Exploring the possibilities of Multi-Agent Reinforcement Learning to solve coordinated cooperative tasks in Flexible manufacturing systems

Authors

  • Manuel Ezequías Vázquez Universidad Nacional del Centro de la Provincia de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Carolina Saavedra Sueldo Universidad Nacional del Centro de la Provincia de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Luis O. Ávila Universidad Nacional de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Gerardo G. Acosta Universidad Nacional del Centro de la Provincia de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Mariano De Paula Universidad Nacional del Centro de la Provincia de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

Keywords:

process optimization, intelligent control, collaborative manufacturing, smart factories

Abstract

Advances in artificial intelligence and Multi-Agent Systems enable coordinated agents to achieve multiple, often conflicting, objectives—making them ideal for ”flexible factories.” These factories, driven by technologies merging physical, digital, and biological domains, are evolving into ”smart factories.” Modeling production processes as multi-agent systems allows simultaneous optimization of efficiency, waste reduction, sustainability (economic, social, and environmental), cost savings, and downtime reduction. However, the flexibility needed in reconfigurable environments increases the complexity of decentralized control. Small and medium-sized enterprises (SMEs) are a key example, as they often produce small batches or customized goods, requiring constant adaptation. Multi-agent reinforcement learning provides a viable solution, avoiding impractical centralized control in dynamic settings. This work explores multi-agent reinforcement learning for collaborative manufacturing tasks, such as material handling (a nonvalue-adding operation where efficiency is critical). A preliminary case study is presented, using virtual environments to train multiple agents in coordinated material manipulation across varying complexity scenarios.

Downloads

Published

2025-10-15

Issue

Section

ASAID - Argentine Symposium on Artificial Intelligence and Data Science

How to Cite

Vázquez, M. E., Saavedra Sueldo, C., Ávila, L. O., Acosta, G. G., & De Paula, M. (2025). Exploring the possibilities of Multi-Agent Reinforcement Learning to solve coordinated cooperative tasks in Flexible manufacturing systems. JAIIO, Jornadas Argentinas De Informática, 11(1), 235-248. https://revistas.unlp.edu.ar/JAIIO/article/view/19820