Enhancing Flexibility in V2B Applications with Renewable Energy Resources
Palabras clave:
Electric vehicles , Smart Charging , Renewable Energy , Reinforcement LearningResumen
The incorporation of EV parking within vehicle-to-building (V2B) frameworks signifies not only a technological evolution but also a pivotal step towards constructing smarter and environmentally friendly urban environments. This initiative actively contributes to the optimization of system resources while also enabling the incorporation of renewable energy resources. In this study, we propose the development of reinforcement learning (RL) algorithms for the management of smart parking lots, aiming to minimize building energy purchases from the grid while ensuring efficient charging of EVs. The proposed methods obtained a 15% to 17% improvement in the evaluation reward in comparison with rule based method as a benchmark. In the realm of grid energy, they saved 9 to 11% in average purchase cost. In essence, these algorithms, after training, make more efficient decisions than more traditional control methods while ensuring electric vehicle (EV) charging.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Maximiliano Trimboli, Nicolás Antonelli, Luis Avila

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.











