Ecuaciones predictivas del tamaño del canino a partir de las dimensiones de premolares y molares: aplicación en la estimación del sexo sobre restos esqueléticos

  • Joan VICIANO Museo Universitario, Universidad “G. d'Annunzio” Chieti- Pescara, Piazza Trento e Trieste 1,66100 Chieti, Italia
  • Carmen TANGA
Palabras clave: Predicción, tamaño del canino, ecuaciones de regresión, estimación del sexo, restos óseos

Resumen

El objetivo del presente estudio es predecir el tamaño del canino permanente a partir de mediciones tomadas en los dientes posteriores (premolares y molares), y utilizar los valores predichos del tamaño del canino para estimar el sexo biológico de restos óseos. El análisis se llevó a cabo en 126 individuos procedentes de la antigua ciudad de Herculano (Nápoles, Italia), víctimas de la erupción del volcán Vesubio la madrugada entre el 24/25 de agosto del año 79 EC. Se tomaron los diámetros mesiodistal y bucolingual de la corona dental y a nivel cervical del diente, y se llevó a cabo el análisis de regresión lineal de Pearson para crear ecuaciones de regresión que permitieran predecir el tamaño del canino basándose en las dimensiones dentales de los dientes posteriores. Se obtuvieron 14 ecuaciones de regresión. Los resultados muestran elevados coeficientes de correlación y determinación (r = 0,709–0,889; r2 = 0,502–0,791; respectivamente), dependiendo de los diámetros de los dientes utilizados. Posteriormente, estas ecuaciones de regresión fueron aplicadas a una muestra de validación para estimar el sexo biológico de los individuos utilizando los valores predichos del tamaño del canino aplicando diversas fórmulas de función discriminantes específicas para la población de Herculano. Los resultados muestran que los valores predichos del tamaño del canino proporcionan elevados porcentajes de correcta asignación del sexo cuando se trabaja con restos óseos fragmentarios procedentes de contextos arqueológicos y el canino no está disponible para su medición.

Descargas

Los datos sobre descargas todavía no están disponibles.

Citas

1. Sonika V, Harshaminder K, Madhushankari GS, A Sri Kennath JA (2011) Sexual dimorphism in the permanent maxillary first molar: a study of the Haryana population (India). J Forensic Odontostomatol 29:37-43.

2. Zorba E, Moraitis K, Eliopoulos C, Spiliopoulou C (2012) Sex determination in modern Greeks using diagonal measurements of molar teeth. Forensic Sci Int 217:19-26.

3. Zorba E, Vanna V, Moraitis K (2014) Sexual dimorphism of root length on a Greek population sample. Homo 65:143-154.

4. Khamis MF, Taylor JA, Malik SN, Townsend GC (2014) Odontometric sex variation in Malaysians with application to sex prediction. Forensic Sci Int 234:183.e1-183.e7.

5. Hassett B (2011) Technical note: estimating sex using cervical canine odontometrics: a test using a known sex sample. Am J Phys Anthropol 146:486-489.

6. Viciano J, Alemán I, D'Anastasio R, Capasso L, Botella MC (2011) Odontometric sex discrimination in the Herculaneum sample (79 AD, Naples, Italy), with application to juveniles. Am J Phys Anthropol 145:97-106.

7. Viciano J, López-Lázaro S, Alemán I (2013) Sex estimation based on deciduous and permanent dentition in a contemporary Spanish population. Am J Phys Anthropol 152:31-43.

8. Viciano J, D'Anastasio R, Capasso L (2015) Odontometric sex estimation on three populations of the Iron Age from Abruzzo region (centralsouthern Italy). Arch Oral Biol 60:100-115.

9. Thompson AR (2013) Odontometric determination of sex at Mound 72 Cahokia. Am J Phys Anthropol 151:408-419.

10. Pereira C, Bernardo M, Pestana D, Santos JC, de Mendonça MC (2010) Contribution of teeth in human forensic identification – discriminant function sexing odontometrical techniques in Portuguese population. J Forensic Leg Med 17:105-110.

11. Zorba E, Moraitis K, Manolis S (2011) Sexual dimorphism in permanent teeth of modern Greeks. Forensic Sci Int 210:74-81.

12. Angadi PV, Hemani S, Prabhu S, Acharya AB (2013) Analyses of odontometric sexual dimorphism and sex assessment accuracy on a large a sample. J Forensic Leg Med 20:673-677.

13. Scott GR (2008) Dental morphology. En: Biological anthropology of the human skeleton, Katzenberg MA y Saunders SR (eds) Wiley-Liss, New Jersey, pp. 265-298.

14. Vodanović M, Demo Z, Njemirovskij V, Keros J, Brkić H (2007) Odontometrics: a useful method for sex determination in an archaeological skeletal population? J Archaeol Sci 34:905-913.

15. Parekh DH, Patel SV, Zalawadia AZ, Patel SM (2012) Odontometric study of maxillary canine teeth to establish sexual dimorphism in Gujarat population. In t J Biol Med Res 3:1935-1937.

16. Da Costa YTF, Lima LNC, Rabello PM (2012) Analysis of canine dimorphism in the estimation of sex. Braz J Oral Sci 11:406-410.

17. Yuwanati M, Karia A, Yuwanati M (2012) Canine tooth dimorphism: an adjunct for establishing sex identity. J Forensic Dent Sci 4:80-83.

18. Filipović G, Radojičić J, Stošić M, Janošević P, Ajduković (2013) Odontometric analysis of permanent canines in gender determination. Arch Biol Sci 65:1279-1283.

