Rule extraction in trained feedforward neural networks with first-order logic
Keywords:
Deep Learning, Rule extraction, Artificial Intelligence, LogicAbstract
The need for neural-symbolic integration becomes evident as more complex problems are addressed, and that go beyond limited domain tasks such as classification. The search methods for extracting rules from neural networks work by sending input data combinations that activate a set of neurons. By properly ordering the input weights of a neuron, it is possible to narrow the search space. Based on this observation, this paper aims to present a method to extract the rule pattern learned by a feedforward trained neural network, analyze its properties and explain these patterns through the use of first-order logic (FOL).
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Pablo Ariel Negro, Claudia Pons

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.











