The chemical environment at germination stage in Pinus halepensis somatic embryogenesis: implications in the morphological characteristics of the developed plantlets

Authors

  • Antonia Maiara Marques Do Nascimento Departamento de Ciencias Forestales, Instituto Vasco de Investigación y Desarrollo Agrario (NEIKER-BRTA), España
  • Itziar Aurora Montalbán Departamento de Ciencias Forestales, Instituto Vasco de Investigación y Desarrollo Agrario (NEIKER-BRTA), España
  • Paloma Moncaleán Departamento de Ciencias Forestales, Instituto Vasco de Investigación y Desarrollo Agrario (NEIKER-BRTA), España

DOI:

https://doi.org/10.24215/16699513e099

Keywords:

acclimatation, somatic embryos, maltose, sacarose, conifers

Abstract

Somatic embryogenesis is a promising method of propagation of conifers, but it requires optimized protocols according to the different stages of the process and the model species. Pinus halepensis Mill. (Aleppo pine) is a species widely used in reforestation and the somatic embryogenesis procedure was successfully developed, but even so, there is low germination and conversion of somatic embryos into plants. In this sense, promoting changes in the chemical environment in the germination stage is an alternative to increase germination rates and the consequent obtaining of somatic plants. Taking this into account, the objective of this work was to evaluate the influence of different carbohydrate sources applied during the germination stage of the somatic embryos of P. halepensis, on the success of this process and the morphology of the somatic plants obtained. A statistically significant increase in germination rates, total length of somatic plants, as well as principal root length was observed when somatic embryos were cultured in maltose-supplemented germination medium.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abelló, M.A. (1988). Historia y evolución de las repoblaciones forestales en España. Colección Tesis Doctorales 126: 88.

Aitken-Christie, J.; A.P Singh & H. Davies. (1988). Multiplication of meristematic tissue: a new tissue culture system for radiata pine. En: Genetic Manipulation of Woody Plants. Ed. Springer. pp. 413-432.

Blanc, G.; L. Lardet; A. Martin; J.L. Jacob & M.P Carron. (2002). Differential carbohydrate metabolism conducts morphogenesis in embryogenic callus of Hevea brasiliensis (Müll. Arg.). Journal of Experimental Botany 53: 1453-1462.

do Nascimento, A.M.M.; P.A. Barroso; N.F.F. do Nascimento; T. Goicoa; M.D. Ugarte; I.A. Montalbán & P. Moncaleán. (2020).Pinus spp. Somatic embryo conversion under high temperature: Effect on the morphological and physiological characteristics of plantlets. Forests 11: 1-14.

do Nascimento, A.M.M.; L.G. Polesi; F.P. Back; N. Steiner; M.P. Guerra; A. Castander-Olarieta; P. Moncaleán & I.A. Montalbán. (2021). The chemical environment at maturation stage in Pinus spp. somatic embryogenesis: implications in the polyamine profile of somatic embryos and morphological characteristics of the developed plantlets. Frontiers in Plant Science 12.

dos Santos, A.L.W.; V. Silveira; N. Steiner; M. Vidor & M.P. Guerra. (2002). Somatic embryogenesis in Parana pine (Araucaria angustifolia (Bert.) O. Kuntze). Brazilian Archives of Biology and Technology 45: 97-106.

Fang, H.; Y. Dong; R. Zhou; Q. Wang; Q. Duan; C. Wang; Y. Bao; S. Xu; X. Lang; S. Gai; R. Chen & K.Q. Yang. (2022). Optimization of the induction, germination, and plant regeneration system for somatic embryos in apomictic walnut (Juglans regia L.). Plant Cell, Tissue and Organ Culture 150(2): 289-297

Fehér, A. (2019). Callus, Dedifferentiation, Totipotency, Somatic Embryogenesis: What These Terms Mean in the Era of Molecular Plant Biology? Frontiers in Plant Science 10: 536.

Gulzar, B.; A. Mujib; M.Q. Malik; R. Sayeed; J. Mamgain & B. Ejaz. (2020). Genes, proteins and other networks regulating somatic embryogenesis in plants. Journal of Genetic Engineering and Biotechnology 18: 31.

Gupta, P.K. & D.J. Durzan. (1985). Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Reports 4: 177-179.

Gupta, P.K.; G. Pullman; R. Timmis; M. Kreitinger; W.C. Carlson; J. Grob & E. Welty. (1993). Forestry in the 21st Century. Bio/Technology 11: 454-459.

Kaur, K.; D. Dolker; S. Behera & P.K. Pati. (2022). Critical factors influencing in vitro propagation and modulation of important secondary metabolites in Withania somnifera (L.) dunal. Plant Cell, Tissue and Organ Culture 149: 41-60.

