Optimización hiperheurística guiada por datos experimentales
Keywords:
Inteligencia Artificial, Optimización, Aprendizaje Automático, MetamodelosAbstract
La digitalización es uno de los principales motores de la innovación pues cada vez hay más datos disponibles. Su explotación eficiente es imprescindible. En particular, para la optimización de sistemas de procesos es un desafío combinar métodos cimentados en ecuaciones con estrategias basadas en datos. Presentamos un enfoque que consiste en la integración de modelos físicos con el aprendizaje automático. Se propone una metodología basada en la física para derivar un metamodelo utilizando boosting. Para el ajuste paramétrico se emplea el Optimizador Hiperheurístico Cooperativo Paralelo (PCHO). PCHO comprende las metaheurísticas clásicas denominadas Algoritmos Genéticos, Recocido Simulado y Optimización por Enjambre de Partículas, cuyos parámetros se eligen de forma adaptativa durante las ejecuciones. Algunos mecanismos complejos pueden requerir varias instancias para representar la realidad. El objetivo de los metamodelos es unificar varias estructuras posibles para obtener resultados generales. Se describe el diseño conceptual de este enfoque, cuyo marco general se concibió para encontrar un metamodelo de la velocidad de reacción inversa del desplazamiento de gas en agua (RWGS) a 600°C. Para este caso se generaron datos experimentales para varios escenarios reales. En consecuencia, fue necesario ajustar varias correlaciones potencialmente aplicables que se combinaron en un metamodelo final.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Juan I. Ardenghi, Constanza Genovese, Paola P. Oteiza, Nélida B. Brignole

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.











