MammoInsight: Innovating Early Breast Cancer Detection through Artificial Intelligence

Authors

  • Ernesto Rafael Perez Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Emilio Angelina Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • José Leonardo Gómez Chávez Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • German Conti Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Ramon Torres Universidad Nacional del Nordeste, Argentina
  • Nélida Peruchena Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

Keywords:

Artificial Intelligence, Breast Cancer Diagnosis, Mammographic Images, Health Technology, Radiology

Abstract

The MammoInsight project aims to revolutionize the interpretation of digital mammographic images through the integration of artificial intelligence (AI) models. Facing the challenge of early and accurate breast cancer detection, this web platform seeks to overcome the subjectivity and heavy workload of specialists, significantly improving survival rates and accelerating the diagnostic process. Through the development and implementation of AI modules for the automatic categorization of breast density, the classification of mammograms, and the detection and segmentation of anomalies, this represents a crucial advancement in the diagnosis of breast pathologies and has a positive impact on the field of radiology and public health.

Downloads

Published

2024-12-10

Issue

Section

CAIS - Congreso Argentino de Informática y Salud

How to Cite

Perez, E. R., Angelina, E., Gómez Chávez, J. L., Conti, G., Torres, R., & Peruchena, N. (2024). MammoInsight: Innovating Early Breast Cancer Detection through Artificial Intelligence. JAIIO, Jornadas Argentinas De Informática, 10(4), 102-105. https://revistas.unlp.edu.ar/JAIIO/article/view/18555