(𝑧𝑖) = 𝑣𝑜𝑏𝑠(𝑧𝑖)[1 + 𝑝(𝑧𝑖)],      (5) 
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with 𝑖 = 1,𝑀. The knots coordinates are regarded as the unknowns in a global optimization 

problem aimed at maximizing the aforementioned correlation. We solve this problem using DE. 

Further, the wavelet phase is included as an additional unknown to account for wavelet 

uncertainties. 

 
Differential evolution 

 
Figure 12. Flowchart of DE (used to automate the well-tying problem). 𝑚 stands for model parameters 

(unknowns), 𝐽 for cost function, and 𝑘 for generation. 

 

Figure 12 depicts a typical DE algorithm. The first step is to generate an initial population of 𝑁𝑝 

vectors 𝑚𝑖,0, where 𝑖 = 1,⋯ ,𝑁𝑃. Then, DE involves the following steps: mutation-recombination, 

crossover, and selection. Mutation refers to the process of expanding the search space, whereas 

recombination refers to the process of reusing previously successful individuals. Here, 𝐹 is a 

preselected factor used to scale the difference between two randomly selected vector of the same 

generation 𝑘. Crossover is a type of discrete recombination in which trial vectors 𝑣′𝑖,𝑘 are created 

by randomly combining the components 𝑗 of mutant and ordinary vectors (𝑟 is the crossover 

probability, set beforehand). Finally, selection mimics the survival of the fittest observed in the 

majority of natural phenomena. The number 𝑁𝑝 is normally kept constant throughout the process, 

but there are no theoretical constraints on this. There are numerous DE variants, with the main 

difference being how the mutation stage is implemented. 
Examples 

First, we demonstrate the method with pseudo-synthetic data, in which we simulated the 

observed seismic trace using actual field well-log data and an ad hoc seismic wavelet. Figure 13, 

from left to right, shows the observed (black) and modified (red) velocity logs, the monotonic cubic 

splines with 𝑀 knots 𝑝(𝑧) function used to modify the observed velocity log, the zero-phase (black) 
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and -30 ∘ (red) Ricker wavelets used to create the simulated data set, and the "observed" (red) 

and initial (black) traces. We constrain the knots to lie within a small range 𝑃 around the actual 

values to avoid excessive well-log distortions. 

 
Figure 13. Left: observed (black) and modified (red) velocity logs, 𝑝(𝑧), the zero-phase (black) and -30 

degrees (red) Ricker wavelets, and "observed" (red) and initial (black) traces. Right: Observed and modified 

velocity logs, 𝑝(𝑧) curves, and traces after 100 realizations. In all cases, 𝑀 = 10, 𝑃 = 15%. Modified after 

(Gelpi, Pérez, and Velis 2020). 

 

Since DE is a stochastic optimization algorithm, different solutions might be obtained for 

different runs. Figure 13 (right) shows the results for 𝑀 = 10 and 𝑃 = 15% after 100 realizations. 

Despite the fact that the individual solutions (splines) are not all that similar, the high consistency 

between the derived traces indicates that the DE convergence is high. 

Figure 14 (left) shows the results for varying 𝑀, while keeping the well-log perturbations within 

±15%. Figure 14 (right) shows the results for varying perturbation range, while keeping the 

number of knots to 𝑀 = 10. We observe a very high match in all cases. The most conservative 

solution would be the recommended. That is, the one that allows minimum well-log perturbations 

using a small number of knots, provided that the correlation is sufficiently high. 
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Figure 14. Left: fixed fractional change (𝑃 = 15%). Right: fixed number of knots (𝑀 = 10). Modified after 

(Gelpi, Pérez, and Velis 2020). 

 

Finally, we show two examples of field data using both field well-log and seismic data. Figure 15 

(left) depicts the well-tying results for a field dataset with a moderate initial match between the 

observed and synthetic traces using manual tying, DE (𝑀 = 15, 𝑃 = 15%), and DTW. When we 

compare DE and DTW to manual tying, we see that these methods lead to a better match. In DE, 

there are no waveform distortions. 

 

 
Figure 15. Field data examples. Observed (black) and modified (red) velocity logs, 𝑝(𝑧), observed (black) 

and synthetic (red) traces after manual tying, DE, and DTW. Left: field data example 1 (𝑀 = 15, 𝑃 = 15%). 

Right: field data example 1 (𝑀 = 10, 𝑃 = 10%).  Modified after (Gelpi, Pérez, and Velis 2020). 

 

A similar pattern can be seen in the second field data example (Figure 15). The original match 

between the observed and synthetic traces was very low in this case. Furthermore, because the 

time window is so short, we use a more conservative parameter selection in DE: 𝑀 = 10, 𝑃 =

10%. The distortions caused by DTW are more visible. As in the previous example, DE and DTW 

achieve a higher correlation than manual well-tying. 
For the sake of completeness, Figure 16 depicts the initial and final wavelets for both field data 

examples. The zero-phase initial wavelet was estimated from the input traces using a conventional 

statistical approach. 
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Figure 16. Zero-phase wavelet (dashed) and estimated phase rotated (solid) wavelet for the field data 

example 1 (top) and 2 (bottom). Modified after (Gelpi, Pérez, and Velis 2020). 

