Enhancing Flexibility in V2B Applications with Renewable Energy Resources

Autores/as

  • Maximiliano Trimboli Universidad Nacional de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Nicolás Antonelli Universidad Nacional de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Luis Avila Universidad Nacional de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

Palabras clave:

Electric vehicles , Smart Charging , Renewable Energy , Reinforcement Learning

Resumen

The incorporation of EV parking within vehicle-to-building (V2B) frameworks signifies not only a technological evolution but also a pivotal step towards constructing smarter and environmentally friendly urban environments. This initiative actively contributes to the optimization of system resources while also enabling the incorporation of renewable energy resources. In this study, we propose the development of reinforcement learning (RL) algorithms for the management of smart parking lots, aiming to minimize building energy purchases from the grid while ensuring efficient charging of EVs. The proposed methods obtained a 15% to 17% improvement in the evaluation reward in comparison with rule based method as a benchmark. In the realm of grid energy, they saved 9 to 11% in average purchase cost. In essence, these algorithms, after training, make more efficient decisions than more traditional control methods while ensuring electric vehicle (EV) charging.

Descargas

Publicado

2024-09-19

Número

Sección

ASAID - Simposio Argentino de Inteligencia Artificial y Ciencias de Datos

Cómo citar

Trimboli, M., Antonelli, N., & Avila, L. (2024). Enhancing Flexibility in V2B Applications with Renewable Energy Resources. JAIIO, Jornadas Argentinas De Informática, 10(1), 223-236. https://revistas.unlp.edu.ar/JAIIO/article/view/17907