VesselVAE: Recursive Variational Autoencoders for 3D Blood Vessel Synthesis

Autores/as

  • Paula Feldman Universidad Torcuato Di Tella, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
  • Miguel Fainstein Universidad Torcuato Di Tella, Argentina
  • Viviana Siless Universidad Torcuato Di Tella, Argentina
  • Claudio Delrieux Universidad Nacional del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Emmanuel Iarussi Universidad Torcuato Di Tella, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina

Palabras clave:

Vascular 3D model, Generative modeling, Neural Networks

Resumen

We present a data-driven generative framework for synthesizing blood vessel 3D geometry. This is a challenging task due to the complexity of vascular systems, which are highly variating in shape, size, and structure. Existing model-based methods provide some degree of control and variation in the structures produced, but fail to capture the diversity of actual anatomical data. We developed VesselVAE, a recursive variational Neural Network that fully exploits the hierarchical organization of the vessel and learns a low-dimensional manifold encoding branch connectivity along with geometry features describing the target surface. After training, the VesselVAE latent space can be sampled to generate new vessel geometries. To the best of our knowledge, this work is the first to utilize this technique for synthesizing blood vessels. We achieve similarities of synthetic and real data for radius (.97), length (.95), and tortuosity (.96). By leveraging the power of deep neural networks, we generate 3D models of blood vessels that are both accurate and diverse, which is crucial for medical and surgical training, hemodynamic simulations, and many other purposes.

Descargas

Publicado

2024-10-12

Número

Sección

SAIV - Simposio Argentino de Imágenes y Visión

Cómo citar

Feldman, P., Fainstein, M., Siless, V., Delrieux, C., & Iarussi, E. (2024). VesselVAE: Recursive Variational Autoencoders for 3D Blood Vessel Synthesis. JAIIO, Jornadas Argentinas De Informática, 10(11), 60-69. https://revistas.unlp.edu.ar/JAIIO/article/view/17886