eDwards: Multi-agent system implementation
Keywords:
LLM, agents, agentic, multi-agent, conversational user experienceAbstract
This paper presents a multi-agent system implementation capable of assisting users with various tasks and processes. It explores previous approaches to conversational agents with the goal of streamlining interactions with processes and reducing friction with involved systems through conversational user experiences (CUX). With the advent of pre-trained Large Language Models (LLMs), new techniques and opportunities have emerged for creating these experiences, accelerating the development of specialized multi-agent systems. This paper examines the technical requirements, including the ability to handle both structured and unstructured knowledge, entity recognition, and the transformation of web forms into dialogues. It also explores different frameworks and the state of the art. Finally, it presents an architecture that leverages three agents to solve different problems, discussing challenges and lessons learned from the implementation of various conversational agent architectures.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Gustavo Guaragna, Héctor Ferraro, Guillermo Rodriguez, Facundo Miglierini, Guillermo Burriel

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.











