Reúso de un modelo de Aprendizaje Profundo para reconocimiento de dígitos manuscritos
Palabras clave:
Transferencia de Aprendizaje, Reúso de modelos, Aprendizaje Automático, Reconocimiento de dígitos numéricosResumen
Las técnicas de Aprendizaje Automático (AA) han avanzado significativamente en la solución de diversos problemas, lo que ha llevado a una amplia difusión en su uso y desarrollo. Actualmente existen distintos modelos que han alcanzado un alto nivel de desempeño, lo que plantea la duda de qué hacer cuando nos enfrentamos a un problema para el cual ya existe un modelo muy eficiente. Desde hace tiempo esta situación ha impulsado la investigación y el desarrollo de diferentes técnicas para reutilizar estos modelos, en lugar de emprender el diseño, implementación y entrenamiento de uno nuevo, con todo el esfuerzo que ello conlleva. En este trabajo se presenta un problema de clasificación y se propone la reutilización de una red neuronal convolucional con el objetivo de reconocer números manuscritos. Asimismo, se ha evaluado el desempeño del modelo reutilizado.
Descargas
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2023 Mauro José Pacchiotti, Luciana Ballejos, Mariel Ale

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.