Modeling Gender Inequality in Argentine ICT Degrees through Multiple Regression
Keywords:
gender inequality, computer science, informatics, university degrees, data analysisAbstract
This paper presents a quantitative analysis of the gender gap in Computer Science, Information Systems, and Informatics (CSI) degree programs at Argentine universities during the 2010–2015 period. Using a Data Science approach, supervised machine learning was applied—specifically, a multiple linear regression model—to identify the main factors influencing student graduation. The results show that being a female student significantly decreases the probability of graduation, while studying at private universities or in the province of Buenos Aires increases this probability. This study provides relevant empirical evidence for the design of public policies aimed at reducing gender inequality in STEM fields. As future work, the analysis will be extended by incorporating more advanced machine learning techniques and including other STEAM-related degrees.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Guillermo Rodriguez, Gabriela Espinoza Picado

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.