19. Rajarathnam BN, David MP, Indira AP (2016) Mandibular canine dimensions as an aid in gender estimation. J Forensic Dent Sci 8:83-89.

20. Nadendla LK, Paramkusam G, Pokala A, Devulapalli RV (2016) Identification of gender using radiomorphometric measurements of canine by discriminant function analysis. Indian J Dent Res 27:27-31.

21. Nourallah AW, Gesch D, Khordaji MN, Splieth C (2002) New regression equations for predicting the size of unerupted canines and premolars in a contemporary population. Angle Orthod 72:216-221.

22. Legović M, Novosel A, Škrinjarić T, Legović A, Mady B, Ivančić N (2006) A comparison of methods for predicting the size of unerupted permanent canines and premolars. Eur J Orthod 28:485-490.

23. Mokhtari S, Sanati I, Shafizadeh N, Seraj B, Khosravanifard B (2014) Predicting the size of unerupted canines and premolars using primary maxillary first molar. Eur Arch Paediatr Dent 15:401-405.

24. Khanna R, Pandey RK, Tripathi S (2015) Effect of intermaxillary tooth-size discrepancy on accuracy of prediction equations for mixed dentition space analysis. Eur Arch Paediatr Dent 16:211-217.

25. Paredes V, Williams FD, Cibrian R, Williams FE, Meneses A, Gandia JL (2011) Mesiodistal sizes and intermaxillary tooth-size ratios of two populations: Spanish and Peruvian. A comparative study. Med Oral Patol Oral Cir Bucal 16:e593-e599.

26. Paredes V, Tarazona B, Zamora N, Cibrian R, Gandia JL (2015) New regression equations for predicting human teeth sizes. Head Face Med 11:8. Doi: 10.1186/s13005-015-0067-8.

27. Ferembach D, Schwidetzky I, Stloukal M (1980) Recommendations for age and sex diagnoses of skeletons. J Hum Evol 9:517-549.

28. Schutkowski H (1993) Sex determination of infant and juvenile skeletons. I. Morphognostic features. Am J Phys Anthropol 90:199-205.

29. Scheuer L (2002) A blind test of mandibular morphology for sexing mandibles in the rst few years of life. Am J Phys Anthropol 119:189-191.

30. Franklin D, Oxnard CE, O'Higgins P, Dadour I (2007) Sexual dimorphism in the subadult mandible: quantication using geometric morphometrics. J Forensic Sci 52:6-10.

31. Vlak D, Roksandic M, Schillaci MA (2008) Greater sciatic notch as a sex indicator in juveniles. Am J Phys Anthropol 137:309–-315.

32. Sutter RC (2003) Nonmetric subadult skeletal sexing traits. I. A blind test of the accuracy of eight previously proposed methods using prehistoric known-sex mummies from northern Chile. J Forensic Sci 48:927-935.

33. Ubelaker D (1989) Human skeletal remains: excavation, analysis, interpretation. Aldine Manuals on Archaeology. Taraxacum, Washington, DC.

34. Krogman W, Işcan MY (1986) The human skeleton in forensic medicine. Charles C Thomas, Springfield.

35. Scheuer L, Black S (2004) The juvenile skeleton. Elsevier Academic Press, London.

36. Todd TW (1920) Age changes in the pubic bones, I: the white male pubis. Am J Phys Anthropol 3:285-334.

37. Todd TW (1921) Age changes in the pubic bone. Am J Phys Anthropol 4:1-70.

38. Buckberry JL, Chamberlain AT (2002) Age estimation from the auricular surface of the ilium: a revised method. Am J Phys Anthropol 119:231-239.

39. Vallois HV (1960) Vital statistics in prehistoric populations as determined from archaeological data. En: The application of quantitative methods in archaeology, vol. 28, Heizer RF y Cook SF (eds) Viking Fund Publications in Anthropology, Chicago, pp. 186-222.

40. Capasso L (2001) I Fuggiaschi di Ercolano: paleobiologia delle vittime dell'eruzione vesuviana del 79 d.C. L'Erma di Bretschneider, Roma.

41. Hillson S, Fitzgerald C, Flinn H (2005) Alternative dental measurements: proposals and relationships with other measurements. Am J Phys Anthropol 126:413-426.

42. Fleiss JL (1986) The design and analysis of clinical experiments. Wiley, New York.

43. Moorrees CFA, Reed (1964) Correlations among crown diameters of human teeth. Arch Oral Biol 9:685-697.

44. Cattaneo C, Butti AC, Bernini S, Biagi R, Salvato A (2010) Comparative evaluation of the group of teeth with the best prediction value in the mixed dentition analysis. Eur J Paediatr Dent 11:23-26.

45. Fernandes TMF, Janson G, Pinzan A, Sathler R, de Freitas LMA, de Freitas MR (2010) Applicability of Bolton tooth-size ratios in racial groups. World J Orthod 11:e57-e62.

46. Buwembo W, Kutesa A, Muwazi L, Rwenyonyi CM (2012) Prediction of width of un-erupted incisors, canines and premolars in a Ugandan population: a cross sectional study. BMC Oral Health 12:23.
Publicado
2017-08-03
Cómo citar
VICIANO, J., & TANGA, C. (2017). Ecuaciones predictivas del tamaño del canino a partir de las dimensiones de premolares y molares: aplicación en la estimación del sexo sobre restos esqueléticos. Revista Ciencias Morfológicas, 19(1), 9-20. Recuperado a partir de https://revistas.unlp.edu.ar/Morfol/article/view/3745
Sección
Trabajos Originales