 

Conclusions 

When monotonic cubic splines are used to perturb the observed velocity log, controlled velocity 

changes occur, ensuring that the measured borehole observations are respected within the desired 

tolerance. The method is stable and consistent, especially when the parameters (number of knots 

and maximum allowable velocity change) are chosen conservatively. Unlike the manual or DTW 

approaches, the trace is not stretched or squeezed at any point during the tying process, allowing 

the wavelet shape to be preserved. 

 
Automated velocity analysis using SA 

 
In seismic processing, velocity analysis entails calculating the velocities required to flatten the 

reflections of a CDP-gather prior to stacking (Yilmaz 2001 e.g.). The most common method is to 

create a velocity spectrum (e.g., semblance) and then manually select the maxima associated with 

primary reflections. To do so, the analyst visually inspects all potential local maxima (along with 

their associated hyperbolic patterns) relevant to the velocity analysis at hand. The brain performs 

this process almost effortlessly and instantly, assessing the evidence of a certain relationship 

between the local maxima and the actual primary reflections using all a priori information (rules) 

previously built based on past experiences and learning. Prior knowledge includes the facts that 

normal-moveout velocity 𝑉𝑛𝑚𝑜(𝑡) must be within a certain range and increases with increasing 

two-way time 𝑡. Furthermore, only a few events (reflections) will be chosen, they will not be too 

close together, and maxima associated with multiples or that are negligible should be ignored. 

Subjectivity can have a negative impact on the velocity analysis results, in the same way that it 

is important in the well-tying process. Furthermore, the picking process can be very time-

consuming, taking days to process an entire dataset. There are a number of approaches to 

automating the velocity analysis problem and mitigating these problems (Abbad, Ursin, and Rappin 

2009; Fortini et al. 2013; Garabito 2018; Abassi and Gholami 2018; Chen 2018; Sripanich et al. 

2020; Park and Sacchi 2020). Most of these methods still necessitate a significant amount of user 

intervention, the tuning of many parameters, or are only applicable in certain scenarios (for 

example they assume that the primary main events are previously identified, or that the time 

trajectories are hyperbolic). 
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We devised a strategy to overcome these constraints (Velis 2021). In an attempt to mimic the 

analyst picking process, we propose an automatic technique that incorporates the aforementioned 

rules via constraints into a nonlinear optimization problem. The method is applicable to both 

hyperbolic and non-hyperbolic trajectories. In the first case, we minimize the following cost function 

using very fast simulated annealing (Ingber 1989): 

 

𝐽 = 1 −
1

𝑀
∑ 𝜎𝑖
𝑀
𝑖=1 (𝑡0

𝑖 , 𝑉𝑛𝑚𝑜
𝑖 ),      (6) 

 

where 𝜎𝑖 is the semblance (or any other normalized coherence measure) computed along the 𝑖-

th hyperbolic event (we consider 𝑀 events) defined by the corresponding (𝑡0
𝑖 , 𝑉𝑛𝑚𝑜

𝑖 ) pair. Because 

all of the aforementioned rules must be met, appropriate dynamic and static constraints are 

incorporated into the optimization problem, as described by (Velis 2021). Note that the method 

boils down to finding a piecewise linear curve with 𝑀 nodes (2 ×𝑀 unknowns), such that 𝐽 is 

minimum and all the constraints are satisfied. 

Assuming hyperbolic events leads to incomplete flattening in the nonhyperbolic case. As a 

result, we must consider a third parameter, 𝜂𝑖, which is usually associated with anisotropy or large 

offsets. As a result, now the optimization problem entails locating a piecewise line in a 3D space, 

and the number of unknowns increases to 3 × 𝑀. For convenience, we first assume hyperbolic 

events and find the picks using only near offsets. These picks are then used as an initial guess for 

the second step, which involves all three parameters as well as the entire CDP at the same time. 

 

Very fast simulated annealing 

 
Figure 17. Flowchart of VFSA (used to automate the velocity analysis problem). 𝑚 stands for model 

parameters (unknowns), 𝐽 for cost function, and 𝑘 for iteration. Modified after (Velis 2021). 

 

Figure 17 depicts the utilized VFSA algorithm (Ingber 1989), which is a variation of the SA 

optimization algorithm proposed by (Kirkpatrick, Gellat, and Vecchi 1983). To generate model 

perturbations 𝛥𝑚 at each iteration 𝑘, VFSA uses a long-tailed Cauchy-like distribution 𝑔(𝛥𝑚). 