Klimaszewska, K. & D.R. Cyr. (2002). Conifer somatic embryogenesis: I. Development. Dendrobiology 48: 31-39.

Kubeš, M.; N. Drážná; H. Konrádová & H. Lipavská. (2014). Robust carbohydrate dynamics based on sucrose resynthesis in developing Norway spruce somatic embryos at variable sugar supply. In Vitro Cellular and Developmental Biology-Plant 50: 45-57.

Li, X.Y.; F.H. Huang; J.B. Murphy & E.E. Gbur. (1998). Polyethylene glycol and maltose enhance somatic embryo maturation in loblolly pine (Pinus taeda L.). In Vitro Cellular & Developmental Biology-Plant 34: 22-26.

Ma, X.; K. Bucalo; R.O. Determann; J.M. Cruse-Sanders & G.S. Pullman. (2012). Somatic embryogenesis, plant regeneration, and cryopreservation for Torreya taxifolia, a highly endangered coniferous species. In Vitro Cellular and Developmental Biology-Plant 48(3): 324-334.

Montalbán, I.A. & P. Moncaleán. (2019). Rooting of Pinus radiata somatic embryos: factors involved in the success of the process. Journal of Forestry Research 30: 65-71.

Montalbán, I.A.; N. de Diego & P. Moncaleán. (2010). Bottlenecks in Pinus radiata somatic embryogenesis: improving maturation and germination. Trees 24: 1061-1071.

Montalbán, I.A.; A. Setién-Olarra; C.L. Hargreaves & P. Moncaleán. (2013). Somatic embryogenesis in Pinus halepensis Mill.: An important ecological species from the Mediterranean forest. Trees-Structure and Function 27: 1339-1351.

Pereira, C.; I.A. Montalbán; O. García-Mendiguren; T. Goicoa; M.D. Ugarte; S. Correia; J.M. Canhoto & P. Moncaleán. (2016).Pinus halepensis somatic embryogenesis is affected by the physical and chemical conditions at the initial stages of the process. Journal of Forest Research 21: 143-150.

Pereira, C.; I.A. Montalbán; T.G. Mangado; M.D.U. Martínez; S. Correia; J. Canhoto & P. Moncaleán. (2017). The effect of changing temperature and agar concentration at proliferation stage in the final success of Aleppo pine somatic embryogenesis. Forest Systems 26: 9.

Pereira, C.; A. Castander-Olarieta; E. Sales; I.A. Montalbán; J. Canhoto & P. Moncaleán. (2021). Heat stress in Pinus halepensis somatic embryogenesis induction: Effect in DNA methylation and differential expression of stress-related genes. Plants 10.

Quoirin, M. & P. Lepoivre. (1977). Etude de milieux adaptes aux cultures in vitro de Prunus. Acta Horticulturae 78: 437-442.

Salaj, T.; K. Klubicová; R. Matusova & J. Salaj. (2019). Somatic embryogenesis in selected conifer trees Pinus nigra Arn. and Abies hybrids. Frontiers in Plant Science 10: 1-13.

Su, Y.H.; L.P. Tang; X.Y. Zhao & X.S. Zhang. (2021). Plant cell totipotency: Insights into cellular reprogramming. Journal of Integrative Plant Biology 63: 228-243.

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing.

Vlašínová, H.; V. Neděla; B. Đorđević & L. Havel. (2017). Bottlenecks in bog pine multiplication by somatic embryogenesis and their visualization with the environmental scanning electron microscope. Protoplasma 254: 1487-1497.

Voltas, J.; T.A. Shestakova; T. Patsiou; G. di Matteo & T. Klein. (2018). Ecotypic variation and stability in growth performance of the thermophilic conifer Pinus halepensis across the Mediterranean basin. Forest Ecology and Management 424: 205-215.

Walter, C.; J.I. Find & L.J. Grace. (2005). Somatic embryogenesis and genetic transformation in Pinus radiata. En: Protocol for somatic embryogenesis in woody plants. S.M. Jain & P.K. Gupta (coordinadores). Ed. Dordrecht: Springer. pp. 11–24.

Published

2022-11-29

How to Cite

Marques Do Nascimento, A. M., Montalbán, I. A., & Moncaleán, P. (2022). The chemical environment at germination stage in Pinus halepensis somatic embryogenesis: implications in the morphological characteristics of the developed plantlets. Journal of the Agronomy College, 121(Especial 2), 099. https://doi.org/10.24215/16699513e099

Issue

Section

Biotecnologias Aplicadas a cultivos de interés socio economico