Neural representation of speech features during natural dialogue
Keywords:
speech processing, cognitive neuroscience, encoding models, EEGAbstract
Studying speech in natural environments presents significant challenges for traditional electroencephalography (EEG) analysis approaches. In recent years, encoding models and machine learning techniques have made substantial progress, enabling a shift toward experimental designs that incorporate naturalistic, dynamic stimuli such as speech. This study aims to understand how different speech attributes are encoded in the brain during unscripted natural dialogue. We begin by analyzing low-level features (envelope, fundamental frequency, spectrogram) and then incorporate higher-level features, such as phonemes and phonological attributes. The results show that including high-level features improves the prediction of neural responses from speech across all frequency bands. Moreover, predictions based on phonemes and phonological features suggest that neural sensitivity is consistent with a hierarchical language processing system.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Juan Octavio Castro, Joaquin E. Gonzalez, Jazmin Vidal Dominguez, Pablo E. Riera, Agustin Gravano, Juan E. Kamienkowski

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.











