Predicción de la satisfacción del usuario a partir de chats de atención al cliente
Palabras clave:
atención al cliente, encuestas de satisfacción, modelos predictivos, XGBoost, procesamiento de lenguaje naturalResumen
Los servicios de atención al cliente son determinantes de la experiencia de usuario de las empresas Fintech. Este trabajo busca entender, empleando técnicas de machine learning, qué factores llevan a los clientes de una Fintech a evaluar de forma positiva su experiencia. Esto se hizo a partir de dos fuentes de datos: los registros de los usuarios y las conversaciones del servicio de atención al cliente vía WhatsApp. Experimentamos con modelos predictivos basados en XGBoost, entrenados con features del contexto del usuario, las características de las conversaciones y la semántica de las palabras utilizadas en las conversaciones. Los resultados fueron menores a lo esperado (AUC = 0.5152), pero dejan aprendizajes valiosos para quienes encaren problemas semejantes en el futuro, relacionados a los desafíos de los siguientes aspectos críticos: i. evitar el data leakage, ii. evaluar modelos y scoring metrics exhaustivamente, iii. realizar chequeos intermedios, iv. no subestimar el tiempo necesario para la transformación de datos, v. realizar un proceso de unit testing y vi. conocer el dominio. Este trabajo describe las distintas etapas de la metodología: extracción y transformación de los datos, generación de features, entrenamiento de modelos predictivos, selección del modelo óptimo y evaluación en datos de test.
Descargas
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2023 Alejandro Romanisio, Agustín Gravano

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.