Predicción de la evapotranspiración de referencia mediante NASA-POWER: contraste con estaciones meteorológicas en el sudeste de Córdoba
DOI:
https://doi.org/10.24215/15146774e050Palabras clave:
datos de reanálisis, Penman-Monteith, aprendizaje automáticoResumen
La cuantificación de la evapotranspiración de referencia (ETo) resulta de utilidad para diferentes aplicaciones. Sin embargo, su estimación está limitada por la carencia de instrumentos y redes de observación terrestres. Actualmente, se dispone de productos satelitales grillados de reanálisis y modelos de aprendizaje automático que surgen como alternativa para estimar variables meteorológicas espacialmente explícitas a escala local y regional. El objetivo de este trabajo fue evaluar la predicción de la ETo mediante el producto NASA-POWER en el sudeste de Córdoba. A partir de la temperatura, humedad, velocidad de viento y radiación solar registradas en estaciones meteorológicas y estimadas por NASA-POWER, se estimó la ETo mediante el modelo Penman-Monteith. Además, se empleó el modelo de aprendizaje automático Extreme Gradient Boosting (XGBoost) para corregir las estimaciones de NASA-POWER necesarias para el cálculo de ETo. Los
resultados mostraron que NASA-POWER estimó la ETo con errores inferiores a 1 mm.día-1 cuando se comparó con la observada en las estaciones. XGBoost mejoró sensiblemente la precisión. A partir del producto NASA-POWER y XGBoost se puede reconstruir la falta de registros meteorológicos en el sudeste de Córdoba y a partir de ello estimar la ETo en forma precisa.
Descargas
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Lucas Gusmerotti, Natalia Gattinoni, Carlos Di Bella, Jorge Mercau

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista, no hagan uso comercial de ella y las obras derivadas de hagan bajo la misma licencia.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).