This enables for the use of a fast cooling schedule 𝑇𝑘 to accelerate convergence while still allowing 
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for a broad search of the model space at low temperatures, avoiding local minima. 𝑇 =

𝑇0exp(𝑐𝑘
𝑄 𝑁𝑝⁄ ) is used in practice, where 𝑇0 is the initial temperature, 𝑁𝑝 is the number of 

unknowns, 𝑄 is a quenching factor ranging from 1 to 𝑁𝑝, and 𝑐 is a user-defined parameter. 

VFSA’s statistical convergence is guaranteed if 𝑄 = 1, regardless of 𝑇0 and 𝑐. The so-called 

Metropolis criterion involves assigning a probability ℎ > 0 to uphill moves, which is essential for 

avoiding local minima. 

 

Examples 

The velocity analysis problem is depicted in Figure 18. A few hyperbolic events, as well as 

some multiples, are included in the synthetic CDP-gather. We choose six inner nodes by hand, 

resulting in a velocity law that flattens the primary reflections (center panel). After solving the 

described constrained nonlinear optimization problem, SA yields the same result. 

 
Figure 18. Synthetic gather with hyperbolic events and multiples, NMO-corrected gather, and velocity 

spectrum (initial picks in green manual/SA in black). Modified after (Velis 2021). 

 

Figure 19 shows an example where the hyperbolic assumption is violated (second panel). In 

this case, the proposal involves two steps. First, we find the picks (𝑡0
𝑖 , 𝑉𝑛𝑚𝑜

𝑖 ) by assuming 

hyperbolic trajectories and employing only near offsets (third and fifth panels). Then, using the 

previous picks as an initial guess and all offsets, we obtain the final picks (𝑡0
𝑖 , 𝑉𝑛𝑚𝑜

𝑖 , 𝜂𝑖) to flatten 

the nonyperbolic events (fourth and sixth panels). 
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Figure 19. Synthetic gather with nonhyperbolic events and multiples, hyperbolic NMO-corrected gather 

using all offsets, hyperbolic NMO-corrected gather using near offsets, nonhyperbolic NMO-corrected gather, 

velocity spectrum (all offsets), velocity spectrum (near offsets): initial (green), SA hyperbolic (blue), SA 

nonhyperbolic (black). Modified after (Velis 2021). 

 

The next example considers the well-known Alaska dataset (line 31-81). The line contains 535 

CDPs (5280 traces) with folds in the range 9 to 12, a maximum offset distance of 1600 m, and a 

sampling interval of 2 ms. One of such CDPs is shown in the Figure 20, together with the NMO-

corrected gather after the SA velocity analysis. Figure 21 shows the corresponding stack after 

manual picking and SA. In this case, we considered 9 out of 535 CDPs, only. The remaining 

velocity laws were obtained, as usual, through interpolation in the offset dimension. The match 

between the two sections is very high. 

 
Figure 20. Alaska example. CDP #229 (line 31-81), NMO-corrected gather using SA picks, velocity 

spectrum: manual (blue), initial (green), SA (black). Modified after (Velis 2021). 
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Figure 21. Alaska example. Stack using manual (left) and SA (right) picks. Modified after (Velis 2021). 

 

The next example considers a CDP (SEG’s 2007 anisotropic benchmark dataset) that contains 

nonhyperbolic events and large offsets. The results are shown in Figure 22. The procedure follows 

the same strategy as in the synthetic example in Figure 19: we start by selecting events based on 

the hyperbolic assumption and only using near offsets. These preliminary picks are then used as 

an initial guess for the second stage, which takes into account nonhyperbolic trajectories an all 

offsets to achieve a better flattening of primary events. Figure 23 depicts zoomed-in areas to help 

visualize the results. 

 
Figure 22. Anisotropic benchmark example. CDP #8010, hyperbolic NMO-corrected gather, 

nonhyperbolic NMO-corrected gather, velocity spectrum (all offsets), velocity spectrum (near offsets): initial 

(green), SA hyperbolic (blue), SA nonhyperbolic (black). Modified after (Velis 2021). 
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Figure 23. Anisotropic benchmark example. Details of the NMO-corrected gather: hyperbolic (top), 

nonhyperbolic (bottom). Modified after (Velis 2021). 

 

Conclusions 

The SA velocity analysis is carried out by searching for semblance maxima along piecewise 

linear curves with an unknown number of nodes representing the picks. With VFSA and 

appropriate constraints, the search can be completed quickly, allowing for the incorporation of a 

priori information to avoid meaningless picks and multiple reflections, and to guide the search 

towards a solution that resembles manual picking to some extent. 

 
FINAL REMARKS 

 
Seismic data analysis involves several complex processes and problems that can be solved 

using different techniques. The ever-increasing size of seismic data sets, combined with the 

industry’s demands for shorter turnarounds, makes machine learning techniques very appealing. 

As a result, many traditional methods are being superseded by machine learning approaches that 

frequently yield results with fewer model assumptions and are less reliant on user supervision. Our 

ultimate goal is to make seismic data interpretation easier, faster, and more accurate. The 

algorithms we reviewed follow these guidelines. 
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