Thinness 2 conditioned to co-bipartition orderings
Keywords:
co-bipartite, forbidden patterns, thinnessAbstract
In this work, we focus on the characterization by forbidden patterns of the classes of graphs defined by their thinness, a graph width parameter defined by Mannino, Oriolo, Ricci, and Chandran. Specifically, we work on a minimal forbidden pattern characterization of the class of conditioned 2-thin co-bipartite graphs. To reach such a characterization, we define the notions of hinge order and conditioned 2-thin representation. The first concept defines a vertex ordering based on its 2-thin order and partition, while the second introduces restrictions on that order. We identify a general property of graphs with thinness at most 2, showing that given a hinge order associated with a 2-thin representation, splitting that order at any point to define two classes—where the first follows a canonical interval order and the second follows the reverse of such an ordering—yields another 2-thin representation with the same hinge order. Using this result, we prove that for any conditioned 2-thin co-bipartite graph, there exists a 2-thin representation with a conditioned hinge order such that each class forms a clique. Additionally, we obtain that the edges between the two classes induce an interval bigraph.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ayelén Dinkel, Flavia Bonomo-Braberman, Eric Brandwein

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.











