Computer Vision System for License Plate Recognition and Reading
Keywords:
recognition, license plates, computer visionAbstract
This research paper presents the development of an automatic license plate recognition (ANPR) system based on computer vision and deep learning. The system uses the YOLOv8 model in segmentation mode, trained on a Bolivian license plate dataset, to detect and extract license plates from frames captured by an IP camera. Image processing with OpenCV is then applied to correct license plate orientation and perspective, improving character reading accuracy. For optical character recognition (OCR), the Microsoft TrOCR model is implemented, demonstrating high efficiency even with low-resolution images and without intensive preprocessing. The system was developed and tested on a laptop with modest hardware specifications, showing promising results that could be improved with greater computational power. The results indicate a significant improvement in license plate detection and recognition compared to traditional methods.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Hernán Luis Helguero Velásquez, Diego Orlando Ancalle Yucra, Fernando Guzmán Gonzales, Miguel Ángel Gonzales Casanova

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.











