Taxonomy of migration scenarios for Qiskit refactoring using LLMs
Keywords:
quantum computing (QC), quantum software engineering (QSE), large language models (LLMs), generative AI, qiskit, migration codeAbstract
As quantum computing advances, quantum programming libraries’ heterogeneity and steady evolution create new challenges for software developers. Frequent updates in software libraries break working code that needs to be refactored, thus adding complexity to an already complex landscape. These refactoring challenges are, in many cases, fundamentally different from those known in classical software engineering due to the nature of quantum computing software. This study addresses these challenges by developing a taxonomy of quantum circuit’s refactoring problems, providing a structured framework to analyze and compare different refactoring approaches. Large Language Models (LLMs) have proven valuable tools for classic software development, yet their value in quantum software engineering remains unexplored. This study uses LLMs to categorize refactoring needs in migration scenarios between different Qiskit versions. Qiskit documentation and release notes were scrutinized to create an initial taxonomy of refactoring required for migrating between Qiskit releases. Two taxonomies were produced: one by expert developers and one by an LLM. These taxonomies were compared, analyzing differences and similarities, and were integrated into a unified taxonomy that reflects the findings of both methods. By systematically categorizing refactoring challenges in Qiskit, the unified taxonomy is a foundation for future research on AI-assisted migration while enabling a more rigorous evaluation of automated refactoring techniques. Additionally, this work contributes to quantum software engineering (QSE) by enhancing software development workflows, improving language compatibility, and promoting best practices in quantum programming. This research marks the first step in a broader effort to assess various refactoring strategies, ultimately guiding the development of AI-powered tools to support quantum software engineers.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jos´e Manuel Suárez, Luis Mariano Bibbó, Joaquín Bogado, Alejandro Fernandez

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.











